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[04.1] Given a 3-by-3 matrix M with integer entries, find A,B integer 3-by-3 matrices with determinant
±1 such that AMB is diagonal.

Let’s give an algorithmic, rather than existential, argument this time, saving the existential argument for
later.

First, note that given two integers x, y, not both 0, there are integers r, s such that g = gcd(x, y) is expressible
as g = rx+ sy. That is,

(x y )

(
r ∗
s ∗

)
= ( g ∗ )

What we want, further, is to figure out what other two entries will make the second entry 0, and will make
that 2-by-2 matrix invertible (in GL2(Z)). It’s not hard to guess:

(x y )

(
r −y/g
s x/g

)
= ( g 0 )

Thus, given (x y z), there is an invertible 2-by-2 integer matrix

(
a b
c d

)
such that

( y z )

(
a b
c d

)
= ( gcd(y, z) 0 )

That is,

(x y z )

 1 0 0
0 a b
0 c d

 = (x gcd(y, z) 0 )

Repeat this procedure, now applied to x and gcd(y, z): there is an invertible 2-by-2 integer matrix

(
a′ b′

c′ d′

)
such that

(x gcd(y, z) )

(
a′ b′

c′ d′

)
= ( gcd(x, gcd(y, z)) 0 )

That is,

(x gcd(y, z) 0 )

 a′ b′ 0
c′ d′ 0
0 0 1

 = ( gcd(x, y, z) 0 0 )

since gcds can be computed iteratively. That is,

(x y z )

 1 0 0
0 a b
0 c d

 a′ b′ 0
c′ d′ 0
0 0 1

 = ( gcd(x, y, z) 0 0 )

Given a 3-by-3 matrix M , right-multiply by an element A1 of GL3(Z) to put M into the form

MA1 =

 g1 0 0
∗ ∗ ∗
∗ ∗ ∗
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where (necessarily!) g1 is the gcd of the top row. Then left-multiply by an element B2 ∈ GL3(Z) to put MA
into the form

B2 ·MA1 =

 g2 ∗ ∗
0 ∗ ∗
0 ∗ ∗


where (necessarily!) g2 is the gcd of the left column entries of MA1. Then right multiply by A3 ∈ GL3(Z)
such that

B2MA1 ·A3 =

 g3 0 0
∗ ∗ ∗
∗ ∗ ∗


where g3 is the gcd of the top row of B2MA1. Continue. Since these gcds divide each other successively

. . . |g3|g2|g1 6= 0

and since any such chain must be finite, after finitely-many iterations of this the upper-left entry ceases to
change. That is, for some A,B ∈ GL3(Z) we have

BMA =

 g ∗ ∗
0 x y
0 ∗ ∗


and also g divides the top row. That is,

u =

 1 −x/g −y/g
0 1 0
0 0 1

 ∈ GL3(Z)

Then

BMA · u =

 g 0 0
0 ∗ ∗
0 ∗ ∗


Continue in the same fashion, operating on the lower right 2-by-2 block, to obtain a form g 0 0

0 g2 0
0 0 g3


Note that since the r, s such that gcd(x, y) = rx + sy can be found via Euclid, this whole procedure is
effective. And it certainly applies to larger matrices, not necessarily square.

[04.2] Given a row vector x = (x1, . . . , xn) of integers whose gcd is 1, prove that there exists an n-by-n
integer matrix M with determinant ±1 such that xM = (0, . . . , 0, 1).

(The iterative/algorithmic idea of the previous solution applies here, moving the gcd to the right end instead
of the left.)

[04.3] Given a row vector x = (x1, . . . , xn) of integers whose gcd is 1, prove that there exists an n-by-n
integer matrix M with determinant ±1 whose bottom row is x.

This is a corollary of the previous exercise. Given A such that

xA = ( 0 . . . 0 gcd(x1, . . . , xn) ) = ( 0 . . . 0 1 )
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note that this is saying 
∗ . . . ∗
...

