Examples 02

Paul Garrett garrett@umn.edu https://www-users.cse.umn.edu/~garrett/
[02.1] Find all the idempotent elements in $\mathbb{Z}[i] /\langle 13\rangle$.
[02.2] Find all the nilpotent elements in $\mathbb{Z}[i] /\langle 2\rangle$.
[02.3] (Lagrange interpolation) Let $\alpha_{1}, \ldots, \alpha_{n}$ be distinct elements in a field k, and let $\beta_{1}, \ldots, \beta_{n}$ be any elements of k. Prove that there is a unique polynomial $P(x)$ of degree $<n$ in $k[x]$ such that, for all indices i,

$$
P\left(\alpha_{i}\right)=\beta_{i}
$$

Indeed, letting

$$
Q(x)=\prod_{i=1}^{n}\left(x-\alpha_{i}\right)
$$

show that

$$
P(x)=\sum_{i=1}^{n} \frac{Q(x)}{\left(x-\alpha_{i}\right) \cdot Q^{\prime}\left(\alpha_{i}\right)} \cdot \beta_{i}
$$

[02.4] (Simple case of partial fractions) Let $\alpha_{1}, \ldots, \alpha_{n}$ be distinct elements in a field k. Let $R(x)$ be any polynomial in $k[x]$ of degree $<n$. Show that there exist unique constants $c_{i} \in k$ such that in the field of rational functions $k(x)$

$$
\frac{R(x)}{\left(x-\alpha_{1}\right) \ldots\left(x-\alpha_{n}\right)}=\frac{c_{1}}{x-\alpha_{1}}+\ldots+\frac{c_{n}}{x-\alpha_{n}}
$$

In particular, let

$$
Q(x)=\prod_{i=1}^{n}\left(x-\alpha_{i}\right)
$$

and show that

$$
c_{i}=\frac{R\left(\alpha_{i}\right)}{Q^{\prime}\left(\alpha_{i}\right)}
$$

[02.5] (Analogue of partial fractions for rational numbers) Show that every positive rational number is expressible as

$$
\ell+\sum_{p} \frac{c_{p}}{p^{n_{p}}} \quad\left(0 \leq \ell \in \mathbb{Z}, \text { distinct primes } p, \text { exponents } 0 \leq n_{p} \in \mathbb{Z}, \text { integers } 0 \leq c_{p}<p^{n_{p}}\right)
$$

[02.6] Show that the ideal I generated in $\mathbb{Z}[x]$ by $x^{2}+1$ and 5 is not maximal.
[02.7] Show that the ideal I generated in $\mathbb{Z}[x]$ by $x^{2}+x+1$ and 11 is maximal.
[02.8] Let k be a field. Given $P \in k[x]$ of degree n, show that there is a k-linear map $T: k^{n} \rightarrow k^{n}$ such that $P(T)=0$.
[02.9] Determine all two-sided ideals in the ring of n-by- n matrices with entries in a field k.
[02.10] Let $V_{1} \subset \ldots \subset V_{n-1} \subset V$ and $W_{1} \subset \ldots \subset W_{n-1} \subset V$ be two maximal flags in an n-dimensional vector space V over a field k. Show that there is a k-linear map $T: V \rightarrow V$ such that $T V_{i}=W_{i}$.

