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[02.1] Find all the idempotent elements in Z[i]/〈13〉.

Implicit in the question is that the method should scale well, so ”brute force” is an unhelpful response. To
begin with, there are 169 elements in that quotient ring...

Discussion: To get oriented, we might first want to see whether the rational prime 13 is still
prime/irreducible in Z[i]. One approach to this is to use an isomorphism theorem:

Z[i]/〈13〉 ≈ Z[x]/〈x2 + 1, 13〉 ≈ (Z/13)[x]/〈x2 + 1〉

We might remember (from a forward reference?) that, since finite subgroups of multiplicative groups of fields
are cyclic, there is

√
−1 in a finite field with q elements if and only if q = 1 mod 4. Since 13 is prime, Z/13

is a field. Since 13 = 1 mod 4, there is a
√
−1 in Z/13, so x2 + 1 factors, even though this line of thought

does not immediately tell what ±
√
−1 is in Z/13. Further, even without knowing what

√
−1 ∈ Z/13 is, we

can check that the two linear factors x±
√
−1 are relatively prime in Z/13[x], via the Euclidean algorithm

there:
(x−

√
−1)− 1 · (x+

√
−1) = −2 ·

√
−1

Since neither
√
−1 nor 2 are divisible by (the prime) 13, −2 ·

√
−1 is a unit in the field Z/13, so x ±

√
−1

are coprime, in case we were worried.

Thus, by Sun-Ze’s theorem,

(Z/13)[x]/〈x2 + 1〉 ≈ (Z/13)[x]/〈x−
√
−1〉 ⊕ (Z/13)[x]/〈x+

√
−1〉

In particular, this quotient is not a domain, so 13 is not prime/irreducible in Z[x].

This is good to know. However, that previous discussion does not seem to give an optimal approach to
finding idempotents in that quotient. Of course, we might only find that out after trying more than one
approach, which entails some inefficiencies anyway. After some experimentation, perhaps the following is
the optimal approach, in the sense of scaling well.

If we remember the Fermat theorem on primes which are sums of two squares, then since 13 = 1 mod 4
we know that 13 = a2 + b2 for some integers a, b. To find them, we have a quite small search space (in
comparison to looking for

√
−1 mod 13 naively), namely, on the order of

√
13 things to try. We find

13 = 32 + 22 = (3 + 2i)(3 − 2i). Both to check that 3 ± 2i are coprime, and to get the coefficients for the
extended Euclidean algorithm/Sun-Ze: in the forward direction, the Euclidean algorithm is

(3 + 2i)− i · (3− 2i) = 1− i
(3− 2i)− 2 · (1− i) = 1

verifying that the 3± 2i are relatively prime. Going back,

1 = (3− 2i)− 2 · (1− i) = (3− 2i)− 2 · [(3 + 2i)− i · (3− 2i)] = (−2) · (3 + 2i) + (1 + 2i) · (3− 2i)

Recall that the formula for x such that x = a mod m and x = b mod n, with gcd(m,n) = 1 and rm+sn = 1, is
x = brm+ asn mod mn. The two non-trivial idempotents (that is, other than 0, 1) will be x = 0 mod 3 + 2i
and x = 1 mod 3 − 2i, and x = 1 mod 3 + 2i and x = 0 mod 3 − 2i. Plugging in, the two non-trivial
idempotents are {

x = 1 · (−2) · (3 + 2i) + 0 · (1 + 2i) · (3− 2i) = −6− 4i
x = 0 · (−2) · (3 + 2i) + 1 · (1 + 2i) · (3− 2i) = 7 + 4i
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Of course, −6 = 7 mod 13, etc. ///

[02.2] Find all the nilpotent elements in Z[i]/〈2〉.

Discussion: At the beginning, there are two slightly different approaches. One is to accidentally observe
that 2 = (1 + i) · (1− i), so 2 is not a prime in Z[i]. Indeed, 1 + i = i · (1− i), so 1± i are associates, in the
sense that they are irreducibles/primes just differing by a (multiplicative) unit.

