Discussion 04

$$
\text { Paul Garrett garrett@umn.edu https://www-users.cse.umn.edu/ }{ }^{\text {garrett/ }}
$$

[04.1] Given a 3-by-3 matrix M with integer entries, find A, B integer 3-by-3 matrices with determinant ± 1 such that $A M B$ is diagonal.
[04.2] Given a row vector $x=\left(x_{1}, \ldots, x_{n}\right)$ of integers whose $g c d$ is 1 , prove that there exists an n-by- n integer matrix M with determinant ± 1 such that $x M=(0, \ldots, 0,1)$.
[04.3] Given a row vector $x=\left(x_{1}, \ldots, x_{n}\right)$ of integers whose $g c d$ is 1 , prove that there exists an n-by- n integer matrix M with determinant ± 1 whose bottom row is x.
[04.4] Show that $G L\left(2, \mathbb{F}_{2}\right)$ is isomorphic to the permutation group S_{3} on three letters.
[04.5] Determine all conjugacy classes in $G L\left(2, \mathbb{F}_{3}\right)$.
[04.6] Determine all conjugacy classes in $G L\left(3, \mathbb{F}_{2}\right)$.
[04.7] Determine all conjugacy classes in $G L\left(4, \mathbb{F}_{2}\right)$.
[04.8] Tell a p-Sylow subgroup in $G L\left(3, \mathbb{F}_{p}\right)$.
[04.9] Tell a 3-Sylow subgroup in $G L\left(3, \mathbb{F}_{7}\right)$.
[04.10] Tell a 19-Sylow subgroup in $G L\left(3, \mathbb{F}_{7}\right)$.
[04.11] Classify the conjugacy classes in S_{n} (the symmetric group of bijections of $\{1, \ldots, n\}$ to itself).
[04.12] The projective linear group $P G L_{n}(k)$ is the group $G L_{n}(k)$ modulo its center k, which is the collection of scalar matrices. Prove that $P G L_{2}\left(\mathbb{F}_{3}\right)$ is isomorphic to S_{4}, the group of permutations of 4 things. (Hint: Let $P G L_{2}\left(\mathbb{F}_{3}\right)$ act on lines in \mathbb{F}_{3}^{2}, that is, on one-dimensional \mathbb{F}_{3}-subspaces in \mathbb{F}_{3}^{2}.)
[04.13] An automorphism of a group G is inner if it is of the form $g \rightarrow x g x^{-1}$ for fixed $x \in G$. Otherwise it is an outer automorphism. Show that every automorphism of the permutation group S_{3} on 3 things is inner. (Hint: Compare the action of S_{3} on the set of 2-cycles by conjugation.)
[04.14] Identify the element of S_{n} requiring the maximal number of adjacent transpositions to express it, and prove that it is unique.
[04.15] Let the permutation group S_{n} on n things act on the polynomial ring $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ by $p\left(x_{i}\right)=x_{p(i)}$ for $p \in S_{n}$. Verify that this is a group homomorphism

$$
S_{n} \longrightarrow \operatorname{Aut}_{\mathbb{Z}-\mathrm{alg}}\left(\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]\right)
$$

Consider

$$
D=\prod_{i<j}\left(x_{i}-x_{j}\right)
$$

Show that for any $p \in S_{n}$

$$
p(D)=\sigma(p) \cdot D
$$

where $\sigma(p)= \pm 1$. Infer that σ is a (non-trivial) group homomorphism, the sign homomorphism on S_{n}.

