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[07.1] Prove that a prime p such that p = 1mod 3 factors properly as p = ab in Z[ω], where ω is a primitive
cube root of unity. (Hint: If p were prime in Z[ω], then Z[ω]/p would be a integral domain.)

The hypothesis on p implies that (Z/p)× has order divisible by 3, so there is a primitive third root of unity
ζ in Z/p. That is, the third cyclotomic polynomial x2 + x+ 1 factors mod p. Recall the isomorphisms

Z[ω]/p ≈ (Z[x]/(x2 + x+ 1))/p ≈ (Z/p)[x]/(x2 + x+ 1)

Since x2 +x+1 factors mod p, the right-most quotient is not an integral domain. Recall that a commutative
ring modulo an ideal is an integral domain if and only if the ideal is prime. Thus, looking at the left-most
quotient, the ideal generated by p in Z[ω] is not prime. Since we have seen that Z[ω] is Euclidean, hence a
PID, the element p must factor properly. ///

[07.2] Prove that a prime p such that p = 2mod 5 generates a prime ideal in the ring Z[ζ], where ζ is a
primitive fifth root of unity.

The hypothesis on p implies that F×pn has order divisible by 5 only for n divisible by 4. Thus, the fifth
cyclotomic polynomial Φ5 is irreducible modulo p: (If it had a linear factor then F×p would contain a

primitive fifth root of unity, so have order divisible by 5. If it had a quadratic factor then F×p2 would contain

a primitive fifth root of unity, so have order divisible by 5.) Recall the isomorphisms

Z[ζ]/p ≈ (Z[x]/Φ5)/p ≈ (Z/p)[x]/(Φ5)

Since Φ5 is irreducible mod p, the right-most quotient is an integral domain. As recalled in the previous
example, a commutative ring modulo an ideal is an integral domain if and only if the ideal is prime. Thus,
looking at the left-most quotient, the ideal generated by p in Z[ζ] is prime. ///

[07.3] Find the monic irreducible polynomial with rational coefficients which has as zero

α =
√

3 +
√

5

In this simple example, we can take a rather ad hoc approach to find a polynomial with α as 0. Namely,

α2 = 3 + 2
√

3
√

5 + 5 = 8 + 2
√

15

Then

(α2 − 8)2 = 4 · 15 = 60

Thus,

α4 − 16α2 + 4 = 0

But this approach leaves the question of the irreducibility of this polynomial over Q.

By Eisenstein, x2 − 3 and x2 − 5 are irreducible in Q[x], so the fields generated over Q by the indicated
square roots are of degree 2 over Q. Since (inside a fixed algebraic closure of Q) [Q(

√
3,
√

5) : Q] ≤ [Q(
√

3) :
Q] · [Q(

√
3) : Q],

[Q(
√

3,
√

5) : Q] ≤ 4

1
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It is natural to claim that we have equality. To prove equality, one approach is to show that there is no
√

5
in Q(

√
3): supposed that (a+ b

√
3)2 = 5 with a, b ∈ Q. Then

(a2 − 3b2) + 2ab
√

3 = 5 = 5 + 0 ·
√

3

Since
√

3 and 1 are linearly independent over Q (this is what the field degree assertions are), this requires
that either a = 0 or b = 0. In the latter case, we would have a2 = 5. In the former, 3b2 = 5. In either case,
Eisenstein’s criterion (or just unique factorization in Z) shows that the corresponding polynomials x2 − 5
and 3x2 − 5 are irreducible, so this is impossible.

To prove that the quartic of which α =
√

3 +
√

5 is a root is irreducible, it suffices to show that α generates
Q(
√

3,
√

5). Certainly
α2 − 8

2
=
√

15

(If we were in characteristic 2 then we could not divide by 2. But, also, in that case 3 = 5.) Then

(
α2 − 8

2
) · α =

√
15 · α = 3

√
5 + 5

√
3

The system of two linear equations √
3 +
√

5 = α
5
√

3 + 3
√

5 = (α
2−8
2 ) · α

can be solved for
√

3 and
√

5. Thus, α generates the quartic field extension, so has a quartic minimal
polynomial, which must be the monic polynomial we found. ///

A more extravagant proof (which generalizes in an attractive manner) that

[Q(
√

3,
√

5) : Q] = 4

uses cyclotomic fields and (proto-Galois theoretic) facts we already have at hand about them. Let ζn be a
primitive nth root of unity. We use the fact that

Aut(Q(ζn)/Q) ≈ (Z/n)×

by
(σa : ζn → ζan)← a

Letting n = 4pq with distinct odd primes p, q, by Sun-Ze’s theorem

Z/n ≈ Z/4⊕ Z/p⊕ Z/q

Thus, given an automorphism τ1 of Q(ζp) over Q, an automorphism τ2 of Q(ζq) over Q, and an automorphism
τ3 of Q(i) over Q, there is an automorphism σ of Q(ζ4pq) over Q which restricts to τ1 on Q(ζp), to τ2 on
Q(ζ2), and to τ3 on Q(i). Also,√

p ·
(
−1
p

)
2

∈ Q(primitive pth root of unity)

In particular, letting ζp be a primitive pth root of unity, the Gauss sum expression√
p ·
(
−1
p

)
2

=
∑

bmod p

(
b
p

)
2

· ζbp

2
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shows (as observed earlier) that

σa(

√
p ·
(
−1
p

)
2

) =

(
a
p

)
2

·

√
p ·
(
−1
p

)
2

)

The signs under the radicals can be removed by removing a factor of i, if necessary. Thus, we can choose
a ∈ (Z/4pq)× with a = 1mod 4 to assure that σa(i) = i, and{

σa(
√
p) = −√p

σa(
√
q) =

√
q

That is, a is any non-zero square modulo q and is a non-square modulo p. That is, σa is an automorphism
of Q(ζ4pq) which properly moves

√
p but does not move

√
q. Thus, σa is trivial on Q(

√
q, so this field cannot

contain
√
p. Thus, the degree [Q(

√
p,
√
q) : Q] > 2. But also this degree is at most 4, and is divisible by

[Q(
√
q) : Q] = 2. Thus, the degree is 4, as desired. ///

[07.4] Find the monic irreducible polynomial with rational coefficients which has as zero

α =
√

3 +
3
√

5

Eisenstein’s criterion shows that x2 − 3 and x3 − 5 are irreducible in Q[x], so the separate field degrees are
as expected: [Q

√
3) : Q] = 2, and [Q( 3

√
5) : Q] = 3. This case is somewhat simpler than the case of two

square roots, since the degree [Q(
√

3, 3
√

5) : Q] of any compositum is divisible by both 2 = [Q(
√

3)] and
3 = [Q( 3

√
5) : Q] = 3, so is divisible by 6 = lcm(2, 3). On the other hand it is at most the product 6 = 2 · 3

of the two degrees, so is exactly 6.

To find a sextic over Q satisfied by α, we should be slightly more clever. Note that immediately

(α−
√

3)3 = 5

which is
α3 − 3

√
3α2 + 3 · 3α− 3

√
3 = 5

Moving all the square roots to one side,

α3 + 9α− 5 =
√

3 · 3 · (α2 + 1)

and then square again to obtain

α6 + 81α2 + 25 + 18α4 − 10α3 − 90α = 27(α4 + 2α2 + 1)

Rearranging gives
α6 − 9α4 − 10α3 + 27α2 − 90α− 2 = 0

Thus, since α is of degree 6 over Q, the polynomial

x6 − 9x4 − 10x3 + 27x2 − 90x− 2

of which α is a zero is irreducible. ///

[07.5] Find the monic irreducible polynomial with rational coefficients which has as zero

α =
1 + 3
√

10 + 3
√

10
2

3

3
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First, by Eisenstein’s criterion x3 − 10 is irreducible over Q, so 3
√

10 generates a cubic extension of Q, and

thus 1, 3
√

10, and 3
√

10
2

are linearly independent over Q. Thus, α is not in Q. Since it lies inside a cubic field
extension of Q, it satisfies a monic cubic equation with rational coefficients. The issue, then, is to find the
cubic.

