(November 14, 2023)

Discussion 03

Paul Garrett garrett@umn.edu https://www-users.cse.umn.edu/~garrett/

[03.1] Find a polynomial $P \in \mathbb{Q}[x]$ so that $P(\sqrt{2} + \sqrt{3}) = 0$.

Discussion: First, we know that there is such a polynomial, for the general reason that algebraic extensions of algebraic extensions are still algebraic over the base field. More formulaically: let $\alpha = \sqrt{2} + \sqrt{3}$. Then

$$(\alpha - \sqrt{2})^2 = 3$$

 $(\alpha^2 - 1)^2 = 4 \cdot 2 \cdot \alpha^2$

so

$$\alpha^2 + 2 - 3 = 2\alpha\sqrt{2}$$

Squaring again,

which gives a quartic (the expected degree) for α .

[03.2] Find a polynomial $P \in \mathbb{Q}[x]$ so that $P(\sqrt{2} + \sqrt[3]{5}) = 0$.

Discussion: Again, there is such a polynomial. Let $\alpha = \sqrt{2} + \sqrt[3]{5}$. Then

$$(\alpha - \sqrt{2})^3 = 5$$

 \mathbf{SO}

$$\alpha^{3} + 3 \cdot 2 \cdot \alpha - 5 = (3\alpha^{2} - 2)\sqrt{2}$$

Squaring gives a rational polynomial equation satisfied by α .

[03.3] Let α be a root of $x^2 + \sqrt{2}x + \sqrt{3} = 0$ in an algebraic closure of \mathbb{Q} . Find $P \in \mathbb{Q}[x]$ so that $P(\alpha) = 0$. **Discussion:** Squaring both sides of $x^2 + \sqrt{2}x = -\sqrt{3}$ gives $x^4 + 2\sqrt{2}x^3 + 2x^2 = 3$. Rearrange to $x^4 + 2x^2 - 3 = -2\sqrt{2}x^3$, and square again, to get an octic with coefficients in \mathbb{Q} . ///

[03.4] Let α be a root of $x^5 - x + 1 = 0$ in an algebraic closure of \mathbb{Q} . Find $P \in \mathbb{Q}[x]$ so that $P(\alpha + \sqrt{2}) = 0$. **Discussion:** Let $\beta = \alpha + \sqrt{2}$. Then $(\beta - \sqrt{2})^5 - (\beta - \sqrt{2}) + 1 = 0$. Expand and regroup to

$$\beta^5 + 10\beta^3 \cdot 2 + 5\beta \cdot 2 - \beta + 1 = \left(5\beta^4 + 10\beta^2 \cdot 2 + 2 - 1\right) \cdot \sqrt{2}$$

Square again to get a degree-ten rational equation for β .

[03.5] Gracefully verify that the octic $x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$ factors properly in $\mathbb{Q}[x]$.

Discussion: We recognize that this polynomial is $\frac{x^9-1}{x-1}$. We know that polynomials $x^n - 1$ are the products $\prod_{d|n} \Phi_d \text{ of cyclotomic polynomials. So } x^9 - 1 = \Phi_9(x) \cdot \Phi_3(x) \cdot \Phi_1(x). \text{ Thus, } \frac{x^9 - 1}{x - 1} = \Phi_9(x) \cdot \Phi_3(x), \text{ a proper solution of the set of the set$ factorization. ///

[03.6] Gracefully verify that the quartic $x^4 + x^3 + x^2 + x + 1$ is irreducible in $\mathbb{F}_2[x]$.

Discussion: We recognize that that polynomial is the fifth cyclotomic polynomial, whose zeros are the primitive fifth roots of unity. A finite field \mathbb{F}_{2^d} has cyclic multiplicative group, of order $2^d - 1$. Thus, there

///

///

///

is a primitive 5^{th} root of unity ω_5 in \mathbb{F}_{2^d} if and only if 5 divides $2^d - 1$. The smallest d for which this holds is d = 4, as $2^4 - 1 = 15$. Thus, the (necessarily irreducible) minimal polynomial for ω_5 in $\mathbb{F}_2[x]$ is of degree 4. ///

[03.7] Gracefully verify that the sextic $x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$ is irreducible in $\mathbb{F}_3[x]$.

Discussion: We recognize that this polynomial is the seventh cyclotomic polynomial, whose zeros are the primitive seventh roots of unity. A finite field \mathbb{F}_{3^d} has cyclic multiplicative group, of order $3^d - 1$. Thus, there is a primitive 7^{th} root of unity ω_7 in \mathbb{F}_{3^d} if and only if 7 divides $3^d - 1$. The smallest d for which this holds is d = 6, since none of 3 - 1, $3^2 - 1$, $3^3 - 1$ is divisible by 7 (and, because $\mathbb{Z}/7^{\times}$ is cyclic...) we do not need to check other exponents.

Thus, the (necessarily irreducible) minimal polynomial for ω_7 in $\mathbb{F}_3[x]$ is of degree 6. ///

[03.8] Gracefully verify that the quartic $x^4 + x^3 + x^2 + x + 1$ factors into irreducible quadratics in $\mathbb{F}_{19}[x]$.

Discussion: This polynomial is the fifth cyclotomic polynomial, whose zeros are the primitive fifth roots of unity. A finite field \mathbb{F}_{19^d} has cyclic multiplicative group, of order $19^d - 1$. Thus, there is a primitive 5^{th} root of unity ω_7 in \mathbb{F}_{19^d} if and only if 5 divides $13^d - 1$. The smallest d for which this holds is d = 2.

