Examples 05

Paul Garrett garrett@umn.edu https://www-users.cse.umn.edu/ ~garrett/

[05.1] Classify the conjugacy classes in S_{n} (the symmetric group of bijections of $\{1, \ldots, n\}$ to itself).
[05.2] The projective linear group $P G L_{n}(k)$ is the group $G L_{n}(k)$ modulo its center k, which is the collection of scalar matrices. Prove that $P G L_{2}\left(\mathbb{F}_{3}\right)$ is isomorphic to S_{4}, the group of permutations of 4 things. (Hint: Let $P G L_{2}\left(\mathbb{F}_{3}\right)$ act on lines in \mathbb{F}_{3}^{2}, that is, on one-dimensional \mathbb{F}_{3}-subspaces in \mathbb{F}_{3}^{2}.)
[05.3] An automorphism of a group G is inner if it is of the form $g \rightarrow x g x^{-1}$ for fixed $x \in G$. Otherwise it is an outer automorphism. Show that every automorphism of the permutation group S_{3} on 3 things is inner. (Hint: Compare the action of S_{3} on the set of 2-cycles by conjugation.)
[05.4] Identify the element of S_{n} requiring the maximal number of adjacent transpositions to express it, and prove that it is unique.
[05.5] Let the permutation group S_{n} on n things act on the polynomial ring $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ by \mathbb{Z}-algebra homomorphisms defined by $p\left(x_{i}\right)=x_{p(i)}$ for $p \in S_{n}$. (The universal mapping property of the polynomial ring allows us to define the images of the indeterminates x_{i} to be whatever we want, and at the same time guarantees that this determines the \mathbb{Z}-algebra homomorphism completely.) Verify that this is a group homomorphism $S_{n} \rightarrow \operatorname{Aut}_{\mathbb{Z}-\text { alg }}\left(\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]\right)$. Consider $D=\prod_{i<j}\left(x_{i}-x_{j}\right)$. Show that, for any $p \in S_{n}, p(D)=\sigma(p) \cdot D$, where $\sigma(p)= \pm 1$. Infer that σ is a (non-trivial) group homomorphism, the sign homomorphism on S_{n}.
[05.6] Let R be a principal ideal domain. Let I be a non-zero prime ideal in R. Show that I is maximal.
[05.7] Let k be a field. Show that in the polynomial ring $k[x, y]$ in two variables the ideal $I=$ $k[x, y] \cdot x+k[x, y] \cdot y$ is not principal.
[05.8] Let k be a field, and let $R=k\left[x_{1}, \ldots, x_{n}\right]$. Show that the inclusions of ideals

$$
R x_{1} \subset R x_{1}+R x_{2} \subset \ldots \subset R x_{1}+\ldots+R x_{n}
$$

are strict, and that all these ideals are prime.
[05.9] Let k be a field. Show that the ideal M generated by x_{1}, \ldots, x_{n} in the polynomial ring $R=k\left[x_{1}, \ldots, x_{n}\right]$ is maximal (proper).
[05.10] Show that the maximal ideals in $R=\mathbb{Z}[x]$ are all of the form $R \cdot p+R \cdot f(x)$, where p is a prime and $f(x)$ is a monic polynomial which is irreducible modulo p.
[05.11] For x, y non-zero elements of a PID R be a PID, determine $\operatorname{Hom}_{R}(R /\langle x\rangle, R /\langle y\rangle)$.
[05.12] (A warm-up to Hensel's lemma) Let p be an odd prime. Fix $a \not \equiv 0 \bmod p$ and suppose $x^{2}=a \bmod p$ has a solution x_{1}. Show that for every positive integer n the congruence $x^{2}=a \bmod p^{n}$ has a solution x_{n}. (Hint: Try $x_{n+1}=x_{n}+p^{n} y$ and solve for $y \bmod p$).
[05.13] (Another warm-up to Hensel's lemma) Let p be a prime not 3 . Fix $a \neq 0 \bmod p$ and suppose $x^{3}=a \bmod p$ has a solution x_{1}. Show that for every positive integer n the congruence $x^{3}=a \bmod p^{n}$ has a solution x_{n}. (Hint: Try $x_{n+1}=x_{n}+p^{n} y$ and solve for $y \bmod p$).]