...
∗ . . . ∗
x1 . . . xn

 ·A =


∗ . . . ∗ ∗
...

...
...

∗ . . . ∗ ∗
0 . . . 0 1


or 

∗ . . . ∗
...

...
∗ . . . ∗
x1 . . . xn

 =


∗ . . . ∗ ∗
...

...
...

∗ . . . ∗ ∗
0 . . . 0 1

 ·A−1
This says that x is the bottom row of the invertible A−1, as desired.

[04.4] Show that GL(2,F2) is isomorphic to the permutation group S3 on three letters.

There are exactly 3 non-zero vectors in the space F2
2 of column vectors of size 2 with entries in F2. Left

multiplication by elements of GL2(F2) permutes them, since the invertibility assures that no non-zero vector
is mapped to zero. If g ∈ GL2(F2) is such that gv = v for all non-zero vectors v, then g = 12. Thus, the
map

ϕ : GL2(F2)→ permutations of the set N of non-zero vectors in F2
2

is injective. It is a group homomorphism because of the associativity of matrix multiplication:

ϕ(gh)(v) = (gh)v = g(hv) = ϕ(g)(ϕ(h)(v))

Last, we can confirm that the injective group homomorphism ϕ is also surjective by showing that the order
of GL2(F2) is the order of S3, namely, 6, as follows. An element of GL2(F2) can send any basis for F2

2 to any
other basis, and, conversely, is completely determined by telling what it does to a basis. Thus, for example,
taking the first basis to be the standard basis {e1, e2} (where ei has a 1 at the ith position and 0s elsewhere),
an element g can map e1 to any non-zero vector, for which there are 22 − 1 choices, counting all less 1 for
the zero-vector. The image of e2 under g must be linearly independent of e1 for g to be invertible, and
conversely, so there are 22 − 2 choices for ge2 (all less 1 for 0 and less 1 for ge1). Thus,

|GL2(F2)| = (22 − 1)(22 − 2) = 6

Thus, the map of GL2(F2) to permutations of non-zero vectors gives an isomorphism to S3.

[04.5] Determine all conjugacy classes in GL(2,F3).

First, GL2(F3) is simply the group of invertible k-linear endomorphisms of the F3-vectorspace F2
3. As observed

earlier, conjugacy classes of endomorphisms are in bijection with F3[x]-module structures on F2
3, which we

know are given by elementary divisors, from the Structure Theorem. That is, all the possible structures are
parametrized by monic polynomials d1| . . . |dt where the sum of the degrees is the dimension of the vector
space F2

3, namely 2. Thus, we have a list of irredundant representatives F3[x]/〈Q〉 Q monic quadratic in F3[x]

F3[x]/〈x− λ〉 ⊕ F3[x]/〈x− λ〉 λ ∈ F×3

We can write the first case in a so-called rational canonical form, that is, choosing basis 1, xmod Q, so we
have two families 

(1)

(
0 −b
1 −a

)
b ∈ F3, a ∈ F×3

(2)

(
λ 0
0 λ

)
λF×3

3
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But the first family can be usefully broken into 3 sub-cases, namely, depending upon the reducibility of the
quadratic, and whether or not there are repeated roots: there are 3 cases

Q(x) = irreducible
Q(x) = (x− λ)(x− µ) (with λ 6= µ)
Q(x) = (x− λ)2

And note that if λ 6= µ then (for a field k)

k[x]/〈(x− λ)(x− µ)〉 ≈ k[x]/〈x− λ〉 ⊕ k[x]/〈x− µ〉
Thus, we have

(1a)

(
0 b
1 a

)
x2 + ax+ b irreducible in F3[x]

(1b)

(
λ 0
0 µ

)
λ 6= µ both nonzero (modulo interchange of λ, µ)

(1b)

(
λ 1
0 λ

)
λ ∈ F2

3

(2)

(
λ 0
0 λ

)
λ ∈ F×3

One might, further, list the irreducible quadratics in F3[x]. By counting, we know there are (32 − 3)/2 = 3
irreducible quadratics, and, thus, the guesses x2−2, x2+x+1, and x2−x+1 (the latter two being cyclotomic,
the first using the fact that 2 is not a square mod 3) are all of them.