First we take advantage of the special nature of the situation. A little more generally, let β3 = A with A 6= 1.
We note that

β2 + β + 1 =
β3 − 1

β − 1
=
A− 1

β − 1

From β3 −A = 0, using β = (bη − 1) + 1, we have

(β − 1)3 + 3(β − 1)2 + 3(β − 1)2 − (A− 1) = 0

Dividing through by (β − 1)3 gives

1 + 3(
1

β − 1
) + 3(

1

β − 1
)2 − A− 1

(β − 1)3
= 0

Multiplying through by −(A− 1)2 and reversing the order of the terms gives

(
A− 1

β − 1
)3 − 3(

A− 1

β − 1
)2 − 3(A− 1)(

A− 1

β − 1
)− (A− 1)2 = 0

That is, 1 + 3
√
A+ 3

√
A

2
is a root of

x3 − 3x2 − 3(A− 1)x− (A− 1)2 = 0

Then (1 + 3
√
A+ 3

√
A

2
)/3 is a root of

x3 − x2 − (
A− 1

3
)x− (A− 1)2

27
= 0

When (A− 1)2 is divisible by 27 we have a nice simplification, as with A = 10, in which case the cubic is

x3 − x2 − 3x− 3 = 0

which has integral coefficients. ///

[0.1] Remark: The fact that the coefficients are integral despite the apparent denominator of α is entirely

parallel to the fact that −1±
√
D

2 satisfies the quadratic equation

x2 − x+
1−D

4
= 0

which has integral coefficients if D = 1mod 4.

There is a more systematic approach to finding minimal polynomials that will work in more general
circumstances, which we can also illustrate in this example. Again let β = 3

√
A where A is not a cube in the

base field k. Then, again, we know that 1 + β + β2 is not in the ground field k, so, since it lies in a cubic
field extension, has minimal polynomial over k which is an irreducible (monic) cubic, say x3 + ax2 + bx+ c.
We can determine a, b, c systematically, as follows. Substitute 1 + β + β2 for x and require

(1 + β + β2)3 + a(1 + β + β2)2 + b(1 + β + β2) + c = 0

4
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Multiply out, obtaining

(β6 + β3 + 1 + 3β5 + 3β4 + 3β2 + 3β4 + 3β2 + 3β + 6β3)

+ a(β4 + β2 + 1 + 2β3 + 2β2 + 2β) + b(β2 + β + 1) + c

= 0

Use the fact that β3 = A (if β satified a more complicated cubic this would be messier, but still succeed) to
obtain

(3A+ 6 + 3a+ b)β2 + (6A+ 3 + (A+ 2)a+ +b)β

+ (A2 + 7A+ 1 + (2A+ 1)a+ b+ c) = 0

Again, 1, β, β2 are linearly independent over the ground field k, so this condition is equivalent to the system 3a + b = −(3A+ 6)
(A+ 2)a + b = −(6A+ 3)
(2A+ 1)a + b + c = −(A2 + 7A+ 1)

From the first two equations a = −3, and then b = −3(A− 1), and from the last c = −(A− 1)2, exactly as
earlier. ///

[0.2] Remark: This last approach is only palatable if there’s no other recourse.

[07.6] Let p be a prime number, and a ∈ F×p . Prove that xp − x + a is irreducible in Fp[x]. (Hint: Verify
that if α is a root of xp − x+ a = 0, then so is α+ 1.)

Comment: It might have been even more helpful to recommend to look at the effect of Frobenious b → bp,
but the hint as given reveals an interesting fact in its own right, and which takes one part of the way to
understanding the situation.

If α is a root in an algebraic closure, then

(α+ 1)p − (α+ 1) + a = αp + 1− α− 1 + a = 0

so α+ 1 is another root. Thus, the roots of this equation are exactly

α, α+ 1, α+ 2, . . . , α+ (p− 1)

which are distinct. (The polynomial is of degree p, so there are no more than p zeros.)

Similarly, but even more to the point is that the Frobenius automorphism F has the effect

F (α) = αp = (αp − α+ a) + α− a = α− a

Let A be a subset of this set of zeros. We have shown that a polynomial∏
β∈A

(x− β)

has coefficients in Fp if and only if A is stable under the action of the Frobenius. Since a 6= 0, the smallest
F -stable subset of A is necessarily the whole, since the values

F `(α) = α− ` · a

are distinct for ` = 0, 1, . . . , p − 1. By unique factorization, any factor of xp − x + 1 is a product of linear
factors x − F `(α), and we have shown that a product of such factors has coefficients in Fp only if all these
factors are included. That is, xp − x+ a is irreducible in Fp[x]. ///
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[07.7] Let k = Fp(t) be the field of rational expressions in an indeterminate t with coefficients in Fp. Show
that the polynomial Xp− t ∈ k[X] is irreducible in k[X], but has properly repeated factors over an algebraic
closure of k.

That polynomial meets Eisenstein’s criterion in Fp[t][X], since t is a prime element in the UFD Fp[t], so (via
Gauss’ lemma) Xp − t is irreducible in Fp(t)[X]. Let α be any root of Xp − t = 0. Then, because the inner
binomial coefficients

(
p
i

)
are divisible by p,

(X − α)p = Xp − αp = Xp − t

That is, over an algebraic closure of Fp(t), the polynomial Xp − t is a linear polynomial raised to the pth

power.

[07.8] Let x be an indeterminate over C. For a, b, c, d in C with ad− bc 6= 0, let

σ(x) = σa,b,c,d(x) =
ax+ b

cx+ d

and define

σ

(
P (x)

Q(x)

)
=
P (σ(x))

Q(σ(x))

for P and Q polynomials. Show that σ gives a field automorphism of the field of rational functions C(x)
over C.

The argument uses no properties of the complex numbers, so we discuss an arbitrary field k instead of C.

Since the polynomial algebra k[x] is the free k-algebra on one generator, by definition for any k-algebra A
and chosen element a ∈ A, there is a unique k-algebra map k[x]→ A such that x→ a. And, second, for any
injective k-algebra map f of k[x] to a domain R the field of fractions k(x) of k[x] has an associated map f̃
to the field of fractions of R, by

f̃(P/Q) = f(P )/f(Q)

where P and Q are polynomials.

In the case at hand, any choice σ(x) = g(x)/h(x) in k(x) (with polynomials g, h with h not the 0 polynomial)
gives a unique k-algebra homomorphism k[x]→ k(x), by

σ(P (x)) = P (σ(x)) = P (
g(x)

h(x)
)

To know that we have an extension to the field of fractions k(x) of k[x], we must check that the kernel of
the map k[x]→ k(x) is non-zero. That is, we must verify for a positive-degree polynomial (assume without
loss of generality that an 6= 0)

P (x) = anx
n + . . .+ ao

that
0 6= σ(P (x)) ∈ k(x)

Again,

σ(P (x)) = P (σ(x)) = P (
g(x)

h(x)
) = an(

g

h
)n + . . .+ ao

= h−n · (angn + an−1g
n−1h+ . . .+ a1gh

n−1 + aoh
n)

We could have assumed without loss of generality that g and h are relatively prime in k[x]. If the degree of
g is positive, let p(x) be an irreducible factor of g(x). Then an equality

0 = ang
n + an−1g

n−1h+ . . .+ a1gh
n−1 + aoh

n

6
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would imply that p|h, contradiction. But if deg h > 0 we reach a nearly identical contradiction. That is, a
field map k(x) → k(x) can send x to any element of k(x) not lying in k. Thus, certainly, for ad − bc 6= 0,
(ax+ b)/(cx+ d) is not in k, and is a legitimate field map image of x.

To prove surjectivity of σ(x) = (ax + b)/(cx + d), we find an inverse τ , specifically such that σ ◦ τ = 1. It
may not be surprising that

τ : x→ dx− b
−cx+ a

is such an inverse:

(σ ◦ τ)(x) =
a( dx−b
−cx+a ) + b

c( dx−b
−cx+a ) + d

=
a(dx− b) + b(−cx+ a)

c(dx− b) + d(−cx+ a)

=
(ad− bc)x− ab+ ba

cdx− cb− dcx+ ad
=

(ad− bc)x
ad− bc

= x

That is, the given field maps are surjective. All field maps that do not map all elements to 0 are injective,
so these maps are field automorphisms of k(x).

[07.9] In the situation of the previous exercise, show that every automorphism of C(x) over C is of this
form.

We did also show in the previous example that for g and h polynomials, not both constant, h not 0,

σ(x) =
g(x)

h(x)

determines a field map k(x) → k(x). If it were surjective, then there would be coefficients ai and bj in k
such that x is expressible as

x =
amσ(x)m + . . .+ a0
bnσ(x)n + . . .+ b0

with am 6= 0 and bn 6= 0. Let σ(x) = p/q where p and q are relatively prime polynomials. Then

x · q−n(bnp
n + bn−1p

n−1q + . . .+ b0q
n) = q−m(amp

m + am−1p
m−1q + . . .+ a0q

m)

or
x · qm(bnp

n + bn−1p
n−1q + . . .+ b0q

n) = qn(amp
m + am−1p

m−1q + . . .+ a0q
m)

Collecting the only two terms lacking an explicit factor of p, we find that

(b0x− a0) · qm+n

is visibly a multiple of p. Since p and q are relatively prime and k[x] is a UFD, necessarily p divides b0x−a0.
Since degrees add in products, the degree of p is at most 1.

