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[06.1] Show that a finite integral domain (no zero divisors) is necessarily a field.

Discussion: Let R be the integral domain. The integral domain property can be immediately paraphrased
as that for 0 6= x ∈ R the map y → xy has trivial kernel (as R-module map of R to itself, for example).
Thus, it is injective. Since R is a finite set, an injective map of it to itself is a bijection. Thus, there is y ∈ R
such that xy = 1, proving that x is invertible. ///

[06.2] Let P (x) = x3 + ax+ b ∈ k[x]. Suppose that P (x) factors into linear polynomials
P (x) = (x− α1)(x− α2)(x− α3). Give a polynomial condition on a, b for the αi to be distinct.

Discussion: (One might try to do this as a symmetric function computation, but it’s a bit tedious.)

If P (x) = x3 +ax+ b has a repeated factor, then it has a common factor with its derivative P ′(x) = 3x2 +a.

If the characteristic of the field is 3, then the derivative is the constant a. Thus, if a 6= 0, gcd(P, P ′) = a ∈ k×
is never 0. If a = 0, then the derivative is 0, and all the αi are the same.

Now suppose the characteristic is not 3. In effect applying the Euclidean algorithm to P and P ′,

(
x3 + ax+ b

)
− x

3
·
(
3x2 + a

)
= ax+ b− x

3
· a =

2

3
ax+ b

If a = 0 then the Euclidean algorithm has already terminated, and the condition for distinct roots or factors
is b 6= 0. Also, possibly surprisingly, at this point we need to consider the possibility that the characteristic
is 2. If so, then the remainder is b, so if b 6= 0 the roots are always distinct, and if b = 0

Now suppose that a 6= 0, and that the characteristic is not 2. Then we can divide by 2a. Continue the
algorithm (

3x2 + a
)
− 9x

2a
·
(

2

3
ax+ b

)
= a+

27b2

4a2

Since 4a2 6= 0, the condition that P have no repeated factor is

4a3 + 27b2 6= 0

[06.3] The first three elementary symmetric functions in indeterminates x1, . . . , xn are

σ1 = σ1(x1, . . . , xn) = x1 + x2 + . . .+ xn =
∑
i

xi

σ2 = σ2(x1, . . . , xn) =
∑
i<j

xixj

σ3 = σ3(x1, . . . , xn) =
∑

i<j<`

xixjx`

Express x31 + x32 + . . .+ x3n in terms of σ1, σ2, σ3.

Discussion: Execute the algorithm given in the proof of the theorem. Thus, since the degree is 3, if we can
derive the right formula for just 3 indeterminates, the same expression in terms of elementary symmetric
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polynomials will hold generally. Thus, consider x3 + y3 + z3. To approach this we first take y = 0 and z = 0,
and consider x3. This is s1(x)3 = x3. Thus, we next consider(

x3 + y3
)
− s1(x, y)3 = 3x2y + 3xy2

As the algorithm assures, this is divisible by s2(x, y) = xy. Indeed,(
x3 + y3

)
− s1(x, y)3 = (3x+ 3y)s2(x, y) = 3s1(x, y) s2(x, y)

Then consider (
x3 + y3 + z3

)
−
(
s1(x, y, z)3 − 3 s2(x, y, z) s1(x, y, z)

)
= 3xyz = 3s3(x, y, z)

Thus, again, since the degree is 3, this formula for 3 variables gives the general one:

x31 + . . .+ x3n = s31 − 3s1s2 + 3s3

where si = si(x1, . . . , xn).

[06.4] Express
∑

i 6=j x
2
ixj as a polynomial in the elementary symmetric functions of x1, . . . , xn.

Discussion: We could (as in the previous problem) execute the algorithm that proves the theorem asserting
that every symmetric (that is, Sn-invariant) polynomial in x1, . . . , xn is a polynomial in the elementary
symmetric functions.

But, also, sometimes ad hoc manipulations can yield short-cuts, depending on the context. Here,

∑
i 6=j

x2ixj =
∑
i,j

x2ixj −
∑
i=j

x2ixj =

(∑
i

x2i

)∑
j

xj

−∑
i

x3i

An easier version of the previous exercise gives∑
i

x2i = s21 − 2s2

and the previous exercise itself gave ∑
i

x3i = s31 − 3s1s2 + 3s3

Thus, ∑
i 6=j

x2ixj = (s21 − 2s2) s1 −
(
s31 − 3s1s2 + 3s3

)
= s31 − 2s1s2 − s31 + 3s1s2 − 3s3 = s1s2 − 3s3

[06.5] Suppose the characteristic of the field k does not divide n. Let ` > 2. Show that

P (x1, . . . , xn) = xn1 + . . .+ xn`

is irreducible in k[x1, . . . , x`].

