(January 15, 2024)

Examples 05

Paul Garrett garrett@umn.edu https://www-users.cse.umn.edu/~garrett/

[05.1] Classify the conjugacy classes in S_n (the symmetric group of bijections of $\{1, \ldots, n\}$ to itself).

[05.2] The projective linear group $PGL_n(k)$ is the group $GL_n(k)$ modulo its center k, which is the collection of scalar matrices. Prove that $PGL_2(\mathbb{F}_3)$ is isomorphic to S_4 , the group of permutations of 4 things. (*Hint:* Let $PGL_2(\mathbb{F}_3)$ act on lines in \mathbb{F}_3^2 , that is, on one-dimensional \mathbb{F}_3 -subspaces in \mathbb{F}_3^2 .)

[05.3] An automorphism of a group G is **inner** if it is of the form $g \to xgx^{-1}$ for fixed $x \in G$. Otherwise it is an **outer automorphism**. Show that every automorphism of the permutation group S_3 on 3 things is *inner*. (*Hint:* Compare the action of S_3 on the set of 2-cycles by conjugation.)

[05.4] Identify the element of S_n requiring the maximal number of adjacent transpositions to express it, and prove that it is unique.

[05.5] Let the permutation group S_n on n things act on the polynomial ring $\mathbb{Z}[x_1, \ldots, x_n]$ by \mathbb{Z} -algebra homomorphisms defined by $p(x_i) = x_{p(i)}$ for $p \in S_n$. (The universal mapping property of the polynomial ring allows us to define the images of the indeterminates x_i to be whatever we want, and at the same time guarantees that this determines the \mathbb{Z} -algebra homomorphism completely.) Verify that this is a group homomorphism $S_n \to \operatorname{Aut}_{\mathbb{Z}-\operatorname{alg}}(\mathbb{Z}[x_1, \ldots, x_n])$. Consider $D = \prod_{i < j} (x_i - x_j)$. Show that, for any $p \in S_n$, $p(D) = \sigma(p) \cdot D$, where $\sigma(p) = \pm 1$. Infer that σ is a (non-trivial) group homomorphism, the sign homomorphism on S_n .

[05.6] Let R be a principal ideal domain. Let I be a non-zero prime ideal in R. Show that I is maximal.

[05.7] Let k be a field. Show that in the polynomial ring k[x, y] in two variables the ideal $I = k[x, y] \cdot x + k[x, y] \cdot y$ is not principal.

[05.8] Let k be a field, and let $R = k[x_1, \ldots, x_n]$. Show that the inclusions of ideals

 $Rx_1 \subset Rx_1 + Rx_2 \subset \ldots \subset Rx_1 + \ldots + Rx_n$

are *strict*, and that all these ideals are *prime*.

[05.9] Let k be a field. Show that the ideal M generated by x_1, \ldots, x_n in the polynomial ring $R = k[x_1, \ldots, x_n]$ is maximal (proper).

[05.10] Show that the maximal ideals in $R = \mathbb{Z}[x]$ are all of the form $R \cdot p + R \cdot f(x)$, where p is a prime and f(x) is a monic polynomial which is irreducible modulo p.

[05.11] For x, y non-zero elements of a PID R be a PID, determine $\operatorname{Hom}_R(R/\langle x \rangle, R/\langle y \rangle)$.

[05.12] (A warm-up to Hensel's lemma) Let p be an odd prime. Fix $a \not\equiv 0 \mod p$ and suppose $x^2 = a \mod p$ has a solution x_1 . Show that for every positive integer n the congruence $x^2 = a \mod p^n$ has a solution x_n . (*Hint:* Try $x_{n+1} = x_n + p^n y$ and solve for $y \mod p$).

[05.13] (Another warm-up to Hensel's lemma) Let p be a prime not 3. Fix $a \neq 0 \mod p$ and suppose $x^3 = a \mod p$ has a solution x_1 . Show that for every positive integer n the congruence $x^3 = a \mod p^n$ has a solution x_n . (Hint: Try $x_{n+1} = x_n + p^n y$ and solve for $y \mod p$).]