One argument to prove that deg q ≤ 1 is to observe that if p/q generates all of a field then so does its inverse
q/p. Thus, by the previous paragraph’s argument which showed that deg p ≤ 1, we have deg q ≤ 1.

For another argument concerning the denominator: a more direct computation approach does illustrate
something useful about polynomial algebra: For m > n, we would have a polynomial equation

x · qm−n(bnp
n + bn−1p

n−1q + . . .+ b0q
n) = amp

m + am−1p
m−1q + . . .+ a0q

m

The only term not visibly divisible by q is amp
m, so apparently q divides amp

m. Since p, q are relatively
prime, this would imply that deg q = 0. Similarly, for m < n, the polynomial equation

x · (bnpn + bn−1p
n−1q + . . .+ b0q

n) = qn−m(amp
m + am−1p

m−1q + . . .+ a0q
m)

7
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implies that q divides x · bnpn, and the coprimality of p, q implies that deg q ≤ 1. If m = n, then the
polynomial equation

x · (bnpn + bn−1p
n−1q + . . .+ b0q

n) = amp
m + am−1p

m−1q + . . .+ a0q
m

implies that q divides (keeping in mind that m = n)

x · bnpn − ampm = (xbn − an) · pn

The coprimality of p, q implies that q divides xbn − an, so deg q ≤ 1 again in this case.

Thus, if σ(x) = p/q gives a surjection of k(x) to itself, the maximum of the degrees of p and q is 1. ///

[07.10] Let s and t be indeterminates over Fp, and let Fp(s1/p, t1/p) be the field extension of the rational
function field Fp(s, t) obtained by adjoining roots of Xp − s = 0 and of Xp − t = 0. Show that there are
infinitely-many (distinct) fields intermediate between Fp(s, t) and Fp(s1/p, t1/p).

First, by Eisenstein’s criterion in k[s, t][X] we see that both Xp−s and Xp−t are irreducible in k(s, t)[X], so
s1/p and t1/p each generates a degree p extension of k(s, t). First, we show that [k(s1/p, t1/p) : k(s, t)] = p2.
First, by Eisenstein’s criterion in Fp(t)[s][X] the polynomial Xp − s is irreducible, since the prime s in
Fp(t)[s], but not its square, divides all but the highest term. And then Xp − t is irreducible in k(s1/p)[t][X]
since the prime t in k(s1/p(s))[t] divides all the lower coefficients and its square does not divide the constant
term.

Observe that for any polynomial f(s, t), because the characteristic is p,

(s1/p + f(s, t)t1/p)p = s+ f(s, t)p t

For example, for any positive integer n

(s1/p + snt1/p)p = s+ snp t

Again, by Eisenstein’s criterion in Fp(t)[s][X] the polynomial

Xp − (s+ snpt)

is irreducible, since the prime s in Fp(t)[s], but not its square, divides all but the highest term. Thus, the
pth root of any s+ snpt generates a degree p extension of Fp(s, t).

We claim that for distinct positive integers m,n

Fp(s, t, (s+ smpt)1/p) 6= Fp(s, t, (s+ snpt)1/p)

To prove this, we will show that any subfield of Fp(s1/p, t1/p) which contains both (s + smpt)1/p and
(s+ snpt)1/p is the whole field Fp(s1/p, t1/p), which is of degree p2 (rather than p). Indeed,

(s+ smpt)1/p − (s+ snpt)1/p = s1/p + smt1/p − (s1/p + snt1/p) = (sm − sn)t1/p

Since m 6= n we can divide by sm − sn to obtain t1/p. Then we can surely express s1/t as well. Thus, for
m 6= n, the field obtained by adjoining the two different pth roots is of degree p2 over Fp(s, t), so the two
degree p extensions cannot be identical (or the whole degree would be just p). ///

[0.3] Remark: From a foundational viewpoint, the above discussion is a bit glib about the interaction of s
and t, and the interaction of s1/n and t. Though this is not the main point at the moment, detection of implied
relations among variables can become serious. At present, the idea is that there are no relations between s

8
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and t, so relations between s1/n and t will not pop up. This can be made more precise in preparation for
coping with more complicated situations later.

[07.11] Determine the degree of Q(
√

65 + 56i) over Q, where i =
√
−1.

We show that 65 + 56i is not a square in Q(i). We use the norm

N(α) = α · ασ

from Q(i) to Q, where as usual (a+ bi)σ = a− bi for rational a, b. Since −i is the other zero of the minimal
polynomial x2 + 1 of i over Q, the map σ is a field automorphism of Q(i) over Q. (Indeed, we showed earlier
that there exists a Q-linear field automorphism of Q(i) taking i to −i.) Since σ is a field automorphism, N
is multiplicative, in the sense that

N(αβ) = N(α) ·N(β)

Thus, if α = β2, we would have
N(α) = N(β2) = N(β)2

and the latter is a square in Q. Thus, if α = 65 + 56i were a square, then

N(65 + 56i) = 652 + 562 = 7361

would be a square. One could factor this into primes in Z to see that it is not a square, or hope that it is
not a square modulo some relatively small prime. Indeed, modulo 11 it is 2, which is not a square modulo
11 (by brute force, or by Euler’s criterion (using the cyclicness of (Z/11)×) 2(11−1)/2 = −1mod 11, or by
recalling the part of Quadratic Reciprocity that asserts that 2 is a square mod p only for p = ±1mod 8).

[07.12] Fix an algebraically closed field k. Find a simple condition on w ∈ k such that the equation
z5 + 5zw + 4w2 = 0 has no repeated roots z in k.

Use some form of the Euclidean algorithm to compute the greatest common divisor in k(w)[z] of f(z) =
z5 + 5zw + 4w2 and its (partial?) derivative (with respect to z, not w). If the characteristic of k is 5,
then we are in trouble, since the derivative (in z) vanishes identically, and therefore it is impossible to avoid
repeated roots. So suppose the characteristic is not 5. Similarly, if the characteristic is 2, there will always
be repeated roots, since the polynomial becomes z(z4 + w). So suppose the characteristic is not 2.

(z5 + 5zw + 4w2)− z
5 · (5z

4 + 5w) = 4zw + 4w2

(z4 + w)− 1
4w (z3 − z2w + zw2 − w3) · (4zw + 4w2) = w − w4

where we also assumed that w 6= 0 to be able to divide. The expression w − w4 is in the ground field k(w)
for the polynomial ring k(w)[z], so if it is non-zero the polynomial and its derivative (in z) have no common
factor. We know that this implies that the polynomial has no repeated factors. Thus, in characteristic not
5 or 2, for w(1− w3) 6= 0 we are assured that there are no repeated factors.

[0.4] Remark: The algebraic closedness of k did not play a role, but may have helped avoid various needless
worries.

[07.13] Fix a field k and an indeterminate t. Fix a positive integer n > 1 and let t1/n be an nth root of t in
an algebraic closure of the field of rational functions k(t). Show that k[t1/n] is isomorphic to a polynomial
ring in one variable.

(There are many legitimate approaches to this question...)

We show that k[t1/n] is a free k-algebra on one generator t1/n. That is, given a k-algebra A, a k-algebra
homomorphism f : k → A, and an element a ∈ A, we must show that there is a unique k-algebra
homomorphism F : k[t1/n]→ A extending f : k → A and such that F (t1/n) = a.

9
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Let k[x] be a polynomial ring in one variable, and let f : k[x] → k[t1/n] be the (surjective) k-algebra
homomorphism taking x to t1/n. If we can show that the kernel of f is trivial, then f is an isomorphism
and we are done.

Since k[t] is a free k-algebra on one generator, it is infinite-dimensional as a k-vectorspace. Thus, k[t1/n] is
infinite-dimensional as a k-vectorspace. Since f : k[x]→ k[t1/n] is surjective, its image k[x]/(ker f) ≈ f(k[x])
is infinite-dimensional as a k-vectorspace.

Because k[x] is a principal ideal domain, for an ideal I, either a quotient k[x]/I is finite-dimensional as
a k-vector space, or else I = {0}. There are no (possibly complicated) intermediate possibilities. Since
k[x]/(ker f) is infinite-dimensional, ker f = {0}. That is, f : k[x]→ k[t1/n] is an isomorphism. ///

[0.5] Remark: The vague and mildly philosophical point here was to see why an nth root of an indeterminate
is still such a thing. It is certainly possible to use different language to give structurally similar arguments,
but it seems to me that the above argument captures the points that occur in any version. For example, use
of the notion of field elements transcendental over some ground field does suggest a good intuition, but still
requires attention to similar details.

[07.14] Fix a field k and an indeterminate t. Let s = P (t) for a monic polynomial P in k[x] of positive
degree. Find the monic irreducible polynomial f(x) in k(s)[x] such that f(t) = 0.