Discussion: First, treating the case ` = 2, we claim that xn + yn is not a unit and has no repeated factors
in k(y)[x]. (We take the field of rational functions in y so that the resulting polynomial ring in a single
variable is Euclidean, and, thus, so that we understand the behavior of its irreducibles.) Indeed, if we start
executing the Euclidean algorithm on xn + yn and its derivative nxn−1 in x, we have

(xn + yn)− x

n
(nxn−1) = yn
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Note that n is invertible in k by the characteristic hypothesis. Since y is invertible (being non-zero) in k(y),
this says that the gcd of the polynomial in x and its derivative is 1, so there is no repeated factor. And the
degree in x is positive, so xn + yn has some irreducible factor (due to the unique factorization in k(y)[x], or,
really, due indirectly to its Noetherian-ness).

Thus, our induction (on n) hypothesis is that xn2 + xn3 + . . . + xn` is a non-unit in k[x2, x3, . . . , xn] and has
no repeated factors. That is, it is divisible by some irreducible p in k[x2, x3, . . . , xn]. Then in

k[x2, x3, . . . , xn][x1] ≈ k[x1, x2, x3, . . . , xn]

Eisenstein’s criterion applied to xn1 + . . . as a polynomial in x1 with coefficients in k[x2, x3, . . . , xn] and using
the irreducible p yields the irreducibility.

[06.6] Find the determinant of the circulant matrix



x1 x2 . . . xn−2 xn−1 xn
xn x1 x2 . . . xn−2 xn−1
xn−1 xn x1 x2 . . . xn−2

...
. . .

...
x3 x1 x2
x2 x3 . . . xn x1


(Hint: Let ζ be an nth root of 1. If xi+1 = ζ · xi for all indices i < n, then the (j + 1)th row is ζ times the
jth, and the determinant is 0. )

Discussion: Let Cij be the ijth entry of the circulant matrix C. The expression for the determinant

detC =
∑
p∈Sn

σ(p)C1,p(1) . . . Cn,p(n)

where σ(p) is the sign of p shows that the determinant is a polynomial in the entries Cij with integer
coefficients. This is the most universal viewpoint that could be taken. However, with some hindsight, some
intermediate manipulations suggest or require enlarging the ‘constants’ to include nth roots of unity ω.
Since we do not know that Z[ω] is a UFD (and, indeed, it is not, in general), we must adapt. A reasonable
adaptation is to work over Q(ω). Thus, we will prove an identity in Q(ω)[x1, . . . , xn].

Add ωi−1 times the ith row to the first row, for i ≥ 2. The new first row has entries, from left to right,

x1 + ωx2 + ω2x3 + . . .+ ωn−1xn

x2 + ωx3 + ω2x4 + . . .+ ωn−1xn−1

x3 + ωx4 + ω2x5 + . . .+ ωn−1xn−2

x4 + ωx5 + ω2x6 + . . .+ ωn−1xn−3

. . .

x2 + ωx3 + ω2x4 + . . .+ ωn−1x1

The tth of these is
ω−t · (x1 + ωx2 + ω2x3 + . . .+ ωn−1xn)

since ωn = 1. Thus, in the ring Q(ω)[x1, . . . , xn],

x1 + ωx2 + ω2x3 + . . .+ ωn−1xn)
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divides this new top row. Therefore, from the explicit formula, for example, this quantity divides the
determinant.

Since the characteristic is 0, the n roots of xn − 1 = 0 are distinct (for example, by the usual computation
of gcd of xn − 1 with its derivative). Thus, there are n superficially-different linear expressions which divide
detC. Since the expressions are linear, they are irreducible elements. If we prove that they are non-associate
(do not differ merely by units), then their product must divide detC. Indeed, viewing these linear expressions
in the larger ring

Q(ω)(x2, . . . , xn)[x1]

we see that they are distinct linear monic polynomials in x1, so are non-associate.

Thus, for some c ∈ Q(ω),

detC = c ·
∏

1≤`≤n

(
x1 + ω`x2 + ω2`x3 + ω3`x4 + . . .+ ω(n−1)`xn

)
Looking at the coefficient of xn1 on both sides, we see that c = 1.

(One might also observe that the product, when expanded, will have coefficients in Z.)

[06.7] Let f(x) be a monic polynomial with integer coefficients. Show that f is irreducible in Q[x] if it is
irreducible in (Z/p)[x] for some p.

Discussion: First, claim that if f(x) is irreducible in some (Z/p)[x], then it is irreducible in Z[x]. A
factorization f(x) = g(x) · h(x) in Z[x] maps, under the natural Z-algebra homomorphism to (Z/p)[x], to
the corresponding factorization f(x) = g(x) · h(x) in (Z/p)[x]. (There’s little reason to invent a notation for
the reduction modulo p of polynomials as long as we are clear what we’re doing.) A critical point is that
since f is monic both g and h can be taken to be monic also (multiplying by −1 if necessary), since the
highest-degree coefficient of a product is simply the product of the highest-degree coefficients of the factors.
The irreducibility over Z/p implies that the degree of one of g and h modulo p is 0. Since they are monic,
reduction modulo p does not alter their degrees. Since f is monic, its content is 1, so, by Gauss’ lemma, the
factorization in Z[x] is not proper, in the sense that either g or h is just ±1.

That is, f is irreducible in the ring Z[x]. Again by Gauss’ lemma, this implies that f is irreducible in Q[x].