Abstracting a bit, for a commutative ring R (with 1), maybe a UFD to make things very simple, R/p2 (with
p a prime) has easily described idempotents. Namely, exactly things in R · p. To prove this: if r ∈ R is
not divisible by p, then no power rn will be so, much less divisible by p2. On the other hand, if p|r, then
r2 = 0 mod p2. ///

[02.3] (Lagrange interpolation) Let α1, . . . , αn be distinct elements in a field k, and let β1, . . . , βn be any
elements of k. Prove that there is a unique polynomial P (x) of degree < n in k[x] such that, for all indices i,

P (αi) = βi

Indeed, letting

Q(x) =

n∏
i=1

(x− αi)

show that

P (x) =

n∑
i=1

Q(x)

(x− αi) ·Q′(αi)
· βi

Discussion: Since the αi are distinct,

Q′(αi) =
∏
j 6=i

(αi − αj) 6= 0

(One could say more about purely algebraic notions of derivative, but maybe not just now.) Evaluating
P (x) at x→ αi,

Q(x)

(x− αj)
evaluated at x→ αi =

{
1 (for j = i)
0 (for j = i)

Thus, all terms but the ith vanish in the sum, and the ith one, by design, gives βi. For uniqueness, suppose
R(x) were another polynomial of degree < n taking the same values at n distinct points αi as does Q(x).
Then Q−R is of degree < n and vanishes at n points. A non-zero degree ` polynomial has at most ` zeros,
so it must be that Q−R is the 0 polynomial. ///

[02.4] (Simple case of partial fractions) Let α1, . . . , αn be distinct elements in a field k. Let R(x) be any
polynomial in k[x] of degree < n. Show that there exist unique constants ci ∈ k such that in the field of
rational functions k(x)

R(x)

(x− α1) . . . (x− αn)
=

c1
x− α1

+ . . .+
cn

x− αn

In particular, let

Q(x) =
n∏

i=1

(x− αi)

and show that

ci =
R(αi)

Q′(αi)

2



Paul Garrett: Discussion 02 (October 17, 2023)

Discussion: We might emphasize that the field of rational functions k(x) is most precisely the field of
fractions of the polynomial ring k[x]. Thus, in particular, equality r/s = r′/s′ is exactly equivalent to the
equality rs′ = r′s (as in elementary school). Thus, to test whether or not the indicated expression performs
as claimed, we test whether or not

R(x) =
∑
i

(
R(αi)

Q′(αi)
· Q(x)

x− αi

)
One might notice that this is the previous problem, in case βi = R(αi), so its correctness is just a special
case of that, as is the uniqueness (since degR < n). ///

[02.5] Show that the ideal I generated in Z[x] by x2 + 1 and 5 is not maximal.

Discussion: We will show that the quotient is not a field, which implies (by the standard result proven
above) that the ideal is not maximal (proper).

First, recall that the quotient of a ring R by an ideal I = Rx + Ry generated by two elements can be
expressed as a two-step quotient, namely

(R/〈x〉)/〈ȳ〉 ≈ R/(Rx+Ry)

where the 〈ȳ〉 is the principal ideal generated by the image ȳ of y in the quotient R/〈x〉. The principal ideal
generated by y in the quotient R/〈x〉 is the set of cosets

〈ȳ〉 = {(r +Rx) · (y +Rx) : r ∈ R} = {ry +Rx : r ∈ R}

noting that the multiplication of cosets in the quotient ring is not just the element-wise multiplication of the
cosets. With this explication, the natural map is

r + 〈x〉 = r + 〈x〉 −→ r + 〈x〉+ 〈y〉′ = r + (Rx+Rx)

which is visibly the same as taking the quotient in a single step.

