Discussion 03

Paul Garrett garrett@umn.edu https://www-users.cse.umn.edu/ ~garrett/
[03.1] Find a polynomial $P \in \mathbb{Q}[x]$ so that $P(\sqrt{2}+\sqrt{3})=0$.
Discussion: First, we know that there is such a polynomial, for the general reason that algebraic extensions of algebraic extensions are still algebraic over the base field. More formulaically: let $\alpha=\sqrt{2}+\sqrt{3}$. Then

$$
(\alpha-\sqrt{2})^{2}=3
$$

so

$$
\alpha^{2}+2-3=2 \alpha \sqrt{2}
$$

Squaring again,

$$
\left(\alpha^{2}-1\right)^{2}=4 \cdot 2 \cdot \alpha^{2}
$$

which gives a quartic (the expected degree) for α.
[03.2] Find a polynomial $P \in \mathbb{Q}[x]$ so that $P(\sqrt{2}+\sqrt[3]{5})=0$.
Discussion: Again, there is such a polynomial. Let $\alpha=\sqrt{2}+\sqrt[3]{5}$. Then

$$
(\alpha-\sqrt{2})^{3}=5
$$

so

$$
\alpha^{3}+3 \cdot 2 \cdot \alpha-5=\left(3 \alpha^{2}-2\right) \sqrt{2}
$$

Squaring gives a rational polynomial equation satisfied by α.
[03.3] Let α be a root of $x^{2}+\sqrt{2} x+\sqrt{3}=0$ in an algebraic closure of \mathbb{Q}. Find $P \in \mathbb{Q}[x]$ so that $P(\alpha)=0$.
Discussion: Squaring both sides of $x^{2}+\sqrt{2} x=-\sqrt{3}$ gives $x^{4}+2 \sqrt{2} x^{3}+2 x^{2}=3$. Rearrange to $x^{4}+2 x^{2}-3=-2 \sqrt{2} x^{3}$, and square again, to get an octic with coefficients in \mathbb{Q}.
[03.4] Let α be a root of $x^{5}-x+1=0$ in an algebraic closure of \mathbb{Q}. Find $P \in \mathbb{Q}[x]$ so that $P(\alpha+\sqrt{2})=0$.
Discussion: Let $\beta=\alpha+\sqrt{2}$. Then $(\beta-\sqrt{2})^{5}-(\beta-\sqrt{2})+1=0$. Expand and regroup to

$$
\beta^{5}+10 \beta^{3} \cdot 2+5 \beta \cdot 2-\beta+1=\left(5 \beta^{4}+10 \beta^{2} \cdot 2+2-1\right) \cdot \sqrt{2}
$$

Square again to get a degree-ten rational equation for β.
[03.5] Gracefully verify that the octic $x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1$ factors properly in $\mathbb{Q}[x]$.
Discussion: We recognize that this polynomial is $\frac{x^{9}-1}{x-1}$. We know that polynomials $x^{n}-1$ are the products $\prod_{d \mid n} \Phi_{d}$ of cyclotomic polynomials. So $x^{9}-1=\Phi_{9}(x) \cdot \Phi_{3}(x) \cdot \Phi_{1}(x)$. Thus, $\frac{x^{9}-1}{x-1}=\Phi_{9}(x) \cdot \Phi_{3}(x)$, a proper factorization.
[03.6] Gracefully verify that the quartic $x^{4}+x^{3}+x^{2}+x+1$ is irreducible in $\mathbb{F}_{2}[x]$.
Discussion: We recognize that that polynomial is the fifth cyclotomic polynomial, whose zeros are the primitive fifth roots of unity. A finite field $\mathbb{F}_{2^{d}}$ has cyclic multiplicative group, of order $2^{d}-1$. Thus, there
is a primitive $5^{t h}$ root of unity ω_{5} in $\mathbb{F}_{2^{d}}$ if and only if 5 divides $2^{d}-1$. The smallest d for which this holds is $d=4$, as $2^{4}-1=15$. Thus, the (necessarily irreducible) minimal polynomial for ω_{5} in $\mathbb{F}_{2}[x]$ is of degree 4.
[03.7] Gracefully verify that the sextic $x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1$ is irreducible in $\mathbb{F}_{3}[x]$.
Discussion: We recognize that this polynomial is the seventh cyclotomic polynomial, whose zeros are the primitive seventh roots of unity. A finite field $\mathbb{F}_{3^{d}}$ has cyclic multiplicative group, of order $3^{d}-1$. Thus, there is a primitive $7^{t h}$ root of unity ω_{7} in $\mathbb{F}_{3^{d}}$ if and only if 7 divides $3^{d}-1$. The smallest d for which this holds is $d=6$, since none of $3-1,3^{2}-1,3^{3}-1$ is divisible by 7 (and, because $\mathbb{Z} / 7^{\times}$is cyclic...) we do not need to check other exponents.

Thus, the (necessarily irreducible) minimal polynomial for ω_{7} in $\mathbb{F}_{3}[x]$ is of degree 6.
[03.8] Gracefully verify that the quartic $x^{4}+x^{3}+x^{2}+x+1$ factors into irreducible quadratics in $\mathbb{F}_{19}[x]$.
Discussion: This polynomial is the fifth cyclotomic polynomial, whose zeros are the primitive fifth roots of unity. A finite field $\mathbb{F}_{19^{d}}$ has cyclic multiplicative group, of order $19^{d}-1$. Thus, there is a primitive $5^{t h}$ root of unity ω_{7} in $\mathbb{F}_{19^{d}}$ if and only if 5 divides $13^{d}-1$. The smallest d for which this holds is $d=2$.