[06.8] Let n be a positive integer such that (Z/n)× is not cyclic. Show that the nth cyclotomic polynomial
Φn(x) factors properly in Fp[x] for any prime p not dividing n.

Discussion: (See subsequent text for systematic treatment of the case that p divides n.) Let d be a positive
integer such that pd − 1 = 0mod n. Since we know that F×

pd is cyclic, Φn(x) = 0 has a root in Fpd when

pd−1 = 0mod n. For Φn(x) to be irreducible in Fp[x], it must be that d = ϕ(n) (Euler’s totient function ϕ) is
the smallest exponent which achieves this. That is, Φn(x) will be irreducible in Fp[x] only if pϕ(n) = 1mod n
but no smaller positive exponent achieves this effect. That is, Φn(x) is irreducible in Fp[x] only if p is of
order ϕ(n) in the group (Z/n)×. We know that the order of this group is ϕ(n), so any such p would be a
generator for the group (Z/n)×. That is, the group would be cyclic.

[06.9] Show that the 15th cyclotomic polynomial Φ15(x) is irreducible in Q[x], despite being reducible in
Fp[x] for every prime p.

Discussion: First, by Sun-Ze

(Z/15)× ≈ (Z/3)× × (Z/5)× ≈ Z/2⊕ Z/4

This is not cyclic (there is no element of order 8, as the maximal order is 4). Thus, by the previous problem,
there is no prime p such that Φ15(x) is irreducible in Fp[x].
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To prove that Φ15 is irreducible in Q[x], it suffices to show that the field extension Q(ζ) of Q generated by
any root ζ of Φ15(x) = 0 (in some algebraic closure of Q, if one likes) is of degree equal to the degree of
the polynomial Φ15, namely ϕ(15) = ϕ(3)ϕ(5) = (3 − 1)(5 − 1) = 8. We already know that Φ3 and Φ5 are
irreducible. And one notes that, given a primitive 15th root of unity ζ, η = ζ3 is a primitive 5th root of unity
and ω = ζ5 is a primitive third root of unity. And, given a primitive cube root of unity ω and a primitive
5th root of unity η, ζ = ω2 · η−3 is a primitive 15th root of unity: in fact, if ω and η are produced from ζ,
then this formula recovers ζ, since

2 · 5− 3 · 3 = 1

Thus,
Q(ζ) = Q(ω)(η)

By the multiplicativity of degrees in towers of fields

[Q(ζ) : Q] = [Q(ζ) : Q(ω)] · [Q(ω) : Q] = [Q(ζ) : Q(ω)] · 2 = [Q(ω, η) : Q(ω)] · 2

Thus, it would suffice to show that [Q(ω, η) : Q(ω)] = 4.

We should not forget that we have shown that Z[ω] is Euclidean, hence a PID, hence a UFD. Thus, we
are entitled to use Eisenstein’s criterion and Gauss’ lemma. Thus, it would suffice to prove irreducibility
of Φ5(x) in Z[ω][x]. As in the discussion of Φp(x) over Z with p prime, consider f(x) = Φ5(x + 1). All its
coefficients are divisible by 5, and the constant coefficient is exactly 5 (in particular, not divisible by 52).
We can apply Eisenstein’s criterion and Gauss’ lemma if we know, for example, that 5 is a prime in Z[ω].
(There are other ways to succeed, but this would be simplest.)

To prove that 5 is prime in Z[ω], recall the norm

N(a+ bω) = (a+ bω)(a+ bω) = (a+ bω)(a+ bω2) = a2 − ab+ b2

already used in discussing the Euclidean-ness of Z[ω]. One proves that the norm takes non-negative integer
values, is 0 only when evaluated at 0, is multiplicative in the sense that N(αβ) = N(α)N(β), and N(α) = 1
if and only if α is a unit in Z[ω]. Thus, if 5 were to factor 5 = αβ in Z[ω], then

25 = N(5) = N(α) ·N(β)

For a proper factorization, meaning that neither α nor β is a unit, neither N(α) nor N(β) can be 1. Thus,
both must be 5. However, the equation

5 = N(a+ bω) = a2 − ab+ b2 = (a− b

2
)2 +

3

4
b2 =

1

4

(
(2a− b)2 + 3b2

)
has no solution in integers a, b. Indeed, looking at this equation mod 5, since 3 is not a square mod 5 it must
be that b = 0 mod 5. Then, further, 4a2 = 0 mod 5, so a = 0 mod 5. That is, 5 divides both a and b. But
then 25 divides the norm N(a+ bω) = a2 − ab+ b2, so it cannot be 5.

Thus, in summary, 5 is prime in Z[ω], so we can apply Eisenstein’s criterion to Φ5(x + 1) to see that it is
irreducible in Z[ω][x]. By Gauss’ lemma, it is irreducible in Q(ω)[x], so [Q(ω, η) : Q(ω)] = ϕ(5) = 4. And
this proves that [Q(ζ) : Q)] = 8, so Φ15(x) is irreducible over Q.

[06.10] Let p be a prime. Show that every degree d irreducible in Fp[x] is a factor of xp
d−1 − 1. Show that

that the (pd − 1)th cyclotomic polynomial’s irreducible factors in Fp[x] are all of degree d.