Thus, first
Z[x]/〈5〉 ≈ (Z/5)[x]

by the map which reduces the coefficients of a polynomial modulo 5. In (Z/5)[x], the polynomial x2 + 1 does
factor, as

x2 + 1 = (x− 2)(x+ 2)

(where these 2s are in Z/5, not in Z). Thus, the quotient (Z/5)[x]/〈x2 + 1〉 has proper zero divisors x̄ − 2
and x̄ + 2, where x̄ is the image of x in the quotient. Thus, it’s not even an integral domain, much less a
field. ///

[02.6] Show that the ideal I generated in Z[x] by x2 + x+ 1 and 7 is not maximal.

Discussion: As in the previous example, compute the quotient in two steps. First,

Z[x]/〈7〉 ≈ (Z/7)[x]

by the map which reduces the coefficients of a polynomial modulo 7. In (Z/7)[x], the polynomial x2 + x+ 1
does factor, as

x2 + x+ 1 = (x− 2)(x− 4)

(where 2 and 4 are in Z/7). Thus, the quotient (Z/7)[x]/〈x2 + x + 1〉 has proper zero divisors x̄ − 2 and
x̄− 4, where x̄ is the image of x in the quotient. Thus, it’s not even an integral domain, so certainly not a
field.
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[02.7] Let k be a field. Given P ∈ k[x] of degree n, show that there is a k-linear map T : kn → kn such
that P (T ) = 0.

Discussion: There is no need to explicitly mention kn, since any n-dimensional k-vectorspace has many
isomorphisms to kn, by any choices of basis. In particular, it is somewhat advantagous to delay choice-of-
basis.

By the way, since k is not assumed to be algebraically closed, there are obstacles to just letting T by scalar
multiplication by λ, where λ is a root of P (x) = 0.

Let V = k[x]/〈P 〉. Since P has degree n, there is a basis 1, x, x2, . . . , xn−1 for that vectorspace quotient, so
V is indeed n-dimensional. Let T : V → V be multiplication by x (on the quotient). The property P (T ) = 0
is easy: for any v ∈ k[x], representing an element in the quotient,

P (T )(v) = P (x) · v + 〈P (x)〉 ∈ 〈P (x)〉 = 0

noting that the ”vector” v itself is in a quotient of k[x]. ///

[02.8] Determine all two-sided ideals in the ring of n-by-n matrices with entries in a field k.

Discussion: Let R be that ring of n-by-n matrices, and I a non-zero ideal. We will show that I = R. Let
m 6= 0 be an element of I.

Since m is not the 0 matrix, it has some non-zero entry mij , at the ijth place. Left and right multiply
by appropriate permutation matrices to move that non-zero entry to the 1, 1 position (for example). Left
multiply by a scalar matrix to make the 1, 1 entry simply be 1, for simplicity.

Then right-and-left multiply by suitable upper/lower triangular matrices to make all the other entries in the
top row and left-most column 0 (apart from the 1, 1 entry).

The ring R has an obvious subring

S =

(
1 0
0 ∗

)
with the ∗ being (n− 1)-by-(n− 1). Thus, we can do induction on n. That is, I contains either(

1 0
0 0n−1

)
or

(
1 0
0 1n−1

)

In the latter case, we have 1n ∈ I, so I = R, and we’re done. In the former, we can add copies of

(
1 0
0 0n−1

)
left-and-right multiplied by permutation matrices, moving the 1 to all other diagonal positions, to give

(
1 0
0 0n−1

)
+

 0 0 . . .
0 1 . . .
0 0 0n−2

+ . . . = 1n

Thus, again, 1n ∈ I, so I = R. ///

[02.9] Let V1 ⊂ . . . ⊂ Vn−1 ⊂ V and W1 ⊂ . . . ⊂ Wn−1 ⊂ V be two maximal flags in an n-dimensional
vector space V over a field k. Show that there is a k-linear map T : V → V such that TVi = Wi.

[... iou ...] :)
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