Perhaps this yields to direct computation, but we will do something a bit more conceptual.

Certainly s is a root of the equation P (x)− s = 0. It would suffice to prove that P (x)− s is irreducible in
k(s)[x]. Since P is monic and has coefficients in k, the coefficients of P (x)− s are in the subring k[s] of k(s),
and their gcd is 1. In other words, as a polynomial in x, P (x)− s has content 1. Thus, from Gauss’ lemma,
P (x)− s is irreducible in k(s)[x] if and only if it is irreducible in k[s][x] ≈ k[x][s]. As a polynomial in s (with
coefficients in k[x]), P (x)− s has content 1, since the coefficient of s is −1. Thus, P (x)− s is irreducible in
k[x][s] if and only if it is irreducible in k(x)[s]. In the latter ring it is simply a linear polynomial in s, so is
irreducible.

[0.6] Remark: The main trick here is to manage to interchange the roles of x and s, and then use the fact
that P (x)− s is much simpler as a polynomial in s than as a polynomial in x.

[0.7] Remark: The notion of irreducibility in k[s][x] ≈ k[x][s] does not depend upon how we view these
polynomials. Indeed, irreducibility of r ∈ R is equivalent to the irreducibility of f(r) in S for any ring
isomorphism f : R→ S.

[0.8] Remark: This approach generalizes as follows. Let s = P (t)/Q(t) with relatively prime polynomials
P,Q (and Q 6= 0). Certainly t is a zero of the polynomial Q(x)s − P (s), and we claim that this is a (not
necessarily monic) polynomial over k(x) of minimal degree of which t is a 0. To do this we show that
Q(x)s−P (x) is irreducible in k(s)[x]. First, we claim that its content (as a polynomial in x with coefficients
in k[s]) is 1. Let P (x) =

∑
i aix

i and Q(x) =
∑
j bjx

j , where ai, bj ∈ k and we allow some of them to be 0.
Then

Q(x)s− P (x) =
∑
i

(bit− ai)xi

The content of this polynomial is the gcd of the linear polynomials bit− ai. If this gcd were 1, then all these
linear polynomials would be scalar multiples of one another (or 0). But that would imply that P,Q are scalar
multiples of one another, which is impossible since they are relatively prime. So (via Gauss’ lemma) the
content is 1, and the irreducibility of Q(x)s−P (x) in k(s)[x] is equivalent to irreducibility in k[s][x] ≈ k[x][s].
Now we verify that the content of the polynomial in t (with coefficient in k[x]) Q(x)s−P (x) is 1. The content
is the gcd of the coefficients, which is the gcd of P,Q, which is 1 by assumption. Thus, Q(x)s − P (x) is
irreducible in k[x][s] if and only if it is irreducible in k(x)[s]. In the latter, it is a polynomial of degree at
most 1, with non-zero top coefficients, so in fact linear. Thus, it is irreducible in k(x)[s]. We conclude that
Q(x)s− P (x) was irreducible in k(s)[x].

10
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Further, this approach shows that f(x) = Q(x)− sP (x) is indeed a polynomial of minimal degree, over k(x),
of which t is a zero. Thus,

[k(t) : k(s)] = max(degP, degQ)

Further, this proves a much sharper fact than that automorphisms of k(t) only map t → (at + b)/(ct + d),
since any rational expression with higher-degree numerator or denominator generates a strictly smaller field,
with the degree down being the maximum of the degrees.

[07.15] Let p1, p2, . . . be any ordered list of the prime numbers. Prove that
√
p1 is not in the field

Q(
√
p2,
√
p3, . . .)

generated by the square roots of all the other primes.

First, observe that any rational expression for
√
p1 in terms of the other square roots can only involve finitely

many of them, so what truly must be proven is that
√
p1 is not in the field

Q(
√
p2,
√
p3, . . . ,

√
pN )

generated by any finite collection of square roots of other primes.

Probably an induction based on direct computation can succeed, but this is not the most interesting or
informative. Instead:

Let ζn be a primitive nth root of unity. Recall that for an odd prime p√
p ·
(
−1
p

)
2

∈ Q(ζp)

Certainly i =
√
−1 ∈ Q(ζ4). Thus, letting n = 4p1p2 . . . pN , all the

√
p1, . . .

√
pN are in K = Q(ζn). From

the Gauss sum expression for these square roots, the automorphism σa(ζn) = ζan of Q(ζn) has the effect

σa

√
pi ·
(
−1
pi

)
2

=

(
a
pi

)
2

·

√
pi ·
(
−1
pi

)
2

Thus, for a = 1mod 4, we have σa(i) = i, and

σa(
√
pi) =

(
a
pi

)
2

· √pi

Since (Z/pi)× is cyclic, there are non-squares modulo pi. In particular, let b be a non-square mod p1. if we
have a such that 

a = 1mod 4
a = bmod p1
a = 1mod p2

...
a = 1mod pN

then σa fixes
√
p2, . . . ,

√
pN , so when restricted to K = Q(

√
p2, . . . ,

√
pN ) is trivial. But by design

σa(
√
p1) = −√p1, so this square root cannot lie in K. ///

[07.16] Let p1, . . . , pn be distinct prime numbers. Prove that

Q(
√
p1, . . . ,

√
pN ) = Q(

√
p1 + . . .+

√
pN )

11
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Since the degree of a compositum KL of two field extensions K,L of a field k has degree at most [K : k]·[L : k]
over k,

[Q(
√
p1, . . . ,

√
pN ) : Q] ≤ 2N

since [Q(
√
pi) : Q] = 2, which itself follows from the irreducibility of x2− pi from Eisenstein’s criterion. The

previous example shows that the bound 2N is the actual degree, by multiplicativity of degrees in towers.

Again, a direct computation might succeed here, but might not be the most illuminating way to proceed.
Instead, we continue as in the previous solution. Let

α =
√
p1 + . . .+

√
pn

Without determining the minimal polynomial f of α over Q directly, we note that any automorphism τ of
Q(ζn) over Q can only send alf to other zeros of f , since

f(τα) = τ(f(α)) = τ(0) = 0

where the first equality follows exactly because the coefficients of f are fixed by τ . Thus, if we show that α
has at least 2N distinct images under automorphisms of Q(ζn) over Q, then the degree of f is at least 2N .
(It is at most 2N since α does lie in that field extension, which has degree 2N , from above.)

As in the previous exercise, for each index i among 1, . . . , N we can find ai such that

σai(
√
pj) =

{
+
√
pj for j 6= i

−√pj for j = i

Thus, among the images of α are
±√p1 ±

√
p2 ± . . .±

√
pN

with all 2N sign choices. These elements are all distinct, since any equality would imply, for some non-empty
subset {i1, . . . , i`} of {1, . . . , N}, a relation

√
pi1 + . . .+

√
pi` = 0

which is precluded by the previous problem (since no one of these square roots lies in the field generated by
the others). Thus, there are at least 2N images of α, so α is of degree at least over 2N , so is of degree exactly
that. By multiplicativity of degrees in towers, it must be that α generates all of Q(

√
p1, . . . ,

√
pN ). ///

[07.17] Let α = xy2 + yz2 + zx2, β = x2y + y2z + z2x and let s1, s2, s3 be the elementary symmetric
polynomials in x, y, z. Describe the relation between the quadratic equation satisfied by α and β over the
field Q(s1, s2, s3) and the quantity

∆2 = (x− y)2(y − z)2(z − x)2

Letting the quadratic equation be ax2 + bx + c with a = 1, the usual b2 − 4ac will turn out to be this
∆2. (Thus, there is perhaps some inconsistency in whether these are discriminants or their squares.) The
interesting question is how to best be sure that this is so. As usual, in principle a direct computation would
work, but it is more interesting to give a less computational argument.

Let
δ = b2 − 4ac = (−α− β)2 − 4 · 1 · αβ = (α− β)2

The fact that this δ is the square of something is probably unexpected, unless one has anticipated what
happens in the sequel. Perhaps the least obvious point is that, if any two of x, y, z are identical, then α = β.
For example, if x = y, then

α = xy2 + yz2 + zx2 = x3 + xz2 + zx2

12
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and
β = x2y + y2z + z2x = x3 + x2z + z2x = α

The symmetrical arguments show that x − y, x − z, and y − z all divide α − β, in the (UFD, by Gauss)
polynomial ring Q[x, y, z]. The UFD property implies that the product (x− y)(x− z)(y − z) divides α− β.
Since δ = (α − β)2, and since ∆ is the square of that product of three linear factors, up to a constant they
are equal.