Discussion: Let f(x) be a degree d irreducible in Fp[x]. For a linear factor x − α with α in some field
extension of Fp, we know that

[Fp(α) : Fp] = degree of minimal poly of α = deg f = d

5
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Since there is a unique (up to isomorphism) field extension of degree d of Fp, all roots of f(x) = 0 lie in
that field extension Fpd . Since the order of the multiplicative group F×

pd is pd − 1, by Lagrange the order of

any non-zero element α of Fpd is a divisor of pd − 1. That is, α is a root of xp
d−1 − 1 = 0, so x− α divides

xp
d−1 − 1 = 0. Since f is irreducible, f has no repeated factors, so f(x) = 0 has no repeated roots. By

unique factorization (these linear factors are mutually distinct irreducibles whose least common multiple is

their product), the product of all the x− α divides xp
d−1 − 1.

For the second part, similarly, look at the linear factors x−α of Φpd−1(x) in a sufficiently large field extension
of Fp. Since p does not divide n = pd− 1 there are no repeated factors. The multiplicative group of the field
Fpd is cyclic, so contains exactly ϕ(pd − 1) elements of (maximal possible) order pd − 1, which are roots of
Φpd−1(x) = 0. The degree of Φpd−1 is ϕ(pd − 1), so there are no other roots. No proper subfield Fpe of Fpd

contains any elements of order pd − 1, since we know that e|d and the multiplicative group F×pe is of order

pe − 1 < pd − 1. Thus, any linear factor x− α of Φpd−1(x) has [Fp(α) : Fp] = d, so the minimal polynomial
f(x) of α over Fp is necessarily of degree d. We claim that f divides Φpd−1. Write

Φpd−1 = q · f + r

where q, r are in Fp[x] and deg r < deg f . Evaluate both sides to find r(α) = 0. Since f was minimal over
Fp for α, necessarily r = 0 and f divides the cyclotomic polynomial.

That is, any linear factor of Φpd−1 (over a field extension) is a factor of a degree d irreducible polynomial in
Fp[x]. That is, that cyclotomic polynomial factors into degree d irreducibles in Fp[x].

[06.11] Fix a prime p, and let ζ be a primitive pth root of 1 (that is, ζp = 1 and no smaller exponent will
do). Let

V = det



1 1 1 1 . . . 1
1 ζ ζ2 ζ3 . . . ζp−1

1 ζ2 (ζ2)2 (ζ2)3 . . . (ζ2)p−1

1 ζ3 (ζ3)2 (ζ3)3 . . . (ζ3)p−1

1 ζ4 (ζ4)2 (ζ4)3 . . . (ζ4)p−1

...
...

1 ζp−1 (ζp−1)2 (ζp−1)3 . . . (ζp−1)p−1


Compute the rational number V 2.

Discussion: There are other possibly more natural approaches as well, but the following trick is worth
noting. The ijth entry of V is ζ(i−1)(j−1). Thus, the ijth entry of the square V 2 is∑

`

ζ(i−1)(`−1) · ζ(`−1)(j−1) =
∑
`

ζ(i−1+j−1)(`−1) =

{
0 if (i− 1) + (j − 1) 6= 0mod p
p if (i− 1) + (j − 1) = 0mod p

since ∑
0≤`<p

ω` = 0

for any pth root of unity ω other than 1. Thus,

V 2 =


p 0 0 . . . 0 0
0 0 0 . . . 0 p
0 0 0 . . . p 0

. .
.

0 0 p . . . 0 0
0 p 0 . . . 0 0


That is, there is a p in the upper left corner, and p’s along the anti-diagonal in the lower right (n−1)-by-(n−1)
block. Thus, granting that the determinant squared is the square of the determinant,

(detV )2 = det(V 2) = pp · (−1)(p−1)(p−2)/2

6
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Note that this did not, in fact, depend upon p being prime.

[06.12] Let K = Q(ζ) where ζ is a primitive 15th root of unity. Find 4 fields k strictly between Q and K.

Discussion: Let ζ be a primitive 15th root of unity. Then ω = ζ5 is a primitive cube root of unity, and
η = ζ3 is a primitive fifth root of unity. And Q(ζ) = Q(ω)(η).

Thus, Q(ω) is one intermediate field, of degree 2 over Q. And Q(η) is an intermediate field, of degree 4 over
Q (so certainly distinct from Q(ω).)

By now we know that
√

5 ∈ Q(η), so Q(
√

5) suggests itself as a third intermediate field. But one must be sure
that Q(ω) 6= Q(

√
5). We can try a direct computational approach in this simple case: suppose (a+ bω)2 = 5

with rational a, b. Then

5 = a2 + 2abω + b2ω2 = a2 + 2abω − b2 − b2ω = (a2 − b2) + ω(2ab− b2)

Thus, 2ab − b2 = 0. This requires either b = 0 or 2a − b = 0. Certainly b cannot be 0, or 5 would be the
square of a rational number (which we have long ago seen impossible). Try 2a = b. Then, supposedly,

5 = a2 − 2(2a)2 = −3a2

which is impossible. Thus, Q(
√

5) is distinct from Q(ω).