[04.6] Determine all conjugacy classes in GL(3,F2).

Again, GL3(F2) is the group of invertible k-linear endomorphisms of the F2-vectorspace F3
2, and conjugacy

classes of endomorphisms are in bijection with F2[x]-module structures on F3
2, which are given by elementary

divisors. So all possibilities are parametrized by monic polynomials d1| . . . |dt where the sum of the degrees
is the dimension of the vector space F3

2, namely 3. Thus, we have a list of irredundant representatives
(1) F2[x]/〈Q〉 Q monic cubic in F2[x]

(2) F2[x]/〈x− 1〉 ⊕ F2[x]/〈(x− 1)2〉

(3) F2[x]/〈x− 1〉 ⊕ F2[x]/〈x− 1〉 ⊕ F2[x]/〈x− 1〉
since the only non-zero element of F2 is λ = 1. We can write the first case in a so-called rational canonical
form, that is, choosing basis 1, x, x2mod Q, there are three families

(1)

 0 0 1
1 0 −b
0 1 −a

 x3 + ax2 + bx+ 1 in F2[x]

(2)

 1 0 0
0 1 0
0 1 1


(3)

 1 0 0
0 1 0
0 0 1


It is useful to look in detail at the possible factorizations in case 1, breaking up the single summand into
more summands according to relatively prime factors, giving cases

(1a) F2[x]/〈x3 + x+ 1〉

(1a′) F2[x]/〈x3 + x2 + 1〉

(1b) F2[x]/〈(x− 1)(x2 + x+ 1)〉

(1c) F2[x]/〈(x− 1)3〉

4
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since there are just two irreducible cubics x3 + x + 1 and x3 + x2 + 1, and a unique irreducible quadratic,
x2 + x + 1. (The counting above tells the number, so, after any sort of guessing provides us with the right
number of check-able irreducibles, we can stop.) Thus, the 6 conjugacy classes have irredundant matrix
representatives

(1a)

 0 0 1
1 0 1
0 1 0

 (1a′)

 0 0 1
1 0 0
0 1 1

 (1b)

 1 0 0
0 0 1
0 1 1

 (1c)

 1 0 0
1 1 0
0 1 1


(2)

 1 0 0
0 1 0
0 1 1

 (3)

 1 0 0
0 1 0
0 0 1



[04.7] Determine all conjugacy classes in GL(4,F2).

Again, GL4(F2) is invertible k-linear endomorphisms of F4
2, and conjugacy classes are in bijection with

F2[x]-module structures on F4
2, given by elementary divisors. So all possibilities are parametrized by monic

polynomials d1| . . . |dt where the sum of the degrees is the dimension of the vector space F4
2, namely 4. Thus,

we have a list of irredundant representatives



F2[x]/〈Q〉 Q monic quartic

F2[x]/〈x− 1〉 ⊕ F2[x]/〈(x− 1)Q(x)〉 Q monic quadratic

F2[x]/〈x− 1〉 ⊕ F2[x]/〈x− 1〉 ⊕ F2[x]/〈(x− 1)2〉

F2[x]/〈Q〉 ⊕ F2[x]/〈Q〉 Q monic quadratic

F2[x]/〈x− 1〉 ⊕ F2[x]/〈x− 1〉 ⊕ F2[x]/〈x− 1〉 ⊕ F2[x]/〈x− 1〉

since the only non-zero element of F2 is λ = 1. We could write all cases using rational canonical form, but
will not, deferring matrix forms till we’ve further decomposed the modules. Consider possible factorizations
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into irreducibles, giving cases