To determine the constant, we need only look at a single monomial. For example, the x4y2 term in (α− β)2

can be determined with z = 0, in which case

(α− β)2 = (xy2 − x2y)2 = 1 · x4y2 + other

Similarly, in ∆2, the coefficient of x4y2 can be determined with z = 0, in which case

∆2 = (x− y)2(x)2(y)2 = x4y2 + other

That is, the coefficient is 1 in both cases, so, finally, we have δ = ∆2, as claimed. ///

[07.18] Let t be an integer. If the image of t in Z/p is a square for every prime p, is t necessarily a square?

Yes, but we need not only Quadratic Reciprocity but also Dirichlet’s theorem on primes in arithmetic
progressions to see this. Dirichlet’s theorem, which has no intelligible purely algebraic proof, asserts that for
a positive integer N and integer a with gcd(a,N) = 1, there are infinitely many primes p with p = amod N .

Factor t into prime powers t = εpm1
1 . . . pmn

n where ε = ±1, the pi are primes, and the mi are positive
integers. Since t is not a square either ε = −1 or some exponent mi is odd.

If ε = −1, take q to be a prime different from all the pi and q = 3mod 4. The latter condition assures
(from the cyclicness of (Z/q)×) that −1 is not a square mod q, and the first condition assures that t is not
0 modulo q. We will arrange further congruence conditions on q to guarantee that each pi is a (non-zero)
square modulo q. For each pi, if pi = 1mod 4 let bi = 1, and if pi = 3mod 4 let bi be a non-square mod pi.
Require of q that q = 7mod 8 and q = bimod pi for odd pi. (The case of pi = 2 is handled by q = 7mod 8,
which assures that 2 is a square mod q, by Quadratic Reciprocity.) Sun-Ze’s theorem assures us that these
conditions can be met simultaneously, by integer q. Then by the main part of Quadratic Reciprocity, for
pi > 2, (

pi
q

)
2

= (−1)(pi−1)(q−1) ·
(
q
pi

)
2

=


(−1) ·

(
q
pi

)
2

(for pi = 3mod 4)

(+1) ·
(
q
pi

)
2

(for pi = 1mod 4)

 = 1 (in either case)

That is, all the pi are squares modulo q, but ε = −1 is not, so t is a non-square modulo q, since Dirichlet’s
theorem promises that there are infinitely many (hence, at least one) primes q meeting these congruence
conditions.

For ε = +1, there must be some odd mi, say m1. We want to devise congruence conditions on primes q
such that all pi with i ≥ 2 are squares modulo q but p1 is not a square mod q. Since we do not need to
make q = 3mod 4 (as was needed in the previous case), we can take q = 1mod 4, and thus have somewhat
simpler conditions. If p1 = 2, require that q = 5mod 8, while if p1 > 2 then fix a non-square b mod p1 and
let q = bmod p1. For i ≥ 2 take q = 1mod pi for odd pi, and q = 5mod 8 for pi = 2. Again, Sun-Ze assures
us that these congruence conditions are equivalent to a single one, and Dirichlet’s theorem assures that there
are primes which meet the condition. Again, Quadratic Reciprocity gives, for pi > 2,(

pi
q

)
2

= (−1)(pi−1)(q−1) ·
(
q
pi

)
2

=

(
q
pi

)
2

=

{
−1 (for i = 1)
+1 (for i ≥ 2)
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The case of pi = 2 was dealt with separately. Thus, the product t is the product of a single non-square mod
q and a bunch of squares modulo q, so is a non-square mod q.

[0.9] Remark: And in addition to everything else, it is worth noting that for the 4 choices of odd q modulo
8, we achieve all 4 of the different effects(

−1
q

)
2

= ±1

(
2
q

)
2

= ±1

[07.19] Find the irreducible factors of x5 − 4 in Q[x]. In Q(ζ)[x] with a primitive fifth root of unity ζ.

First, by Eisenstein’s criterion, x5−2 is irreducible over Q, so the fifth root of 2 generates a quintic extension
of Q. Certainly a fifth root of 4 lies in such an extension, so must be either rational or generate the quintic
extension, by multiplicativity of field extension degrees in towers. Since 4 = 22 is not a fifth power in Q, the
fifth root of 4 generates a quintic extension, and its minimal polynomial over Q is necessarily quintic. The
given polynomial is at worst a multiple of the minimal one, and has the right degree, so is it. That is, x5− 4
is irreducible in Q[x]. (Comment: I had overlooked this trick when I thought the problem up, thinking,
instead, that one would be forced to think more in the style of the Kummer ideas indicated below.)

Yes, it is true that irreducibility over the larger field would imply irreducibility over the smaller, but it might
be difficult to see directly that 4 is not a fifth power in Q(ζ). For example, we do not know anything about
the behavior of the ring Z[ζ], such as whether it is a UFD or not, so we cannot readily attempt to invoke
Eisenstein. Thus, our first method to prove irreducibility over Q(ζ) uses the irreducibility over Q.

Instead, observe that the field extension obtained by adjoining ζ is quartic over Q, while that obtained by
adjoining a fifth root β of 4 is quintic. Any field K containing both would have degree divisible by both
degrees (by multiplicativity of field extension degrees in towers), and at most the product, so in this case
exactly 20. As a consequence, β has quintic minimal polynomial over Q(ζ), since [K : Q(ζ)] = 5 (again by
multiplicativity of degrees in towers). That is, the given quintic must be that minimal polynomial, so is
irreducible. ///

Another approach to prove irreducibility of x5−4 in Q[x] is to prove that it is irreducible modulo some prime
p. To have some elements of Z/p not be 5th powers we need p = 1mod 5 (by the cyclic-ness of (Z/p)×),
and the smallest candidate is p = 11. First, 4 is not a fifth power in Z/11, since the only fifth powers are
±1 (again using the cyclic-ness to make this observation easy). In fact, 25 = 32 = −1mod 11, so we can
infer that 2 is a generator for the order 11 cyclic group (Z/11)×. Then if 4 = α5 for some α ∈ F112 , also

α112−1 = 1 and 45 = 1mod 11 yield

1 = α112−1 = (α5)24 = 424 = 44 = 52 = 2mod 11

which is false. Thus, x5−4 can have no linear or quadratic factor in Q[x], so is irreducible in Q[x]. (Comment:
And I had overlooked this trick, too, when I thought the problem up.)

Yet another approach, which illustrates more what happens in Kummer theory, is to grant ourselves just
that a is not a 5th power in Q(ζ), and prove irreducibility of x5 − a. That a is not a 5th power in Q(ζ) can
be proven without understanding much about the ring Z[ζ] (if we are slightly lucky) by taking norms from
Q(ζ) to Q, in the sense of writing

N(β) =
∏

τ∈Aut(Q(ζ)/Q)

τ(β)

In fact, we know that Aut(Q(ζ)/Q) ≈ (Z/5)×, generated (for example) by σ2(ζ) = ζ2. We compute directly
that N takes values in Q: for lightness of notation let τ = σ2, and then

τ(Nβ) = τ
(
β · τβ · τ2β · τ3β

)
= τβ · τ2β · τ3β · τ4β

14
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= β · τβ · τ2β · τ3β = N(β)

since τ4 = 1, by rearranging. Since we are inside a cyclotomic field, we already know the (proto-Galois
theory) fact that invariance under all automorphisms means the thing lies inside Q, as claimed. And since
τ is an automorphism, the norm N is multiplicative (as usual). Thus, if β = γ5 is a fifth power, then

N(β) = N(γ5) = N(γ)5

is a fifth power of a rational number. The norm of β = 4 is easy to compute, namely

N(4) = 4 · 4 · 4 · 4 = 28

which is not a fifth power in Q (by unique factorization). So, without knowing much about the ring Z[ζ], we
do know that 4 does not become a fifth power there.

Let α be a fifth root of 4. Then, in fact, the complete list of fifth roots of 4 is α, ζα, ζ2α, ζ3α, ζ4α. If x5 − 4
factored properly in Q(ζ)[x], then it would have a linear or quadratic factor. There can be no linear factor,
because (as we just showed) there is no fifth root of 4 in Q(ζ). If there were a proper quadratic factor it
would have to be of the form (with i 6= jmod 5)

(x− ζiα)(x− ζjα) = x2 − (ζi + ζj)αx+ ζi+jα2

Since α 6∈ Q(ζ), this would require that ζi + ζj = 0, or ζi−j = −1, which does not happen. Thus, we have
irreducibility.

[0.10] Remark: This last problem is a precursor to Kummer theory. As with cyclotomic extensions of
fields, extensions by nth roots have the simplicity that we have an explicit and simple form for all the roots
in terms of a given one. This is not typical.

[07.20] Show that Q(
√

2) is normal over Q.