We know that Q(ω) = Q(
√
−3). This might suggest

Q(
√
−3 ·
√

5) = Q(
√
−15)

as the fourth intermediate field. We must show that it is distinct from Q(
√
−3) and Q(

√
5). If it were equal

to either of these, then that field would also contain
√

5 and
√
−3, but we have already checked that (in

effect) there is no quadratic field extension of Q containing both these.

Thus, there are (at least) intermediate fields Q(η), Q(
√
−3), Q(

√
5, and Q(

√
−15).

[06.13] Let ζ be a primitive nth root of unity in a field of characteristic 0. Let M be the n-by-n matrix
with ijth entry ζij . Find the multiplicative inverse of M .

Discussion: Some experimentation (and an exercise from the previous week) might eventually suggest
consideration of the matrix A having ijth entry 1

n ζ
−ij . Then the ijth entry of MA is

(MA)ij =
1

n

∑
k

ζik−kj =
1

n

∑
k

ζ(i−j)k

As an example of a cancellation principle we claim that

∑
k

ζ(i−j)k =

{
0 (for i− j 6= 0)
n (for i− j = 0)

The second assertion is clear, since we’d be summing n 1’s in that case. For i − j 6= 0, we can change
variables in the indexing, replacing k by k + 1mod n, since ζa is well-defined for a ∈ Z/n. Thus,∑

k

ζ(i−j)k =
∑
k

ζ(i−j)(k+1) = ζi−j
∑
k

ζ(i−j)k

Subtracting,

(1− ζi−j)
∑
k

ζ(i−j)k = 0

7
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For i− j 6= 0, the leading factor is non-zero, so the sum must be zero, as claimed. ///

[06.14] Let µ = αβ2 + βγ2 + γα2 and ν = α2β + β2γ + γ2α. Show that these are the two roots of a
quadratic equation with coefficients in Z[s1, s2, s3] where the si are the elementary symmetric polynomials
in α, β, γ.

Discussion: Consider the quadratic polynomial

(x− µ)(x− ν) = x2 − (µ+ ν)x+ µν

We will be done if we can show that µ+ ν and µν are symmetric polynomials as indicated. The sum is

µ+ ν = αβ2 + βγ2 + γα2 + α2β + β2γ + γ2α

= (α+ β + γ)(αβ + βγ + γα)− 3αβγ = s1s2 − 3s3

This expression is plausibly obtainable by a few trial-and-error guesses, and examples nearly identical to this
were done earlier. The product, being of higher degree, is more daunting.

µν = (αβ2 + βγ2 + γα2)(α2β + β2γ + γ2α)

= α3 + αβ4 + α2β2γ2 + α2β2γ2 + β3γ3 + αβγ4 + α4βγ + α2β2γ2 + α3γ3

Following the symmetric polynomial algorithm, at γ = 0 this is α3β3 = s2(α, β)3, so we consider

µν − s32
s3

= α3 + β3 + γ3 − 3s3 − 3(µ+ ν)

where we are lucky that the last 6 terms were µ + ν. We have earlier found the expression for the sum of
cubes, and we have expressed µ+ ν, so

µν − s32
s3

= (s31 − 3s1s2 + 3s3)− 3s3 − 3(s1s2 − 3s3) = s31 − 6s1s2 + 9s3

and, thus,
µν = s32 + s31s3 − 6s1s2s3 + 9s23

Putting this together, µ and ν are the two roots of

x2 − (s1s2 − 3s3)x+ (s32 + s31s3 − 6s1s2s3 + 9s23) = 0

(One might also speculate on the relationship of µ and ν to solution of the general cubic equation.) ///

[06.15] The 5th cyclotomic polynomial Φ5(x) factors into two irreducible quadratic factors over Q(
√

5).
Find the two irreducible factors.

Discussion: We have shown that
√

5 occurs inside Q(ζ), where ζ is a primitive fifth root of unity. Indeed,
the discussion of Gauss sums in the proof of quadratic reciprocity gives us the convenient

ζ − ζ2 − ζ3 + ζ4 =
√

5

We also know that [Q(
√

5) : Q] = 2, since x2 − 5 is irreducible in Q[x] (Eisenstein and Gauss). And
[Q(ζ) : Q] = 4 since Φ5(x) is irreducible in Q[x] of degree 5− 1 = 4 (again by Eisenstein and Gauss). Thus,
by multiplicativity of degrees in towers of fields, [Q(ζ) : Q(

√
5)] = 2.

Thus, since none of the 4 primitive fifth roots of 1 lies in Q(
√

5), each is necessarily quadratic over Q(
√

5),
so has minimal polynomial over Q(

√
5) which is quadratic, in contrast to the minimal polynomial Φ5(x) over

8
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Q. Thus, the 4 primitive fifth roots break up into two (disjoint) bunches of 2, grouped by being the 2 roots
of the same quadratic over Q(

√
5). That is, the fifth cyclotomic polynomial factors as the product of those

two minimal polynomials (which are necessarily irreducible over Q(
√

5)).

