Examples 01

Paul Garrett garrett@umn.edu https://www-users.cse.umn.edu/~garrett/

[01.1] Let D be an integer that is not the square of an integer. Prove that there is no \sqrt{D} in \mathbb{Q}.
[01.2] Let p be prime, $n>1$ an integer. Show (directly) that the equation $x^{n}-p x+p=0$ has no rational root (where $n>1$).
[01.3] Let p be prime, b an integer not divisible by p. Show (directly) that the equation $x^{p}-x+b=0$ has no rational root.
[01.4] Let r be a positive integer, and p a prime such that $\operatorname{gcd}(r, p-1)=1$. Show that every b in \mathbb{Z} / p has a unique $r^{t h}$ root c, given by the formula

$$
c=b^{s} \bmod p
$$

where $r s=1 \bmod (p-1)$.
[01.5] Show that $R=\mathbb{Z}[\sqrt{-2}]$ and $\mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right]$ are Euclidean.
[01.6] Let $f: X \rightarrow Y$ be a function from a set X to a set Y. Show that f has a left inverse if and only if it is injective. Show that f has a right inverse if and only if it is surjective. (Note where, if anywhere, the Axiom of Choice is needed.)
[01.7] Let $h: A \rightarrow B, g: B \rightarrow C, f: C \rightarrow D$. Prove the associativity

$$
(f \circ g) \circ h=f \circ(g \circ h)
$$

[01.8] Show that a set is infinite if and only if there is an injection of it to a proper subset of itself. Do not set this up so as to trivialize the question.
[01.9] Let G, H be finite groups with relatively prime orders. Show that any group homomorphism $f: G \rightarrow H$ is necessarily trivial (that is, sends every element of G to the identity in H.)
[01.10] Let m and n be integers. Give a formula for an isomorphism of abelian groups

$$
\frac{\mathbb{Z}}{m} \oplus \frac{\mathbb{Z}}{n} \rightarrow \frac{\mathbb{Z}}{\operatorname{gcd}(m, n)} \oplus \frac{\mathbb{Z}}{\operatorname{lcm}(m, n)}
$$

[01.11] Show that every group of order $5 \cdot 13$ is cyclic.
[01.12] Show that every group of order $5 \cdot 7^{2}$ is abelian.
[01.13] Exhibit a non-abelian group of order 3 7 .
[01.14] Exhibit a non-abelian group of order $5 \cdot 19^{2}$.
[01.15] Show that every group of order $3 \cdot 5 \cdot 17$ is cyclic.
[01.16] Do there exist 4 primes p, q, r, s such that every group of order pqrs is necessarily abelian?
[01.17] Let $R=\mathbb{Z} / 13$ and $S=\mathbb{Z} / 221$. Show that the map

$$
f: R \rightarrow S
$$

defined by $f(n)=170 \cdot n$ is well-defined and is a ring homomorphism. (Observe that it does not map $1 \in R$ to $1 \in S$.)
[01.18] Let p and q be distinct prime numbers. Show directly that there is no field with $p q$ elements.
[01.19] Find all the idempotent elements in \mathbb{Z} / n.
[01.20] Find all the nilpotent elements in \mathbb{Z} / n.
[01.21] Let $R=\mathbb{Q}[x] /\left(x^{2}-1\right)$. Find e and f in R, neither one 0 , such that

$$
e^{2}=e \quad f^{2}=f \quad e f=0 \quad e+f=1
$$

(Such e and f are orthogonal idempotents.) Show that the maps $p_{e}(r)=r e$ and $p_{f}(r)=r f$ are ring homomorphisms of R to itself.
[01.22] Prove that in $(\mathbb{Z} / p)[x]$ we have the factorization

$$
x^{p}-x=\prod_{a \in \mathbb{Z} / p}(x-a)
$$

[01.23] Show that $\mathbb{Z}[x]$ has non-maximal non-zero prime ideals.
[01.24] Show that $\mathbb{C}[x, y]$ has non-maximal non-zero prime ideals.
[01.25] Let $\omega=(-1+\sqrt{-3}) / 2$. Prove that

$$
\mathbb{Z}[\omega] / p \mathbb{Z}[\omega] \approx(\mathbb{Z} / p)[x] /\left(x^{2}+x+1\right)(\mathbb{Z} / p)[x]
$$

and, as a consequence, that a prime p in \mathbb{Z} is expressible as $x^{2}+x y+y^{2}$ with integers x, y if and only if $p=1 \bmod 3$ (apart from the single anomalous case $p=3$).