We must show that all imbeddings σ : Q(
√

2)→ Q to an algebraic closure of Q have the same image. Since
(by Eisenstein and Gauss) x2 − 2 is irreducible in Q[x], it is the minimal polynomial for any square root of
2 in any field extension of Q. We know that (non-zero) field maps Q(α)→ Q over Q can only send roots of
an irreducible f(x) ∈ Q[x] to roots of the same irreducible in Q. Let β be a square root of 2 in Q. Then −β
is another, and is the only other square root of 2, since the irreducible is of degree 2. Thus, σ(

√
2) = ±β.

Whichever sign occurs, the image of the whole Q(
√

2) is the same. ///

[07.21] Show that Q( 3
√

5) is not normal over Q.

By Eisenstein and Gauss, x3 − 5 is irreducible in Q[x], so [Q( 3
√

5) : Q] = 3. Let α be one cube root of 5
in an algebraic closure Q of Q. Also, observe that x3 − 5 has no repeated factors, since its derivative is
3x2, and the gcd is readily computed to be 1. Let β be another cube root of 5. Then (α/beta)3 = 1 and
α/beta 6= 1, so that ratio is a primitive cube root of unity ω, whose minimal polynomial over Q we know
to be x2 + x + 1 (which is indeed irreducible, by Eisenstein and Gauss). Thus, the cubic field extension
Q(α) over Q cannot contain β, since otherwise it would have a quadratic subfield Q(ω), contradicting the
multiplicativity of degrees in towers.

Since
Q(α) ≈ Q[x]/〈x3 − 5〉 ≈ Q(β)

we can map a copy of Q( 3
√

5) to either Q(α) or Q(β), sending 3
√

5 to either α or β. But inside Q the two
fields Q(α) and Q(β) are distinct sets. That is, Q( 3

√
5) is not normal. ///

[07.22] Find all fields intermediate between Q and Q(ζ13) where ζ13 is a primitive 13th root of unity.
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We already know that the Galois group G of the extension is isomorphic to (Z/13)× by

a→ (σa : ζ → ζa)

and that group is cyclic. Thus, the subgroups are in bijection with the divisors of the order, 12, namely
1,2,3,4,6,12. By the main theorem of Galois theory, the intermediate fields are in bijection with the proper
subgroups, which will be the fixed fields of the subgroups of orders 2, 3, 4, 6. We have already identified the
quadratic-over-Q subfield of any cyclotomic field Q(ζp) with a primitive pth root of unity ζp with p prime,
via Gauss sums, as Q(

√
±p) with the sign being the quadratic symbol (−1/p)2. Thus, here, the subgroup

fixed by the subgroup of order 6 is quadratic over Q, and is Q(
√

13).

We claim that the subfield fixed by ζ → ζ±1 is Q(ξ), where ξ = ζ + ζ−1 is obtained by averaging ζ over
that group of automorphisms. First, ξ is not 0, since those two powers of ζ are linearly independent over Q.
Second, to show that ξ is not accidentally invariant under any larger group of automorphisms, observe that

σa(ξ) = ζa + ζ−a = ζa + ζ13−a

Since ζ1, ζ2, . . . , ζ11, ζ12 are a Q-basis for Q(ζ), an equality σa(ξ) = ξ is

ζa + ζ13−a = σa(ξ) = ξ = ζ + ζ12

which by the linear independence implies a = ±1. This proves that this ξ generates the sextic-over-Q
subextension.

To give a second description of ξ by telling the irreducible in Q[x] of which it is a zero, divide through the
equation satisfied by ζ by ζ6 to obtain

ζ6 + ζ5 + . . .+ ζ + 1 + ζ−1 + . . .+ ζ−6 = 0

Thus,

ξ6 + ξ5 + (1−
(

6

1

)
)ξ4 + (1−

(
5

1

)
)ξ3 + (1−

(
6

2

)
+ 5 ·

(
4

1

)
)ξ2

+ (1−
(

5

2

)
+ 4 ·

(
3

1

)
)ξ + (1−

(
6

3

)
+ 5 ·

(
4

2

)
− 6

(
2

1

)
)

= ξ6 + ξ5 − 5ξ4 − 4ξ3 + 6ξ2 + 3ξ − 1 = 0

To describe ξ as a root of this sextic is an alternative to describing it as ξ = ζ + ζ−1. Since we already know
that ξ is of degree 6 over Q, this sextic is necessarily irreducible.

The quartic-over-Q intermediate field is fixed by the (unique) order 3 subgroup {1, σ3, σ9} of automorphisms.
Thus, we form the average

α = ζ + ζ3 + ζ9

and claim that α generates that quartic extension. Indeed, if σa were to fix α, then

ζ2 + ζ3a + ζ9a = σa(α) = α = ζ + ζ3 + ζ9

By the linear independence of ζ2, ζ2, . . . , ζ12, this is possible only for a among 1, 3, 9 modulo 13. This verifies
that this α exactly generates the quartic extension.

To determine the quartic irreducible of which α is a root, we may be a little clever. Namely, we first find the
irreducible quadratic over Q(

√
13) of which α is a root. From Galois theory, the non-trivial automorphism

of Q(α) over Q(
√

13) is (the restriction of) σ4, since 4 is of order 6 in (Z/13)×. Thus, the irreducible of α
over Q(

√
13) is

(x− α)(x− σ4α)

16



Paul Garrett: Discussion 07 (February 17, 2024)

in
α+ σ4α = ζ + ζ3 + ζ9 + ζ4 + ζ12 + ζ10 ∈ Q(

√
13)

the exponents appearing are exactly the non-zero squares modulo 13, so

α+ σ4α =
∑

`:

(
`

13

)
2

=1

ζ` =
1

2
·

 ∑
1≤`≤12

(
`

13

)
2

ζ` +
∑

1≤`≤12

ζ`

 =

√
13− 1

2

from discussion of Gauss sums. And

α · σ4α = 3 + ζ5 + ζ11 + ζ7 + ζ2 + ζ8 + ζ6 ∈ Q(
√

13)

The exponents are exactly the non-squares modulo 13, so this is

3− 1

2
·

 ∑
1≤`≤12

(
`

13

)
2

ζ` −
∑

1≤`≤12

ζ`

 = 3−
√

13 + 1

2
=
−
√

13 + 5

2

Thus, the quadratic over Q(
√

13) is

x2 −
√

13− 1

2
x+
−
√

13 + 5

2

It is interesting that the discriminant of this quadratic is

√
13 · 3−

√
13

2

and that (taking the norm)

3−
√

13

2
· 3 +

√
13

2
= −1

To obtain the quartic over Q, multiply this by the same expression with
√

13 replaced by its negative, to
obtain

(x2 +
x

2
+

5

2
)2 − 13(

x

2
+

1

2
)2 = x4 +

x2

4
+

25

4
+ x3 + 5x2 +

5x

2
− 13x2

4
− 13x

2
− 13

4

= x4 + x3 + 2x2 − 4x+ 3

Finally, to find the cubic-over-Q subfield fixed by the subgroup {1, σ5, σ−1, σ8} of the Galois group, first
consider the expression

β = ζ + ζ5 + ζ12 + ζ8

obtained by averaging ζ by the action of this subgroup. This is not zero since those powers of ζ are linearly
independent over Q. And if

ζa + ζ5a + ζ12a + ζ8a = σa(β) = β = ζ + ζ5 + ζ12 + ζ8

the the linear independence implies that a is among 1, 5, 12, 8 mod 13. Thus, β is not accidentally invariant
under a larger group.

Of course we might want a second description of β by telling the irreducible cubic it satisfies. This was done
by brute force earlier, but can also be done in other fashions to illustrate other points. For example, we
know a priori that it does satisfy a cubic.
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The linear coefficient is easy to determine, as it is the negative of

β + σ2(β) + σ2
2(β) = (ζ + ζ5 + ζ12 + ζ8) + (ζ2 + ζ10 + ζ11 + ζ3) + (ζ4 + ζ7 + ζ9 + ζ6) = −1

since the powers of ζ are ζi with i running from 1 to 12. Thus, the cubic is of the form x3 + x2 + ax+ b for
some a, b in Q.

We know that β = ζ + ζ5 + ζ12 + ζ8 is a zero of this equation, and from

β3 + β2 + aβ + b = 0

we can determine a and b. Expanding β3 and β2, we have(
ζ3 + ζ2 + ζ10 + ζ11

+3(ζ7 + ζ4 + ζ + ζ12 + ζ10 + ζ4 + ζ9 + ζ3 + ζ5 + |zeta8 + ζ6 + ζ2)

+6(ζ5 + ζ + ζ8 + ζ12
)

+
(
ζ2 + ζ10 + ζ11 + ζ3 + 2(ζ6 + 1 + ζ9 + ζ4 + 1 + ζ7)

)
+a · (ζ + ζ5 + ζ12 + ζ8) + b = 0

Keeping in mind that
ζ12 = −(1 + ζ + ζ2 + . . .+ ζ10 + ζ11)

using the linear independence of 1, ζ, ζ2, . . . , ζ10, ζ11 by looking at the coefficients of 1, ζ, ζ2, ζ3, . . . we obtain
relations, respectively,

−3− 6 + 2 · 2− a+ b = 0
0 = 0

1− 6 + 1− a = 0
1− 6 + 1− a = 0

. . .