In fact, we have a trick to determine the two quadratic polynomials. Since

ζ4 + ζ3 + ζ2 + ζ + 1 = 0

divide through by ζ2 to obtain
ζ2 + ζ + 1 + ζ−1 + ζ−2 = 0

Thus, regrouping, (
ζ +

1

ζ

)2

+

(
ζ +

1

ζ

)2

− 1 = 0

Thus, ξ = ζ + ζ−1 satisfies the equation
x2 + x− 1 = 0

and ξ = (−1±
√

5)/2. Then, from

ζ +
1

ζ
= (−1±

√
5)/2

multiply through by ζ and rearrange to

ζ2 − −1±
√

5

2
ζ + 1 = 0

Thus,

x4 + x3 + x2 + x+ 1 =

(
x2 − −1 +

√
5

2
x+ 1

)(
x2 − −1−

√
5

2
x+ 1

)

Alternatively, to see what can be done similarly in more general situations, we recall that Q(
√

5) is the
subfield of Q(ζ) fixed pointwise by the automorphism ζ → ζ−1. Thus, the 4 primitive fifth roots of unity
should be paired up into the orbits of this automorphism. Thus, the two (irreducible in Q(

√
5)[x]) quadratics

are
(x− ζ)(x− ζ−1) = x2 − (ζ + ζ−1)x+ 1

(x− ζ2)(x− ζ−2) = x2 − (ζ2 + ζ−2)x+ 1

Again, without imbedding things into the complex numbers, etc., there is no canonical one of the two square
roots of 5, so the ±

√
5 just means that whichever one we pick first the other one is its negative. Similarly,

there is no distinguished one among the 4 primitive fifth roots unless we imbed them into the complex
numbers. There is no need to do this. Rather, specify one ζ, and specify a

√
5 by

ζ + ζ−1 =
−1 +

√
5

2

Then necessarily

ζ2 + ζ−2 =
−1−

√
5

2

And we find the same two quadratic equations again. Since they are necessarily the minimal polynomials of
ζ and of ζ2 over Q(

√
5) (by the degree considerations) they are irreducible in Q(

√
5)[x]. ///

[06.16] The 7th cyclotomic polynomial Φ7(x) factors into two irreducible cubic factors over Q(
√
−7). Find

the two irreducible factors.
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Discussion: Let ζ be a primitive 7th root of unity. Let H = 〈τ〉 be the order 3 subgroup of the automorphism
group G ≈ (Z/7)× of Q(ζ) over Q, where τ = σ2 is the automorphism τ(ζ) = ζ2, which has order 3. We
have seen that Q(

√
−7) is the subfield fixed pointwise by H. In particular, α = ζ + ζ2 + ζ4 should be at

most quadratic over Q. Recapitulating the earlier discussion, α is a zero of the quadratic polynomial

(x− (ζ + ζ2 + ζ4))(x− (ζ3 + ζ6 + ζ5))

which will have coefficients in Q, since we have arranged that the coefficients are G-invariant. Multiplying
out and simplifying, this is

x2 + x+ 2

with zeros (−1±
√
−7)/2.

The coefficients of the polynomial

(x− ζ)(x− τ(ζ))(x− τ2(ζ)) = (x− ζ)(x− ζ2)(x− ζ4)

will be H-invariant and therefore will lie in Q(
√
−7). In parallel, taking the primitive 7th root of unity ζ3

which is not in the H-orbit of ζ, the cubic

(x− ζ3)(x− τ(ζ3))(x− τ2(ζ3)) = (x− ζ3)(x− ζ6)(x− ζ5)

will also have coefficients in Q(
√
−7). It is no coincidence that the exponents of ζ occuring in the two cubics

are disjoint and exhaust the list 1, 2, 3, 4, 5, 6.

Multiplying out the first cubic, it is

(x− ζ)(x− ζ2)(x− ζ4) = x3 − (ζ + ζ2 + ζ4)x2 + (ζ3 + ζ5 + ζ6)x− 1

= x3 −
(
−1 +

√
−7

2

)
x2 +

(
−1−

√
−7

2

)
x− 1

for a choice of ordering of the square roots. (Necessarily!) the other cubic has the roles of the two square
roots reversed, so is

(x− ζ3)(x− ζ6)(x− ζ2) = x3 − (ζ3 + ζ5 + ζ6)x+ (ζ + ζ2 + ζ4)x− 1

= x3 −
(
−1−

√
−7

2

)
x2 +

(
−1 +

√
−7

2

)
x− 1

Since the minimal polynomials of primitive 7th roots of unity are of degree 3 over Q(
√
−7) (by multiplicativity

of degrees in towers), these cubics are irreducible over Q(
√
−7). Their product is Φ7(x), since the set of all

6 roots is all the primitive 7th roots of unity, and there is no overlap between the two sets of roots. ///

[06.17] Let ζ be a primitive 13th root of unity in an algebraic closure of Q. Find an element α in Q(ζ)
which satisfies an irreducible cubic with rational coefficients. Find an element β in Q(ζ) which satisfies an
irreducible quartic with rational coefficients. Determine the cubic and the quartic explicitly.