Thus, any primitive fifth root of unity is (exactly) quadratic over \mathbb{F}_{13} , with quadratic minimal polynomial. Since Φ_5 has zeros (in $\overline{\mathbb{F}}_{13}$ if one wants to know *where*) exactly all the primitive fifth roots of unity, it must factor into two irreducible quadratics. ///

[03.9] Let $f(x) = x^6 - x^3 + 1$. Find primes p with each of the following behaviors: f is irreducible in $\mathbb{F}_p[x]$, f factors into irreducible quadratic factors in $\mathbb{F}_p[x]$, f factors into irreducible cubic factors in $\mathbb{F}_p[x]$, f factors into linear factors in $\mathbb{F}_p[x]$.

Discussion:

[03.10] Explain why $x^4 + 1$ properly factors in $\mathbb{F}_p[x]$ for any prime p.

Discussion: This is the eighth cyclotomic polynomial, so it has a zero in \mathbb{F}_{p^d} if and only if $8|p^d - 1$. By direct observation, $p^2 = 1 \mod 8$ for every odd p. Thus, every primitive eighth root of unity is at most quadratic over \mathbb{F}_p . That is, the minimal polynomials are either of degree 1 or 2, so Φ_8 factors either into four linear factors in $\mathbb{F}_p[x]$ or two (necessarily irreducible) quadratic factors in $\mathbb{F}_p[x]$.

[03.11] Explain why $x^8 - x^7 + x^5 - x^4 + x^3 - x + 1$ properly factors in $\mathbb{F}_p[x]$ for any prime *p*. (*Hint:* It factors either into linear factors, irreducible quadratics, or irreducible quartics.)

Discussion: Ok, not so easy to see, but this is Φ_{15} . Thus, its zeros in an algebraic closure of \mathbb{F}_p are exactly in the smallest \mathbb{F}_{p^d} such that $15|p^d - 1$. By Sun-Ze, $\mathbb{Z}/15 \approx \mathbb{Z}/3 \oplus \mathbb{Z}/5$, so $\mathbb{Z}/15^{\times} \approx \mathbb{Z}/3^{\times} \oplus \mathbb{Z}/5^{\times}$, which is (the additive group) $\mathbb{Z}/2 \oplus \mathbb{Z}/4$. Thus, there are no elements of order 8 in $\mathbb{Z}/15^{\times}$, only of orders 1, 2, 4. That is, for any prime p, either $15|p^1 - 1$ or (15 does not divide p - 1 and) $15|p^2 - 1$, or (15 does not divide $p^2 - 1$) and $15|p^4 - 1$. In those respective cases, Φ_{15} factors into linear, irreducible quadratics, and irreducible quartics.

[03.12] Why is $x^4 - 2$ irreducible in $\mathbb{F}_5[x]$?

Discussion: This is irreducible if and only if the smallest extension field \mathbb{F}_{5^d} containing a fourth root of 2 is \mathbb{F}_{5^4} . We recall that all finite subgroups of multiplicative groups of fields are *cyclic*, so that elementary facts about cyclic groups can be invoked. Thus, in \mathbb{F}_5^{\times} , cyclic of order 4, there is only one fourth power, 1 itself, so 2 is not a fourth power there. Thus, $x^4 - 2$ has no *linear* factor in $\mathbb{F}_5[x]$. In $\mathbb{F}_{5^2}^{\times}$, of order $5^2 - 1 = 4 \cdot 6$, if

there were α with $\alpha^4 = 2$, then

$$2^6 = (\alpha^4)^6 = \alpha^{5^2 - 1} = 1$$

But, computing in \mathbb{F}_{11} ,

$$2^{6} = 2^{5} \cdot 2^{1} = 2 \cdot 2 = 4 \neq 1 \qquad (using 2^{5} = 2)$$

Thus, $x^4 - 2$ has no quadratic factors in $\mathbb{F}_5[x]$. Lacking linear or quadratic factors, it is irreducible. ///

[03.13] Why is $x^5 - 2$ irreducible in $\mathbb{F}_{11}[x]$?

Discussion: Because \mathbb{F}_{11}^{\times} is cyclic of order 10, the only fifth powers are ± 1 , so 2 is *not* a fifth power in \mathbb{F}_{11} , and $x^5 - 2$ has no *linear* factor in $\mathbb{F}_{11}[x]$. If there were $\alpha \in \mathbb{F}_{11^2}$ with $\alpha^5 = 2$, then

$$2^{\frac{11^2-1}{5}} = \alpha^{11^2-1} = 1$$

But, computing in \mathbb{F}_{11} ,

$$2^{\frac{11^2-1}{5}} = 2^{12 \cdot 2} = (2^1 2)^2 = 2^2 = 4 \neq 1$$

///

Thus, $x^5 - 2$ has no quadratic factor, either. Thus, it is irreducible in $\mathbb{F}_{11}[x]$.

[03.14] Let k be a field. Determine the units and ideals in the formal power series ring

$$k[[x]] = \{ \sum_{n \ge 0} c_n x^n : \text{ arbitrary } c_n \in k \}$$

Discussion: [... iou ...]

[03.15] Let k be a field. Show that the field of fractions of the formal power series ring k[[x] is the collection of *finite-nosed* formal Laurent series

$$k((x)) = \{ \sum_{n \ge -N} c_n x^n : \text{arbitrary } c_n \in k, \text{ arbitrary } N \in \mathbb{Z} \}$$

Discussion: [... iou ...]