From this, a = −4 and b = 1, so
x3 + x2 − 4x+ 1

is the cubic of which β = ζ + ζ5 + ζ12 + ζ8 is a zero. ///

[0.11] Remark: It is surprising that the product of β and its two conjugates is −1.

[07.23] Find all fields intermediate between Q and a splitting field of x3 − x+ 1 over Q.

First, we check the irreducibility in Q[x]. By Gauss this is irreducible in Q[x] if and only if so in Z[x]. For
irreducibility in the latter it suffices to have irreducibility in (Z/p)[x], for example for Z/3, as suggested by
the exponent. Indeed, an earlier example showed that for prime p and a 6= 0mod p the polynomial xp−x+a
is irreducible modulo p. So x3 − x+ 1 is irreducible mod 3, so irreducible in Z[x], so irreducible in Q[x].

Even though we’ll see shortly that in characteristic 0 irreducible polynomials always have distinct zeros,
we briefly note why: if f = g2h over an extension field, then deg gcd(f, f ′) > 0, where as usual f ′ is the
derivative of f . If f ′ 6= 0, then the gcd has degree at most deg f ′ = deg f − 1, and is in Q[x], contradicting
the irreducibility of f . And the derivative can be identically 0 if the characteristic is 0.

Thus, any of the three distinct zeros α, β, γ of x3 − x+ 1 generates a cubic extension of Q.

Now things revolve around the discriminant

∆ = (α− β)2(β − γ)2(γ − α)2 = −27 · 13 − 4 · (−1)3 = −27 + 4 = −23
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from the computations that show that the discriminant of x3 + bx+ c is −27c2− 4b3. From its explicit form,
if two (or all) the roots of a cubic are adjoined to the groundfield Q, then the square root of the discriminant
also lies in that (splitting) field. Since −23 is not a square of a rational number, the field Q(

√
−23) is a

subfield of the splitting field.

Since the splitting field K is normal (and in characteristic 0 inevitably separable), it is Galois over Q. Any
automorphism σ of K over Q must permute the 3 roots among themselves, since

σ(α)3 − σ(α) + 1 = σ(α3 − α+ 1) = σ(0) = 0

Thus, the Galois group is a subgroup of the permutation group S3 on 3 things. Further, the Galois group is
transitive in its action on the roots, so cannot be merely of order 1 or 2. That is, the Galois group is either
cyclic of order 3 or is the full permutation group S3. Since the splitting field has a quadratic subfield, via
the main theorem of Galois theory we know that the order of the Galois group is even, so is the full S3.

By the main theorem of Galois theory, the intermediate fields are in inclusion-reversing bijection with the
proper subgroups of S3. Since the discriminant is not a square, the 3 subfields obtained by adjoining the
different roots of the cubic are distinct (since otherwise the square root of the discriminant would be there),
so these must give the subfields corresponding to the 3 subgroups of S3 of order 2. The field Q(

√
−23)

must correspond to the single remaining subgroup of order 3 containing the 3-cycles. There are no other
subgroups of S3 (by Lagrange and Sylow, or even by direct observation), so there are no other intermediate
fields. ///

[07.24] Find all fields intermediate between Q and Q(ζ21) where ζ21 is a primitive 21st root of unity.

We have already shown that the Galois group G is isomorphic to

(Z/21)× ≈ (Z/7)× × (Z/3)× ≈ Z/6⊕ Z/2 ≈ Z/3⊕ Z/2⊕ Z/2

(isomorphisms via Sun-Ze’s theorem), using the fact that (Z/p)× for p prime is cyclic.

Invoking the main theorem of Galois theory, to determine all intermediate fields (as fixed fields of subgroups)
we should determine all subgroups of Z/3⊕Z/2⊕Z/2. To understand the collection of all subgroups, proceed
as follows. First, a subgroup H either contains an element of order 3 or not, so H either contains that copy of
Z/3 or not. Second, Z/2⊕Z/2 is a two-dimensional vector space over F2, so its proper subgroups correspond
to one-dimensional subspaces, which correspond to non-zero vectors (since the scalars are just {0, 1}), of
which there are exactly 3. Thus, combining these cases the complete list of proper subgroups of G is

H1 = Z/3⊕ 0⊕ 0
H2 = Z/3⊕ Z/2⊕ 0
H3 = Z/3⊕ 0⊕ Z/2
H4 = Z/3⊕ Z/2 · (1, 1)
H5 = Z/3⊕ Z/2⊕ Z/2
H6 = 0⊕ Z/2⊕ 0
H7 = 0⊕ 0⊕ Z/2
H8 = 0⊕ Z/2 · (1, 1)
H9 = 0⊕ Z/2⊕ Z/2

At worst by trial and error, the cyclic subgroup of order 3 in (Z/21)× is {1, 4, 16}, and the Z/2 ⊕ Z/2
subgroup is {1, 8, 13,−1}.

An auxiliary point which is useful and makes things conceptually clearer is to verify that in Q(ζn), where
n = p1 . . . pt is a product of distinct primes pi, and ζn is a primitive nth root of unity, the powers

{ζt : 1 ≤ t < n, with gcd(t, n) = 1}
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is (as you might be hoping [1] ) a Q-basis for Q(ζn).

Prove this by induction. Let ζm be a primitive mth root of unity for any m. The assertion holds for n prime,
since for p prime

xp − 1

x− 1

is the minimal polynomial for a primitive pth root of unity. Suppose the assertion is true for n, and let p be
a prime not dividing n. By now we know that the npth cyclotomic polynomial is irreducible over Q, so the
degree of Q(ζnp) over Q is (with Euler’s totient function ϕ)

[Q(ζnp)Q] = ϕ(np) = ϕ(n) · ϕ(p) = [Q(ζn)Q] · [Q(ζp)Q]

since p and n are relatively prime. Let a, b be integers such that 1 = an + bp. Also note that ζ = ζn · ζp is
a primitive npth root of unity. Thus, in the explicit form of Sun-Ze’s theorem, given imod p and jmod n we
have

an · i+ bp · j =

{
i mod p

jmod n

Suppose that there were a linear dependence relation

0 =
∑
i

c` ζ
`
np

with ci ∈ Q and with ` summed over 1 ≤ ` < np with gcd(`, np) = 1. Let i = `mod p and j = `mod n. Then

ζani+bpjnp = ζjn · ζip

and

0 =

p∑
i=1

ζip

∑
j

cani+bpj ζ
j
n


where j is summed over 1 ≤ j < n with gcd(j, n) = 1. Such a relation would imply that ζp, . . . , ζ

p−1
p would

be linearly dependent over Q(ζn). But the minimal polynomial of ζp over this larger field is the same as it
is over Q (because the degree of Q(ζn, ζp) over Q(ζn) is still p − 1), so this implies that all the coefficients
are 0. ///

[07.25] Find all fields intermediate between Q and Q(ζ27) where ζ27 is a primitive 27th root of unity.

We know that the Galois group G is isomorphic to (Z/27)×, which we also know is cyclic, of order
(3 − 1)33−1 = 18, since 27 is a power of an odd prime (namely, 3). The subgroups of a cyclic group
are in bijection with the divisors of the order, so we have subgroups precisely of orders 1, 2, 3, 6, 9, 18. The
proper ones have orders 2, 3, 6, 9. We can verify that g = 2 is a generator for the cyclic group (Z/27)×, and
the subgroups of a cyclic group are readily expressed in terms of powers of this generator. Thus, letting
ζ = ζ27, indexing the alphas by the order of the subgroup fixing them,

α2 = ζ + ζ−1

α3 = ζ + ζ2
6

+ ζ2
12

α6 = ζ + ζ2
3

+ ζ2
6

+ ζ2
9

+ ζ2
12

+ ζ2
15

α9 = ζ + ζ2
2

+ ζ2
4

+ ζ2
6

+ ζ2
8

+ ζ2
10

ζ2
12

+ ζ2
14

+ ζ2
16

But there are some useful alternative descriptions, some of which are clearer. Since ζ327 is a primitive 9th

root of unity ζ9, which is of degree ϕ(9) = 6 over Q, this identifies the degree 6 extension generated by α3

[1] For n = 4 and n = 9 the assertion is definitely false, for example.
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(3 · 6 = 18) more prettily. Similarly, ζ927 is a primitive cube root of unity ζ3, and Q(ζ3) = Q(
√
−3) from

earlier examples. This is the quadratic subfield also generated by α9. And from

0 =
ζ99 − 1

ζ39 − 1
= ζ69 + ζ39 + 1

we use our usual trick

ζ39 + 1 + ζ−39 = 0

and then

(ζ9 + ζ−19 )3 − 3(ζ9 + ζ−19 )− 1 = 0

so a root of

x3 − 3x− 1 = 0

generates the degree 3 field over Q also generated by α6. ///

[07.26] Find all fields intermediate between Q and Q(
√

2,
√

3,
√

5).