Discussion: Again use the fact that the automorphism group G of Q(ζ) over Q is isomorphic to (Z/13)× by
a→ σa where σa(ζ) = ζa. The unique subgroup A of order 4 is generated by µ = σ5. From above, an element
α ∈ Q(ζ) fixed by A is of degree at most |G|/|A| = 12/4 = 3 over Q. Thus, try symmetrizing/averaging ζ
itself over the subgroup A by

α = ζ + µ(ζ) + µ2(ζ) + µ3(ζ) = ζ + ζ5 + ζ12 + ζ8

The unique subgroup B of order 3 in G is generated by ν = σ3. Thus, necessarily the coefficients of

(x− α)(x− ν(α))(x− ν2(α))
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are in Q. Also, one can see directly (because the ζi with 1 ≤ i ≤ 12 are linearly independent over Q) that
the images α, ν(α), ν2(α) are distinct, assuring that the cubic is irreducible over Q.

To multiply out the cubic and determine the coefficients as rational numbers it is wise to be as economical
as possible in the computation. Since we know a priori that the coefficients are rational, we need not drag
along all the powers of ζ which appear, since there will necessarily be cancellation. Precisely, we compute
in terms of the Q-basis

1, ζ, ζ2, . . . , ζ10, ζ11

Given ζn appearing in a sum, reduce the exponent n modulo 13. If the result is 0, add 1 to the sum. If the
result is 12, add −1 to the sum, since

ζ12 = −(1 + ζ + ζ2 + . . .+ ζ11)

expresses ζ12 in terms of our basis. If the reduction mod 13 is anything else, drop that term (since we know it
will cancel). And we can go through the monomial summand in lexicographic order. Using this bookkeeping
strategy, the cubic is(

x− (ζ + ζ5 + ζ12 + ζ8)
) (
x− (ζ3 + ζ2 + ζ10 + ζ11)

) (
x− (ζ9 + ζ6 + ζ4 + ζ7)

)
= x3 − (−1)x2 + (−4)x− (−1) = x3 + x2 − 4x+ 1

Yes, there are 3·42 terms to sum for the coefficient of x, and 43 for the constant term. Most give a contribution
of 0 in our bookkeeping system, so the workload is not completely unreasonable. (A numerical computation
offers a different sort of check.) Note that Eisenstein’s criterion (and Gauss’ lemma) gives another proof of
the irreducibility, by replacing x by x+ 4 to obtain

x3 + 13x2 + 52x+ 65

and noting that the prime 13 fits into the Eisenstein criterion here. This is yet another check on the
computation.

For the quartic, reverse the roles of µ and ν above, so put

β = ζ + ν(ζ) + ν2(ζ) = ζ + ζ3 + ζ9

and compute the coefficients of the quartic polynomial

(x− β)(x− µ(β))(x− µ2(β))(x− µ3(β))

=
(
x− (ζ + ζ3 + ζ9)

) (
x− (ζ5 + ζ2 + ζ6)

) (
x− (ζ12 + ζ10 + ζ4)

) (
x− (ζ8 + ζ11 + ζ7)

)
Use the same bookkeeping approach as earlier, to allow a running tally for each coefficient. The sum of the 4
triples is −1. For the other terms some writing-out seems necessary. For example, to compute the constant
coefficient, we have the product

(ζ + ζ3 + ζ9)(ζ5 + ζ2 + ζ6)(ζ12 + ζ10 + ζ4)(ζ8 + ζ11 + ζ7)

which would seem to involve 81 summands. We can lighten the burden by notating only the exponents which
appear, rather than recopying zetas. Further, multiply the first two factors and the third and fourth, leaving
a multiplication of two 9-term factors (again, retaining only the exponents)

( 6 3 7 8 5 9 1 11 2 ) ( 7 10 6 5 8 4 12 2 11 )

As remarked above, a combination of an exponent from the first list of nine with an exponent from the second
list will give a non-zero contribution only if the sum (reduced modulo 13) is either 0 or 12, contributing 1 or
−1 respectively. For each element of the first list, we can keep a running tally of the contributions from each
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of the 9 elements from the second list. Thus, grouping by the elements of the first list, the contributions are,
respectively,

(1− 1) + (1) + (1− 1) + (1− 1) + (−1 + 1) + (1) + (1− 1) + (1)(−1 + 1) = 3

The third symmetric function is a sum of 4 terms, which we group into two, writing in the same style

( 1 3 9 5 2 6 ) ( 7 10 6 5 8 4 12 2 11 )

+ ( 6 3 7 8 5 9 1 11 2 ) ( 12 10 4 8 11 7 )

In each of these two products, for each item in the lists of 9, we tally the contributions of the 6 items in the
other list, obtaining,

(0 + 0− 1 + 0 + 1 + 1 + 1 + 0 + 0) + (1 + 1 + 0− 1 + 0 + 1 + 0 + 0 + 0) = 4

The computation of the second elementary symmetric function is, similarly, the sum

( 1 3 9 ) ( 5 2 6 12 10 4 8 11 7 )

+ ( 5 2 6 ) ( 12 10 4 8 11 7 ) + ( 12 10 4 ) ( 8 11 7 )