(1a) F2[x]/〈x4 + x+ 1〉

(1a′) F2[x]/〈x4 + x3 + 1〉

(1a′′) F2[x]/〈x4 + x3 + x2 + x+ 1〉

(1b) F2[x]/〈(x− 1)(x3 + x+ 1)〉

(1b′) F2[x]/〈(x− 1)(x3 + x2 + 1)〉

(1c) F2[x]/〈(x− 1)2(x2 + x+ 1)〉

(1d) F2[x]/〈(x2 + x+ 1)2〉

(1e) F2[x]/〈(x− 1)4〉

(2a) F2[x]/〈x− 1〉 ⊕ F2[x]/〈(x− 1)(x2 + x+ 1)〉

(2b) F2[x]/〈x− 1〉 ⊕ F2[x]/〈(x− 1)3〉

(3) F2[x]/〈x− 1〉 ⊕ F2[x]/〈x− 1〉 ⊕ F2[x]/〈(x− 1)2〉

(4a) F2[x]/〈x2 + x+ 1〉 ⊕ F2[x]/〈x2 + x+ 1〉

(4b) F2[x]/〈(x− 1)2〉 ⊕ F2[x]/〈(x− 1)2〉

(5) F2[x]/〈x− 1〉 ⊕ F2[x]/〈x− 1〉 ⊕ F2[x]/〈x− 1〉 ⊕ F2[x]/〈x− 1〉

since there are exactly three irreducible quartics (as indicated), two irreducible cubics, and a single irreducible
quadratic. Matrices are, respectively, and unilluminatingly,

0 0 0 1
1 0 0 1
0 1 0 0
0 0 1 0




0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 1




0 0 0 1
1 0 0 1
0 1 0 1
0 0 1 1




1 0 0 0
0 0 0 1
0 1 0 1
0 0 1 0




1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 1




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 1




0 1 0 0
1 1 0 0
0 1 0 1
0 0 1 1




1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 1




1 0 0 0
0 1 0 0
0 1 1 0
0 0 1 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1




0 1 0 0
1 1 0 0
0 0 0 1
0 0 1 1




1 0 0 0
1 1 0 0
0 0 1 0
0 0 1 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



[04.8] Tell a p-Sylow subgroup in GL(3,Fp).

To compute the order of this group in the first place, observe that an automorphism (invertible
endomorphism) can take any basis to any other. Thus, letting e1, e2, e3 be the standard basis, for an
automorphism g the image ge1 can be any non-zero vector, of which there are p3− 1. The image ge2 can be
anything not in the span of ge1, of which there are p3 = p. The image ge3 can be anything not in the span
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of ge1 and ge2, of which, because those first two were already linearly independent, there are p3 − p2. Thus,
the order is

|GL3(Fp)| = (p3 − 1)(p3 − p)(p3 − p2)

The power of p that divides this is p3. Upon reflection, a person might hit upon considering the subgroup
of upper triangular unipotent (eigenvalues all 1) matrices 1 ∗ ∗

0 1 ∗
0 0 1


where the super-diagonal entries are all in Fp. Thus, there would be p3 choices for super-diagonal entries,
the right number. By luck, we are done.

[04.9] Tell a 3-Sylow subgroup in GL(3,F7).

As earlier, the order of the group is

(73 − 1)(73 − 7)(73 − 72) = 26 · 34 · 73 · 19

Of course, since F×7 is cyclic, for example, it has a subgroup T of order 3. Thus, one might hit upon the
subgroup

H = {

 a 0 0
0 b 0
0 0 c

 : a, b, c ∈ T}

is a subgroup of order 33. Missing a factor of 3. But all the permutation matrices (with exactly one non-zero
entry in each row, and in each column, and that non-zero entry is 1) 1 0 0

0 1 0
0 0 1

 1 0 0
0 0 1
0 1 0

 0 1 0
1 0 0
0 0 1

 0 0 1
0 1 0
1 0 0

 0 0 1
1 0 0
0 1 0

 0 1 0
0 0 1
1 0 0


These normalize all diagonal matrices, and also the subgroup H of diagonal matrices with entries in T .
The group of permutation matrices consisting of the identity and the two 3-cycles is order 3, and putting
it together with H (as a semi-direct product whose structure is already described for us) gives the order 34

subgroup.