Thus, any primitive fifth root of unity is (exactly) quadratic over \mathbb{F}_{13}, with quadratic minimal polynomial. Since Φ_{5} has zeros (in $\overline{\mathbb{F}}_{13}$ if one wants to know where) exactly all the primitive fifth roots of unity, it must factor into two irreducible quadratics.
[03.9] Let $f(x)=x^{6}-x^{3}+1$. Find primes p with each of the following behaviors: f is irreducible in $\mathbb{F}_{p}[x]$, f factors into irreducible quadratic factors in $\mathbb{F}_{p}[x], f$ factors into irreducible cubic factors in $\mathbb{F}_{p}[x], f$ factors into linear factors in $\mathbb{F}_{p}[x]$.

Discussion:

[03.10] Explain why $x^{4}+1$ properly factors in $\mathbb{F}_{p}[x]$ for any prime p.
Discussion: This is the eighth cyclotomic polynomial, so it has a zero in $\mathbb{F}_{p^{d}}$ if and only if $8 \mid p^{d}-1$. By direct observation, $p^{2}=1 \bmod 8$ for every odd p. Thus, every primitive eighth root of unity is at most quadratic over \mathbb{F}_{p}. That is, the minimal polynomials are either of degree 1 or 2 , so Φ_{8} factors either into four linear factors in $\mathbb{F}_{p}[x]$ or two (necessarily irreducible) quadratic factors in $\mathbb{F}_{p}[x]$.
[03.11] Explain why $x^{8}-x^{7}+x^{5}-x^{4}+x^{3}-x+1$ properly factors in $\mathbb{F}_{p}[x]$ for any prime p. (Hint: It factors either into linear factors, irreducible quadratics, or irreducible quartics.)

Discussion: Ok, not so easy to see, but this is Φ_{15}. Thus, its zeros in an algebraic closure of \mathbb{F}_{p} are exactly in the smallest $\mathbb{F}_{p^{d}}$ such that $15 \mid p^{d}-1$. By Sun-Ze, $\mathbb{Z} / 15 \approx \mathbb{Z} / 3 \oplus \mathbb{Z} / 5$, so $\mathbb{Z} / 15^{\times} \approx \mathbb{Z} / 3^{\times} \oplus \mathbb{Z} / 5^{\times}$, which is (the additive group) $\mathbb{Z} / 2 \oplus \mathbb{Z} / 4$. Thus, there are no elements of order 8 in $\mathbb{Z} / 15^{\times}$, only of orders $1,2,4$. That is, for any prime p, either $15 \mid p^{1}-1$ or (15 does not divide $p-1$ and) $15 \mid p^{2}-1$, or (15 does not divide $\left.p^{2}-1\right)$ and $15 \mid p^{4}-1$. In those respective cases, Φ_{15} factors into linear, irreducible quadratics, and irreducible quartics.
[03.12] Why is $x^{4}-2$ irreducible in $\mathbb{F}_{5}[x]$?
Discussion: This is irreducible if and only if the smallest extension field $\mathbb{F}_{5^{d}}$ containing a fourth root of 2 is $\mathbb{F}_{5^{4}}$. We recall that all finite subgroups of multiplicative groups of fields are cyclic, so that elementary facts about cyclic groups can be invoked. Thus, in \mathbb{F}_{5}^{\times}, cyclic of order 4 , there is only one fourth power, 1 itself, so 2 is not a fourth power there. Thus, $x^{4}-2$ has no linear factor in $\mathbb{F}_{5}[x]$. In $\mathbb{F}_{5^{2}}^{\times}$, of order $5^{2}-1=4 \cdot 6$, if
there were α with $\alpha^{4}=2$, then

$$
2^{6}=\left(\alpha^{4}\right)^{6}=\alpha^{5^{2}-1}=1
$$

But, computing in \mathbb{F}_{11},

$$
2^{6}=2^{5} \cdot 2^{1}=2 \cdot 2=4 \neq 1 \quad\left(\text { using } 2^{5}=2\right)
$$

Thus, $x^{4}-2$ has no quadratic factors in $\mathbb{F}_{5}[x]$. Lacking linear or quadratic factors, it is irreducible.
[03.13] Why is $x^{5}-2$ irreducible in $\mathbb{F}_{11}[x]$?
Discussion: Because \mathbb{F}_{11}^{\times}is cyclic of order 10 , the only fifth powers are ± 1, so 2 is not a fifth power in \mathbb{F}_{11}, and $x^{5}-2$ has no linear factor in $\mathbb{F}_{11}[x]$. If there were $\alpha \in \mathbb{F}_{11^{2}}$ with $\alpha^{5}=2$, then

$$
2^{\frac{11^{2}-1}{5}}=\alpha^{11^{2}-1}=1
$$

But, computing in \mathbb{F}_{11},

$$
2^{\frac{11^{2}-1}{5}}=2^{12 \cdot 2}=\left(2^{1} 2\right)^{2}=2^{2}=4 \neq 1
$$

Thus, $x^{5}-2$ has no quadratic factor, either. Thus, it is irreducible in $\mathbb{F}_{11}[x]$.
[03.14] Let k be a field. Determine the units and ideals in the formal power series ring

$$
k[[x]]=\left\{\sum_{n \geq 0} c_{n} x^{n}: \text { arbitrary } c_{n} \in k\right\}
$$

Discussion: [... iou ...]
[03.15] Let k be a field. Show that the field of fractions of the formal power series ring $k[[x]$ is the collection of finite-nosed formal Laurent series

$$
k((x))=\left\{\sum_{n \geq-N} c_{n} x^{n}: \text { arbitrary } c_{n} \in k, \text { arbitrary } N \in \mathbb{Z}\right\}
$$

Discussion: [... iou ...]