Let K = Q(
√

2,
√

3,
√

5). Before invoking the main theorem of Galois theory, note that it really is true that
[K : Q] = 23, as a special case of a more general example we did earlier, with an arbitrary list of primes.

To count the proper subgroups of the Galois group G ≈ Z/2 ⊕ Z/2 ⊕ Z/2, it is useful to understand the
Galois group as a 3-dimensional vector space over F2. Thus, the proper subgroups are the one-dimensional
subspace and the two-dimensional subspaces, as vector spaces.

There are 23 − 1 non-zero vectors, and since the field is F2, this is the number of subgroups of order 2.
Invoking the main theorem of Galois theory, these are in bijection with the intermediate fields which are
of degree 4 over Q. We can easily think of several quartic fields over Q, namely Q(

√
2,
√

3), Q(
√

2,
√

5),
Q(
√

3,
√

5), Q(
√

6,
√

5), Q(
√

10,
√

3), Q(
√

2,
√

15), and the least obvious Q(
√

6,
√

15). The argument that no
two of these are the same is achieved most efficiently by use of the automorphisms σ, τ, ρ of the whole field
which have the effects

σ(
√

2) = −
√

2 σ(
√

3) =
√

3 σ(
√

5) =
√

5
τ(
√

2) =
√

2 τ(
√

3) = −
√

3 τ(
√

5) =
√

5
ρ(
√

2) =
√

2 ρ(
√

3) =
√

3 ρ(
√

5) = −
√

5

which are restrictions of automorphisms of the form ζ → ζa of the cyclotomic field containing all these
quadratic extensions, for example Q(ζ120) where ζ120 is a primitive 120th root of unity.

To count the subgroups of order 4 = 22, we might be a little clever and realize that the two-dimensional
F2-vectorsubspaces are exactly the kernels of non-zero linear maps F3

2 → F2. Thus, these are in bijection
with the non-zero vectors in the F2-linear dual to F3

2, which is again 3-dimensional. Thus, the number of
two-dimensional subspaces is again 23 − 1.

Or, we can count these two-dimensional subspaces by counting ordered pairs of two linearly independent
vectors (namely (23 − 1)(23 − 2) = 42) and dividing by the number of changes of bases possible in a two-
dimensional space. The latter number is the cardinality of GL(2,F2), which is (22 − 1)(22 − 2) = 6. The
quotient is 7 (unsurprisingly).

We can easily write down several quadratic extensions of Q inside the whole field, namely Q(
√

2), Q(
√

3),
Q(
√

5), Q(
√

6), Q(
√

10), Q(
√

15), Q(
√

30). That these are distinct can be shown, for example, by observing
that the effects of the automorphisms σ, τ, ρ differ. ///

[07.27] Let a, b, c be independent indeterminates over a field k. Let z be a zero of the cubic

x3 + ax2 + bx+ c
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in some algebraic closure of K = k(a, b, c). What is the degree [K(z) : K]? What is the degree of the
splitting field of that cubic over K?

First, we prove that f(x) = x3+ax2+bx+c is irreducible in k(a, b, c)[x]. As a polynomial in x with coefficients
in the ring k(a, b)[c], it is monic and has content 1, so its irreducibility in k(a, b, c)[x] is equivalent to its
irreducibility in k(a, b)[c][x] ≈ k(a, b)[x][c]. As a polynomial in c it is monic and linear, hence irreducible.
This proves the irreducibility in k(a, b, c)[x]. Generally, [K(z) : K] is equal to the degree of the minimal
polynomial of z over K. Since f is irreducible it is the minimal polynomial of z over K, so [K(z) : K] = 3.

To understand the degree of the splitting field, let the three roots of x3 + ax2 + bx+ c = 0 be z, u, v. Then
(the discriminant)

∆ = (z − u)2(u− v)2(v − z)2

certainly lies in the splitting field, and is a square in the splitting field. But if ∆ is not a square in the
ground field K, then the splitting field contains the quadratic field K(

√
∆), which is of degree 2 over K.

Since gcd(2, 3) = 1, this implies that the splitting field is of degree at least 6 over K. But f(x)/(x− z) is of
degree 2, so the degree of the splitting field cannot be more than 6, so it is exactly 6 if the discriminant is
not a square in the ground field K.

Now we use the fact that the a, b, c are indeterminates. Gauss’ lemma assures us that a polynomial A in
a, b, c is a square in k(a, b, c) if and only it is a square in k[a, b, c], since the reducibilities of x2 − A in the
two rings are equivalent. Further, if A is square in k[a, b, c] then it is a square in any homomorphic image of
k[a, b, c]. If the characteristic of k is not 2, map a → 0, c → 0, so that f(x) becomes x3 + bx. The zeros of
this are 0 and ±

√
b, so the discriminant is

∆ = (0−
√
b)2(0 +

√
b)2(−

√
b−
√
b)2 = b · b · 4b = 4b3 = (2b)2 · b

The indeterminate b is not a square. (For example, x2−b is irreducible by Gauss, using Eisenstein’s criterion.)
That is, because this image is not a square, we know that the genuine discriminant is not a square in k(a, b, c)
without computing it.

Thus, the degree of the splitting field is always 6, for characteristic not 2.

For characteristic of k equal to 2, things work differently, since the cubic expression (z − u)(u− v)(v − z) is
already invariant under any group of permutations of the three roots. But, also, in characteristic 2, separable
quadratic extensions are not all obtained via square roots, but, rather, by adjoining zeros of Artin-Schreier
polynomials x2 − x+ a. ... ///

[07.28] Let x1, . . . , xn be independent indeterminates over a field k, with elementary symmetric polynomials
s1, . . . , sn. Prove that the Galois group of k(x1, . . . , xn) over k(s1, . . . , sn) is the symmetric group Sn on n
things.

Since k[x1, . . . , xn] is the free (commutative) k-algebra on those n generators, for a given permutation p we
can certainly map xi → xp(i). Then, since this has trivial kernel, we can extend it to a map on the fraction
field k(x1, . . . , xn). So the permutation group Sn on n things does act by automorphisms of k(x1, . . . , xn).
Certainly such permutations of the indeterminates leaves k[s1, . . . , sn] pointwise fixed, so certainly leaves the
fraction field k(s1, . . . , sn) pointwise fixed.

Each xi is a zero of
f(X) = Xn − s1Xn−1 + s2X

n−2 − . . .+ (−1)nsn

so certainly k(x1, . . . , xn) is finite over k(s1, . . . , sn). Indeed, k(x1, . . . , xn) is a splitting field of f(X) over
k(s1, . . . , sn), since no smaller field could contain x1, . . . , xn (with or without s1, . . . , sn). So the extension is
normal over k(s1, . . . , sn). Since the xi are mutually independent indeterminates, certainly no two are equal,
so f(X) is separable, and the splitting field is separable over k(s1, . . . , sn). That is, the extension is Galois.

The degree of k(x1, . . . , xn) over k(s1, . . . , sn) is at most n!, since x1 is a zero of f(X), x2 is a zero of the
polynomial f(X)/(X−x1) in k(x1)[X], x3 is a zero of the polynomial f(X)/(X−x1)(X−x2) in k(x1, x2)[X],
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and so on. Since the Galois group contains Sn, the degree is at least n! (the order of Sn). Thus, the degree
is exactly n! and the Galois group is exactly Sn.

Incidentally, this proves that f(X) ∈ k(s1, . . . , sn)[X] is irreducible, as follows. Note first that the degree of
the splitting field of any polynomial g(X) of degree d is at most d!, proven best by induction: given one root
α1, in k(α1)[X] the polynomial g(X)/(X − α1) has splitting field of degree at most (d− 1)!, and with that
number achieved only if g(X)/(X − α1) is irreducible in k(α1)[X]. And [k(α1) : k] ≤ d, with the maximum
achieved if and only if g(X) is irreducible in k[X]. Thus, by induction, the maximum possible degree of the
splitting field of a degree d polynomial is d!, and for this to occur it is necessary that the polynomial be
irreducible.

Thus, in the case at hand, if f(X) were not irreducible, its splitting field could not be of degree n! over
k(s1, . . . , sn), contradiction. ///
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