[04.10] Tell a 19-Sylow subgroup in GL(3,F7).

Among the Stucture Theorem canonical forms for endomorphisms of V = F3
7, there are F7[x]-module

structures
V ≈ F7[x]/〈 irreducible cubic C〉

which are invertible because of the irreducibility. Let α be the image of x in F7[x]/〈C〉. Note that
F7[α] = F7[x]/C also has a natural ring structure. Then the action of any P (x) in k[x] on V (via this
isomorphism) is, of course,

P (x) ·Q(α) = P (α) ·Q(α) = (P ·Q)(x)mod C(x)

for any Q(x) ∈ F7[x]. Since C is irreducible, there are no non-trivial zero divisors in the ring F7[α]. Indeed,
it’s a field. Thus, F7[α]× injects to EndF7

V . The point of saying this is that, therefore, if we can find an
element of F7[α]× of order 19 then we have an endomorphism of order 19, as well. And it is arguably simpler
to hunt around in side F73 = F7[α] than in groups of matrices.

To compute anything explicitly in F73 we need an irreducible cubic. Luckily, 7 = 1mod 3, so there are many
non-cubes mod 7. In particular, there are only 2 non-zero cubes mod 7, ±1. Thus, x3−2 has no linear factor

7
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in F7[x], so is irreducible. The sparseness (having not so many non-zero coefficients) of this polynomial will
be convenient when computing, subsequently.

Now we must find an element of order 19 in F7[x]/〈x3−2〉. There seems to be no simple algorithm for choosing
such a thing, but there is a reasonable probabilistic approach: since F×73 is cyclic of order 73 − 1 = 19 · 18, if
we pick an element g at random the probability is (19 − 1)/19 that its order will be divisible by 19. Then,
whatever its order is, g18 will have order either 19 or 1. That is, if g18 is not 1, then it is the desired thing.
(Generally, in a cyclic group of order p · m with prime p and p not dividing m, a random element g has
probability (p− 1)/p of having order divisible by p, and in any case gm will be either 1 or will have order p.)

Since elements of the ground field F×7 are all of order 6, these would be bad guesses for the random g. Also,
the image of x has cube which is 2, which has order 6, so x itself has order 18, which is not what we want.
What to guess next? Uh, maybe g = x+ 1? Can only try. Compute

(x+ 1)18 = (((x+ 1)3)2)3mod x3 − 2

reducing modulo x3 − 2 at intermediate stages to simplify things. So

g3 = x3 + 3x2 + 3x+ 1 = 3x2 + 3x+ 3mod x3 − 2 = 3 · (x2 + x+ 1)

A minor piece of luck, as far as computational simplicity goes. Then, in F7[x],

g6 = 32 · (x2 + x+ 1)2 = 2 · (x4 + 2x3 + 3x2 + 2x+ 1) = 2 · (2x+ 2 · 2 + 3x2 + 2x+ 1)

= 2 · (3x2 + 4x+ 5) = 6x2 + x+ 3mod x3 − 2

Finally,
g18 = (g6)3 = (6x2 + x+ 3)3mod x3 − 2

= 63 ·x6 + (3 · 62 · 1)x5 + (3 · 62 · 3 + 3 · 6 · 12)x4 + (6 · 6 · 1 · 3 + 13)x3 + (3 · 6 · 32 + 3 · 12 · 3)x2 + (3 · 1 · 32)x+ 33

= 6x6 + 3x5 + 6x4 + 4x3 + 3x2 + 6x+ 6 = 6 · 4 + 3 · 2 · x2 + 6 · 2x+ 4 · 2 + 3x2 + 6x+ 6 = 2x2 + 4x+ 3

Thus, if we’ve not made a computational error, the endomorphism given by multiplication by 2x2 + 4x+ 3
in F7[x]/〈x3 − 2〉 is of order 19.

