Examples 03

Paul Garrett garrett@umn.edu https://www-users.cse.umn.edu/~garrett/

[03.1] Find a polynomial $P \in \mathbb{Q}[x]$ so that $P(\sqrt{2}+\sqrt{3})=0$.
[03.2] Find a polynomial $P \in \mathbb{Q}[x]$ so that $P(\sqrt{2}+\sqrt[3]{5})=0$.
[03.3] Let α be a root of $x^{2}+\sqrt{2} x+\sqrt{3}=0$ in an algebraic closure of \mathbb{Q}. Find $P \in \mathbb{Q}[x]$ so that $P(\alpha)=0$.
[03.4] Let α be a root of $x^{5}-x+1=0$ in an algebraic closure of \mathbb{Q}. Find $P \in \mathbb{Q}[x]$ so that $P(\alpha+\sqrt{2})=0$.
[03.5] Gracefully verify that the octic $x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1$ factors properly in $\mathbb{Q}[x]$.
[03.6] Gracefully verify that the quartic $x^{4}+x^{3}+x^{2}+x+1$ is irreducible in $\mathbb{F}_{2}[x]$.
[03.7] Gracefully verify that the sextic $x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1$ is irreducible in $\mathbb{F}_{3}[x]$.
[03.8] Gracefully verify that the quartic $x^{4}+x^{3}+x^{2}+x+1$ factors into irreducible quadratics in $\mathbb{F}_{19}[x]$.
[03.9] Let $f(x)=x^{6}-x^{3}+1$. Find primes p with each of the following behaviors: f is irreducible in $\mathbb{F}_{p}[x]$, f factors into irreducible quadratic factors in $\mathbb{F}_{p}[x], f$ factors into irreducible cubic factors in $\mathbb{F}_{p}[x], f$ factors into linear factors in $\mathbb{F}_{p}[x]$.
[03.10] Explain why $x^{4}+1$ properly factors in $\mathbb{F}_{p}[x]$ for any prime p.
[03.11] Explain why $x^{8}-x^{7}+x^{5}-x^{4}+x^{3}-x+1$ properly factors in $\mathbb{F}_{p}[x]$ for any prime p. (Hint: It factors either into linear factors, irreducible quadratics, or irreducible quartics.)
[03.12] Why is $x^{4}-2$ irreducible in $\mathbb{F}_{5}[x]$?
[03.13] Why is $x^{5}-2$ irreducible in $\mathbb{F}_{11}[x]$?
[03.14] Let k be a field. Determine the units and ideals in the formal power series ring

$$
k[[x]]=\left\{\sum_{n \geq 0} c_{n} x^{n}: \text { arbitrary } c_{n} \in k\right\}
$$

[03.15] Let k be a field. Show that the field of fractions of the formal power series ring $k[[x]$ is the collection of finite-nosed formal Laurent series

$$
k((x))=\left\{\sum_{n \geq-N} c_{n} x^{n}: \text { arbitrary } c_{n} \in k, \text { arbitrary } N \in \mathbb{Z}\right\}
$$