Grouping the contributions for each element in the lists 1, 3, 9 and 5, 2, 6 and 12, 10, 4, this gives

[(1− 1) + (1) + (1)] + [(1− 1) + (−1 + 1) + (1)] + [0 + 0 + (−1)] = 2

Thus, in summary, we have
x4 + x3 + 2x2 − 4x+ 3

Again, replacing x by x+ 3 gives
x4 + 13x3 + 65x2 + 143x+ 117

All the lower coefficients are divisible by 13, but not by 132, so Eisenstein proves irreducibility. This again
gives a sort of verification of the correctness of the numerical computation. ///

[06.18] Let f(x) = x8 + x6 + x4 + x2 + 1. Show that f factors into two irreducible quartics in Q[x]. Show
that

x8 + 5x6 + 25x4 + 125x2 + 625

also factors into two irreducible quartics in Q[x].

Discussion: The first assertion can be verified by an elementary trick, namely

x8 + x6 + x4 + x2 + 1 =
x10 − 1

x2 − 1
=

Φ1(x)Φ2(x)Φ5(x)Φ10(x)

Φ1(x)Φ2(x)

= Φ5(x)Φ10(x) = (x4 + x3 + x2 + x+ 1)(x4 − x3 + x2 − x+ 1)

But we do learn something from this, namely that the factorization of the first octic into linear factors
naturally has the 8 linear factors occurring in two bunches of 4, namely the primitive 5th roots of unity and
the primitive 10th roots of unity. Let ζ be a primitive 5th root of unity. Then −ζ is a primitive 10th. Thus,
the 8 zeros of the second polynomial will be

√
5 times primitive 5th and 10th roots of unity. The question is

how to group them together in two bunches of four so as to obtain rational coefficients of the resulting two
quartics.

The automorphism group G of Q(ζ) over Q is isomorphic to (Z/10)×, which is generated by τ(ζ) = ζ3. That
is, taking a product of linear factors whose zeros range over an orbit of ζ under the automorphism group G,

x4 + x3 + x2 + x+ 1 = (x− ζ)(x− ζ3)(x− ζ9)(x− ζ7)

12



Paul Garrett: Discussion 06 (February 15, 2024)

has coefficients in Q and is the minimal polynomial for ζ over Q. Similarly looking at the orbit of −ζ under
the automorphism group G, we see that

x4 − x3 + x2 − x+ 1 = (x+ ζ)(x+ ζ3)(x+ ζ9)(x+ ζ7)

has coefficients in Q and is the minimal polynomial for −ζ over Q.

The discussion of Gauss sums in the proof of quadratic reciprocity gives us the convenient

ζ − ζ2 − ζ3 + ζ4 =
√

5

Note that this expression allows us to see what effect the automorphism σa(ζ) = ζa has on
√

5

σa(
√

5) = σa(ζ − ζ2 − ζ3 + ζ4) =

{ √
5 (for a = 1, 9)

−
√

5 (for a = 3, 7)

Thus, the orbit of
√

5ζ under G is

√
5ζ, τ(

√
5ζ) = −

√
5ζ3, τ2(

√
5ζ) =

√
5ζ4, τ3(

√
5ζ) = −

√
5ζ2

giving quartic polynomial
(x−

√
5ζ)(x+

√
5ζ3)(x−

√
5ζ4)(x+

√
5ζ2)

= x4 −
√

5(ζ − ζ2 − ζ3 + ζ4)x3 + 5(−ζ4 + 1− ζ3 − ζ2 + 1− ζ)x2 − 5
√

5(ζ4 − ζ2 + ζ − ζ3)x+ 25

= x4 − 5x3 + 15x2 − 25x+ 25

We might already be able to anticipate what happens with the other bunch of four zeros, but we can also
compute directly (perhaps confirming a suspicion). The orbit of −

√
5ζ under G is

−
√

5ζ, τ(−
√

5ζ) =
√

5ζ3, τ2(−
√

5ζ) = −
√

5ζ4, τ3(−
√

5ζ) =
√

5ζ2

giving quartic polynomial
(x+

√
5ζ)(x−

√
5ζ3)(x+

√
5ζ4)(x−

√
5ζ2)

= x4 +
√

5(ζ − ζ2 − ζ3 + ζ4)x3 + 5(−ζ4 + 1− ζ3 − ζ2 + 1− ζ)x2 + 5
√

5(ζ4 − ζ2 + ζ − ζ3)x+ 25

= x4 + 5x3 + 15x2 + 25x+ 25

Thus, we expect that

x8 + 5x6 + 25x4 + 125x2 + 625 = (x4 − 5x3 + 15x2 − 25x+ 25) · (x4 + 5x3 + 15x2 + 25x+ 25)

Note that because of the sign flips in the odd-degree terms in the quartics, the octic can also be written as

x8 + 5x6 + 25x4 + 125x2 + 625 = (x4 + 15x2 + 25)2 − 25(x3 + 5x)2

(This factorization of an altered product of two cyclotomic polynomials is sometimes called an Aurifeuille-
LeLasseur factorization after two amateur mathematicians who studied such things, brought to wider
attention by E. Lucas in the late 19th century.) ///
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