To get a matrix, use (rational canonical form) basis e1 = 1, e2 = x, e3 = x2. Then the matrix of the
endomorphism is

M =

 3 4 1
4 3 4
2 4 3


Pretending to be brave, we check by computing the 19th power of this matrix, modulo 7. Squaring repeatedly,
we have (with determinants computed along the way as a sort of parity-check, which in reality did discover
a computational error on each step, which was corrected before proceeding)

M2 =

 1 0 6
3 1 0
0 3 1

 M4 =

 6 3 2
1 6 3
5 1 6

 M8 =

 0 4 2
1 0 4
2 1 0

 M16 =

 6 5 5
6 6 5
6 6 6


Then

M18 = M2 ·M16 =

 1 0 6
3 1 0
0 3 1

 ·M16 =

 6 5 5
6 6 5
6 6 6

 =

 0 1 1
4 0 1
4 4 0


M19 = M ·M18 =

 3 4 1
4 3 4
2 4 3

 ·
 0 1 1

4 0 1
4 4 0

 = the identity

8
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Thus, indeed, we have the order 19 element.

Note that, in reality, without some alternative means to verify that we really found an element of order 19,
we could easily be suspicious that the numbers were wrong.

[04.11] Classify the conjugacy classes in Sn (the symmetric group of bijections of {1, . . . , n} to itself).

Given g ∈ Sn, the cyclic subgroup 〈g〉 generated by g certainly acts on X = {1, . . . , n} and therefore
decomposes X into orbits

Ox = {gix : i ∈ Z}

for choices of orbit representatives xi ∈ X. We claim that the (unordered!) list of sizes of the (disjoint!)
orbits of g on X uniquely determines the conjugacy class of g, and vice-versa. (An unordered list that allows
the same thing to appear more than once is a multiset. It is not simply a set!)

To verify this, first suppose that g = tht−1. Then 〈g〉 orbits and 〈h〉 orbits are related by

〈g〉-orbit Otx ↔ 〈h〉-orbit Ox

Indeed,
g` · (tx) = (tht−1)` · (tx) = t(h` · x)

Thus, if g and h are conjugate the unordered lists of sizes of their orbits must be the same.

On the other hand, suppose that the unordered lists of sizes of the orbits of g and h are the same. Choose
an ordering of orbits of the two such that the cardinalities match up:

|O(g)
xi
| = |O(h)

yi
| (for i = 1, . . . ,m)

where O
(g)
xi is the 〈g〉-orbit containing xi and O

(h)
yi is the 〈g〉-orbit containing yi. Fix representatives as

indicated for the orbits. Let p be a permutation such that, for each index i, p bijects O
(g)
xi to O

(g)
xi by

p(g`xi) = h`yi

The only slightly serious point is that this map is well-defined, since there are many exponents ` which may
give the same element. And, indeed, it is at this point that we use the fact that the two orbits have the
same cardinality: we have

O(g)
xi
↔ 〈g〉/〈g〉xi (by g`〈g〉xi ↔ g`xi)

where 〈g〉xi
is the isotropy subgroup of xi. Since 〈g〉 is cyclic, 〈g〉xi

is necessarily 〈gN 〉 where N is the number
of elements in the orbit. The same is true for h, with the same N . That is, g`xi depends exactly on `mod N ,
and h`yi likewise depends exactly on `mod N . Thus, the map p is well-defined.

