Discussion 06

Paul Garrett garrett@umn.edu https://www-users.cse.umn.edu/ garrett/
[06.1] Show that a finite integral domain (no zero divisors) is necessarily a field.
[06.2] Let $P(x)=x^{3}+a x+b \in k[x]$. Suppose that $P(x)$ factors into linear polynomials $P(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right)$. Give a polynomial condition on a, b for the α_{i} to be distinct.
[06.3] The first three elementary symmetric functions in indeterminates x_{1}, \ldots, x_{n} are

$$
\begin{gathered}
\sigma_{1}=\sigma_{1}\left(x_{1}, \ldots, x_{n}\right)=x_{1}+x_{2}+\ldots+x_{n}=\sum_{i} x_{i} \\
\sigma_{2}=\sigma_{2}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i<j} x_{i} x_{j} \\
\sigma_{3}=\sigma_{3}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i<j<\ell} x_{i} x_{j} x_{\ell}
\end{gathered}
$$

Express $x_{1}^{3}+x_{2}^{3}+\ldots+x_{n}^{3}$ in terms of $\sigma_{1}, \sigma_{2}, \sigma_{3}$.
[06.4] Express $\sum_{i \neq j} x_{i}^{2} x_{j}$ as a polynomial in the elementary symmetric functions of x_{1}, \ldots, x_{n}.
[06.5] Suppose the characteristic of the field k does not divide n. Let $\ell>2$. Show that

$$
P\left(x_{1}, \ldots, x_{n}\right)=x_{1}^{n}+\ldots+x_{\ell}^{n}
$$

is irreducible in $k\left[x_{1}, \ldots, x_{\ell}\right]$.
[06.6] Find the determinant of the circulant matrix

$$
\left(\begin{array}{cccccc}
x_{1} & x_{2} & \ldots & x_{n-2} & x_{n-1} & x_{n} \\
x_{n} & x_{1} & x_{2} & \ldots & x_{n-2} & x_{n-1} \\
x_{n-1} & x_{n} & x_{1} & x_{2} & \ldots & x_{n-2} \\
\vdots & & & \ddots & & \vdots \\
x_{3} & & & & x_{1} & x_{2} \\
x_{2} & x_{3} & \ldots & & x_{n} & x_{1}
\end{array}\right)
$$

(Hint: Let ζ be an $n^{\text {th }}$ root of 1. If $x_{i+1}=\zeta \cdot x_{i}$ for all indices $i<n$, then the $(j+1)^{t h}$ row is ζ times the $j^{\text {th }}$, and the determinant is 0 .)
[06.7] Let $f(x)$ be a monic polynomial with integer coefficients. Show that f is irreducible in $\mathbb{Q}[x]$ if it is irreducible in $(\mathbb{Z} / p)[x]$ for some p.
[06.8] Let n be a positive integer such that $(\mathbb{Z} / n)^{\times}$is not cyclic. Show that the $n^{\text {th }}$ cyclotomic polynomial $\Phi_{n}(x)$ factors properly in $\mathbb{F}_{p}[x]$ for any prime p not dividing n.
[06.9] Show that the $15^{\text {th }}$ cyclotomic polynomial $\Phi_{15}(x)$ is irreducible in $\mathbb{Q}[x]$, despite being reducible in $\mathbb{F}_{p}[x]$ for every prime p.
[06.10] Let p be a prime. Show that every degree d irreducible in $\mathbb{F}_{p}[x]$ is a factor of $x^{p^{d}-1}-1$. Show that that the $\left(p^{d}-1\right)^{t h}$ cyclotomic polynomial's irreducible factors in $\mathbb{F}_{p}[x]$ are all of degree d.
[06.11] Fix a prime p, and let ζ be a primitive $p^{t h}$ root of 1 (that is, $\zeta^{p}=1$ and no smaller exponent will do). Let

$$
V=\operatorname{det}\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & \ldots & 1 \\
1 & \zeta & \zeta^{2} & \zeta^{3} & \ldots & \zeta^{p-1} \\
1 & \zeta^{2} & \left(\zeta^{2}\right)^{2} & \left(\zeta^{2}\right)^{3} & \ldots & \left(\zeta^{2}\right)^{p-1} \\
1 & \zeta^{3} & \left(\zeta^{3}\right)^{2} & \left(\zeta^{3}\right)^{3} & \ldots & \left(\zeta^{3}\right)^{p-1} \\
1 & \zeta^{4} & \left(\zeta^{4}\right)^{2} & \left(\zeta^{4}\right)^{3} & \ldots & \left(\zeta^{4}\right)^{p-1} \\
\vdots & & & & & \vdots \\
1 & \zeta^{p-1} & \left(\zeta^{p-1}\right)^{2} & \left(\zeta^{p-1}\right)^{3} & \ldots & \left(\zeta^{p-1}\right)^{p-1}
\end{array}\right)
$$

Compute the rational number V^{2}.
[06.12] Let $K=\mathbb{Q}(\zeta)$ where ζ is a primitive $15^{t h}$ root of unity. Find 4 fields k strictly between \mathbb{Q} and K.
[06.13] Let ζ be a primitive $n^{t h}$ root of unity in a field of characteristic 0 . Let M be the n-by- n matrix with $i j^{t h}$ entry $\zeta^{i j}$. Find the multiplicative inverse of M.
[06.14] Let $\mu=\alpha \beta^{2}+\beta \gamma^{2}+\gamma \alpha^{2}$ and $\nu=\alpha^{2} \beta+\beta^{2} \gamma+\gamma^{2} \alpha$. Show that these are the two roots of a quadratic equation with coefficients in $\mathbb{Z}\left[s_{1}, s_{2}, s_{3}\right]$ where the s_{i} are the elementary symmetric polynomials in α, β, γ.
[06.15] The $5^{\text {th }}$ cyclotomic polynomial $\Phi_{5}(x)$ factors into two irreducible quadratic factors over $\mathbb{Q}(\sqrt{5})$. Find the two irreducible factors.
[06.16] The $7^{\text {th }}$ cyclotomic polynomial $\Phi_{7}(x)$ factors into two irreducible cubic factors over $\mathbb{Q}(\sqrt{-7})$. Find the two irreducible factors.
[06.17] Let ζ be a primitive $13^{\text {th }}$ root of unity in an algebraic closure of \mathbb{Q}. Find an element α in $\mathbb{Q}(\zeta)$ which satisfies an irreducible cubic with rational coefficients. Find an element β in $\mathbb{Q}(\zeta)$ which satisfies an irreducible quartic with rational coefficients. Determine the cubic and the quartic explicitly.
[06.18] Let $f(x)=x^{8}+x^{6}+x^{4}+x^{2}+1$. Show that f factors into two irreducible quartics in $\mathbb{Q}[x]$. Show that

$$
x^{8}+5 x^{6}+25 x^{4}+125 x^{2}+625
$$

also factors into two irreducible quartics in $\mathbb{Q}[x]$.

