Examples 07

Paul Garrett garrett@umn.edu https://www-users.cse.umn.edu/ /garrett/
[07.1] Prove that a prime p such that $p=1 \bmod 3$ factors properly as $p=a b$ in $\mathbb{Z}[\omega]$, where ω is a primitive cube root of unity. (Hint: If p were prime in $\mathbb{Z}[\omega]$, then $\mathbb{Z}[\omega] / p$ would be a integral domain.)
[07.2] Prove that a prime p such that $p=2 \bmod 5$ generates a prime ideal in the ring $\mathbb{Z}[\zeta]$, where ζ is a primitive fifth root of unity.
[07.3] Find the monic irreducible polynomial with rational coefficients which has as zero

$$
\alpha=\sqrt{3}+\sqrt{5}
$$

[07.4] Find the monic irreducible polynomial with rational coefficients which has as zero

$$
\alpha=\sqrt{3}+\sqrt[3]{5}
$$

[07.5] Find the monic irreducible polynomial with rational coefficients which has as zero

$$
\alpha=\frac{1+\sqrt[3]{10}+\sqrt[3]{10^{2}}}{3}
$$

[07.6] Let p be a prime number, and $a \in \mathbb{F}_{p}^{\times}$. Prove that $x^{p}-x+a$ is irreducible in $\mathbb{F}_{p}[x]$. (Hint: Verify that if α is a root of $x^{p}-x+a=0$, then so is $\alpha+1$.)
[07.7] Let $k=\mathbb{F}_{p}(t)$ be the field of rational expressions in an indeterminate t with coefficients in \mathbb{F}_{p}. Show that the polynomial $X^{p}-t \in k[X]$ is irreducible in $k[X]$, but has properly repeated factors over an algebraic closure of k.
[07.8] Let x be an indeterminate over \mathbb{C}. For a, b, c, d in \mathbb{C} with $a d-b c \neq 0$, let

$$
\sigma(x)=\sigma_{a, b, c, d}(x)=\frac{a x+b}{c x+d}
$$

and define

$$
\sigma\left(\frac{P(x)}{Q(x)}\right)=\frac{P(\sigma(x))}{Q(\sigma(x))}
$$

for P and Q polynomials. Show that σ gives a field automorphism of the field of rational functions $\mathbb{C}(x)$ over \mathbb{C}.
[07.9] In the situation of the previous exercise, show that every automorphism of $\mathbb{C}(x)$ over \mathbb{C} is of this form.
[07.10] Let s and t be indeterminates over \mathbb{F}_{p}, and let $\mathbb{F}_{p}\left(s^{1 / p}, t^{1 / p}\right)$ be the field extension of the rational function field $\mathbb{F}_{p}(s, t)$ obtained by adjoining roots of $X^{p}-s=0$ and of $X^{p}-t=0$. Show that there are infinitely-many (distinct) fields intermediate between $\mathbb{F}_{p}(s, t)$ and $\mathbb{F}_{p}\left(s^{1 / p}, t^{1 / p}\right)$.
[07.11] Fix a field k and an indeterminate t. Fix a positive integer $n>1$ and let $t^{1 / n}$ be an $n^{t h}$ root of t in an algebraic closure of the field of rational functions $k(t)$. Show that $k\left[t^{1 / n}\right]$ is isomorphic to a polynomial ring in one variable.
[07.12] Fix a field k and an indeterminate t. Let $s=P(t)$ for a monic polynomial P in $k[x]$ of positive degree. Find the monic irreducible polynomial $f(x)$ in $k(s)[x]$ such that $f(t)=0$.
[07.13] Let p_{1}, p_{2}, \ldots be any ordered list of the prime numbers. Prove that $\sqrt{p_{1}}$ is not in the field

$$
\mathbb{Q}\left(\sqrt{p_{2}}, \sqrt{p_{3}}, \ldots\right)
$$

generated by the square roots of all the other primes.
[07.14] Let p_{1}, \ldots, p_{n} be distinct prime numbers. Prove that

$$
\mathbb{Q}\left(\sqrt{p_{1}}, \ldots, \sqrt{p_{N}}\right)=\mathbb{Q}\left(\sqrt{p_{1}}+\ldots+\sqrt{p_{N}}\right)
$$

[07.15] Let $\alpha=x y^{2}+y z^{2}+z x^{2}, \beta=x^{2} y+y^{2} z+z^{2} x$ and let s_{1}, s_{2}, s_{3} be the elementary symmetric polynomials in x, y, z. Describe the relation between the quadratic equation satisfied by α and β over the field $\mathbb{Q}\left(s_{1}, s_{2}, s_{3}\right)$ and the quantity

$$
\Delta^{2}=(x-y)^{2}(y-z)^{2}(z-x)^{2}
$$

[07.16] Let t be an integer. If the image of t in \mathbb{Z} / p is a square for every prime p, is t necessarily a square?
[07.17] Find the irreducible factors of $x^{5}-4$ in $\mathbb{Q}[x]$. In $\mathbb{Q}(\zeta)[x]$ with a primitive fifth root of unity ζ.
[07.18] Show that $\mathbb{Q}(\sqrt{2})$ is normal over \mathbb{Q}.
[07.19] Show that $\mathbb{Q}(\sqrt[3]{5})$ is not normal over \mathbb{Q}.
[07.20] Find all fields intermediate between \mathbb{Q} and $\mathbb{Q}\left(\zeta_{13}\right)$ where ζ_{13} is a primitive $13^{\text {th }}$ root of unity.
[07.21] Find all fields intermediate between \mathbb{Q} and a splitting field of $x^{3}-x+1$ over \mathbb{Q}.
[07.22] Find all fields intermediate between \mathbb{Q} and $\mathbb{Q}\left(\zeta_{21}\right)$ where ζ_{21} is a primitive $21^{\text {st }}$ root of unity.
[07.23] Find all fields intermediate between \mathbb{Q} and $\mathbb{Q}\left(\zeta_{27}\right)$ where ζ_{27} is a primitive $27^{\text {th }}$ root of unity.
[07.24] Find all fields intermediate between \mathbb{Q} and $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$.
[07.25] Let a, b, c be independent indeterminates over a field k. Let z be a zero of the cubic

$$
x^{3}+a x^{2}+b x+c
$$

in some algebraic closure of $K=k(a, b, c)$. What is the degree $[K(z): K]$? What is the degree of the splitting field of that cubic over K ?
[07.26] Let x_{1}, \ldots, x_{n} be independent indeterminates over a field k, with elementary symmetric polynomials s_{1}, \ldots, s_{n}. Prove that the Galois group of $k\left(x_{1}, \ldots, x_{n}\right)$ over $k\left(s_{1}, \ldots, s_{n}\right)$ is the symmetric group S_{n} on n things.