Then claim that g and h are conjugate. Indeed, given x ∈ X, take O
(g)
xi containing x = g`xi and O

(h)
yi

containing px = h`yi. The fact that the exponents of g and h are the same is due to the definition of p.
Then

p(gx) = p(g · g`xi) = h1+` yi = h · h` yi = h · p(g` xi) = h(px)

Thus, for all x ∈ X
(p ◦ g)(x) = (h ◦ p)(x)

Therefore,
p ◦ g = h ◦ p

or
pgp−1 = h

(Yes, there are usually many different choices of p which accomplish this. And we could also have tried to
say all this using the more explicit cycle notation, but it’s not clear that this would have been a wise choice.)

9
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[04.12] The projective linear group PGLn(k) is the group GLn(k) modulo its center k, which is the
collection of scalar matrices. Prove that PGL2(F3) is isomorphic to S4, the group of permutations of 4
things. (Hint: Let PGL2(F3) act on lines in F2

3, that is, on one-dimensional F3-subspaces in F2
3.)

The group PGL2(F3) acts by permutations on the set X of lines in F2
3, because GL2(F3) acts on non-zero

vectors in F2
3. The scalar matrices in GL2(F3) certainly stabilize every line (since they act by scalars), so

act trivially on the set X.

On the other hand, any non-scalar matrix

(
a b
c d

)
acts non-trivially on some line. Indeed, if

(
a b
c d

)(
∗
0

)
=

(
∗
0

)
then c = 0. Similarly, if (

a b
c d

)(
0
∗

)
=

(
0
∗

)
then b = 0. And if (

a 0
0 d

)(
1
1

)
= λ ·

(
1
1

)
for some λ then a = d, so the matrix is scalar.

Thus, the map from GL2(F3) to permutations Autset(X) of X has kernel consisting exactly of scalar matrices,
so factors through (that is, is well defined on) the quotient PGL2(F3), and is injective on that quotient. (Since
PGL2(F3) is the quotient of GL2(F3) by the kernel of the homomorphism to Autset(X), the kernel of the
mapping induced on PGL2(F3) is trivial.)

Computing the order of PGL2(F3) gives

|PGL2(F3)| = |GL2(F3)|/|scalar matrices| = (32 − 1)(32 − 3)

3− 1
= (3 + 1)(32 − 3) = 24

(The order of GLn(Fq) is computed, as usual, by viewing this group as automorphisms of Fn
q .)

This number is the same as the order of S4, and, thus, an injective homomorphism must be surjective, hence,
an isomorphism.

(One might want to verify that the center of GLn(Fq) is exactly the scalar matrices, but that’s not strinctly
necessary for this question.)

[04.13] An automorphism of a group G is inner if it is of the form g → xgx−1 for fixed x ∈ G. Otherwise
it is an outer automorphism. Show that every automorphism of the permutation group S3 on 3 things is
inner. (Hint: Compare the action of S3 on the set of 2-cycles by conjugation.)

Let G be the group of automorphisms, and X the set of 2-cycles. We note that an automorphism must send
order-2 elements to order-2 elements, and that the 2-cycles are exactly the order-2 elements in S3. Further,
since the 2-cycles generate S3, if an automorphism is trivial on all 2-cycles it is the trivial automorphism.
Thus, G injects to Autset(X), which is permutations of 3 things (since there are three 2-cycles).

On the other hand, the conjugation action of S3 on itself stabilizes X, and, thus, gives a group homomorphism
f : S3 → Autset(X). The kernel of this homomorphism is trivial: if a non-trivial permutation p conjugates
the two-cycle t = (1 2) to itself, then

(ptp−1)(3) = t(3) = 3

so tp−1(3) = p−1(3). That is, t fixes the image p−1(3), which therefore is 3. A symmetrical argument shows
that p−1(i) = i for all i, so p is trivial. Thus, S3 injects to permutations of X.
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In summary, we have group homomorphisms

S3 → Autgroup(S3)→ Autset(X)

where the map of automorphisms of S3 to permutations of X is an isomorphism, and the composite map of
S3 to permutations of X is surjective. Thus, the map of S3 to its own automorphism group is necessarily
surjective.

[04.14] Identify the element of Sn requiring the maximal number of adjacent transpositions to express it,
and prove that it is unique.

We claim that the permutation that takes i→ n− i+ 1 is the unique element requiring n(n− 1)/2 elements,
and that this is the maximum number.

For an ordered listing (t1, . . . , tn) of {1, . . . , n}, let

do(t1, . . . , tn) = number of indices i < j such that ti > tj

and for a permutation p let
d(p) = do(p(1), . . . , p(n))

Note that if ti < tj for all i < j, then the ordering is (1, . . . , n). Also, given a configuration (t1, . . . , tn)
with some ti > tj for i < j, necessarily this inequality holds for some adjacent indices (or else the opposite
inequality would hold for all indices, by transitivity!). Thus, if the ordering is not the default (1, . . . , n), then
there is an index i such that ti > ti+1. Then application of the adjacent transposition si of i, i + 1 reduces
by exactly 1 the value of the function do().

Thus, for a permutation p with d(p) = ` we can find a product q of exactly ` adjacent transpositions such
that q ◦ p = 1. That is, we need at most d(p) = ` adjacent transpositions to express p. (This does not
preclude less efficient expressions.)

On the other hand, we want to be sure that d(p) = ` is the minimum number of adjacent transpositions
needed to express p. Indeed, application of si only affects the comparison of p(i) and p(i+ 1). Thus, it can
decrease d(p) by at most 1. That is,

d(si ◦ p) ≥ d(p)− 1

and possibly d(si ◦ p) = d(p). This shows that we do need at least d(p) adjacent transpositions to express p.

Then the permutation wo that sends i to n− i+ 1 has the effect that wo(i) > wo(j) for all i < j, so it has
the maximum possible d(wo) = n(n− 1)/2. For uniqueness, suppose p(i) > p(j) for all i < j. Evidently, we
must claim that p = wo. And, indeed, the inequalities

p(n) < p(n− 1) < p(n− 2) < . . . < p(2) < p(1)

leave no alternative (assigning distinct values in {1, . . . , n}) but

p(n) = 1 < p(n− 1) = 2 < . . . < p(2) = n− 1 < p(1) = n

(One might want to exercise one’s technique by giving a more careful inductive proof of this.)

[04.15] Let the permutation group Sn on n things act on the polynomial ring Z[x1, . . . , xn] by Z-algebra
homomorphisms defined by p(xi) = xp(i) for p ∈ Sn. (The universal mapping property of the polynomial
ring allows us to define the images of the indeterminates xi to be whatever we want, and at the same
time guarantees that this determines the Z-algebra homomorphism completely.) Verify that this is a group
homomorphism

Sn → AutZ−alg(Z[x1, . . . , xn])
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Consider
D =

∏
i<j

(xi − xj)

Show that for any p ∈ Sn

p(D) = σ(p) ·D

where σ(p) = ±1. Infer that σ is a (non-trivial) group homomorphism, the sign homomorphism on Sn.

Since these polynomial algebras are free on the indeterminates, we check that the permutation group acts
(in the technical sense) on the set of indeterminates. That is, we show associativity and that the identity of
the group acts trivially. The latter is clear. For the former, let p, q be two permutations. Then

(pq)(xi) = x(pq)(i)

while
p(q(xi)) = p(xq(i) = xp(q(i))

Since p(q(i)) = (pq)(i), each p ∈ Sn gives an automorphism of the ring of polynomials. (The endomorphisms
are invertible since the group has inverses, for example.)

Any permutation merely permutes the factors of D, up to sign. Since the group acts in the technical sense,

(pq)(D) = p(q(D))

That is, since the automorphisms given by elements of Sn are Z-linear,

σ(pq) ·D = p(σ(q) ·D) = σ(q)p(D) = σ(q) · σ(p) ·D

Thus,
σ(pq) = σ(p) · σ(q)

which is the homomorphism property of σ. ///
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