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1. (Co-) homology of (co-) chain complexes

A (chain) complex (over R) is a diagram

C = {Cn, ∂n} = . . . // Cn
∂n // . . . // C1

∂1 // C0
∂0 // 0

of R-modules with the property that
∂n−1 ◦ ∂n = 0

The R-module Ci is the ith graded piece of the complex. The operators ∂n are boundary maps.

The homology
H∗(C) = {Hn(C) : n ≥ 0}

of the complex C is the collection of quotients

Hn(C) = ker ∂n/Im∂n+1

of the n-cycles ker ∂i by the n-boundaries Im∂n+1. Thus, the homology is a measure of the non-exactness
of C. Dually, a cochain complex is a diagram

C = {Cn, δn} = 0 // C0
δ0 // C1

δ1 // . . .

of R-modules with the property that
δn ◦ δn−1 = 0

The R-module Ci is the ith graded piece of the complex. The cohomology

H∗(C) = {Hi(C) : i ≥ 0}

of the complex C is the collection of quotients

Hn(C) = ker δn/Imδn−1

of the n-cocycles ker δn by the n-coboundaries Imδn−1. The operators δn are coboundary maps.

Much of what can be said for chain complexes and homology carries over to co-chain complexes and
cohomology simply by reversing arrows, and vice-versa. Thus, we may discuss just one of the two cases
and leave the other as an exercise.

A chain map or complex map
f : {Ci, ∂i} −→ {C ′i, ∂′i}
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is a collection f = {fi} with

fi : Ci −→ C ′i fi ◦ ∂i+1 = ∂i ◦ fi+1

That is, all squares in the diagram

. . . // C1
∂1 //

f1

��

C0
∂0 //

f0

��

0

. . . // C ′1
∂1 // C ′0

∂′0 // 0

commute. For a chain map f : C −→ C ′ is a chain map, there are induced maps on homology

Hn(f) : Hn(C) −→ Hn(C ′)

defined by
Hn(f)(ζ + ∂n+1Cn+1) = fnζ + ∂′n+1C

′
n+1 (with ∂nζ = 0)

The defining property of ‘chain map’ assures that this is well-defined. A short exact sequence

0 −→ C ′ −→ C −→ C ′′ −→ 0

of complexes is exact when the associated short exact sequences

0 −→ C ′i −→ Ci −→ C ′′i −→ 0

are all exact sequences of R-modules. The most basic result here is

[1.0.1] Theorem: A short exact sequence

0 // A
f // B

g // C // 0

of complexes gives rise to a natural long exact sequence in homology

. . . // H2(C)
∂2 // H1(A)

H1(f) // H1(B)
H1(g) // H1(C)

∂1 // H0(A)
H0(f) // H0(B)

H0(g) // H0(C) // 0

[1.0.2] Remark: The connecting homomorphisms ∂i will be defined in the course of the proof. (We
tolerate the two different uses of the symbol ‘∂’).

Proof: For now, we only show how to define the connecting homomorphisms

Hn(C)
∂n // Hn−1(A)

For cn ∈ Cn with ∂ncn = 0, the surjectivity of g : Bn −→ Cn assures that there is bn ∈ Bn so that gbn = cn.
The fact that g is a chain map assures that

g(∂nbn) = ∂n(gbn) = ∂ncn = 0

Exactness assures that there is xn−1 ∈ An−1 so that

fxn−1 = ∂nbn
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We define the connecting homomorphism on homology by

∂n(cn + ∂n+1Cn+1) = xn−1 + ∂nAn

Checking that this is well-defined (on homology) is a non-trivial but standard exercise left to the reader, as
is the diagram-chase verification of exactness at the three different types of joints in the long sequence. ///

A chain homotopy θ : f −→ g from one complex map f : C −→ C ′ to another g : C −→ C ′ is a collection
θ = {θi} with

θi : Ci −→ C ′i+1

and so that
∂′i+1 ◦ θi + θi−1 ◦ ∂i = f − g

[1.0.3] Proposition: For chain-homotopic maps f and g maps C −→ C ′, the induced maps on homology
are identical.

Proof: For such a chain homotopy θ, with ∂nζ = 0,

fnζ − gnζ = ∂′n+1 ◦ θn ζ + θn−1 ◦ ∂n ζ = ∂′n+1 ◦ θn ζ
since ∂n ζ = 0. That is,

fnζ − gnζ = ∂′n+1(θn ζ)

giving 0 in homology. ///

2. A small example

We can give a small but non-trivial examples of the utility of the long exact sequence in (co-) homology
arising from a short exact sequence of (co-) chain complexes. The question does not explicitly mention (co-)
homology, but the discussion shows that the issues are genuinely homological in nature.

Let R be a not-necessarily-commutative ring, and

B
q // C // 0

a surjection of R-modules. Let T be an R-endomorphism of B which stabilizes ker q so descends to an
R-endomorphism of C. Let u ∈ C be an element such that Tu = 0. The question we wish to address is an
extension problem: Is there an element ũ of B such that qũ = u and still T ũ = 0? Is ũ unique? Such ũ
would be an extension of u.

[2.0.1] Claim: In the situation just above, if T is injective and surjective on ker q, then there is a unique
extension ũ of u.

Proof: Let A = ker q, so that

0 // A
i // B

q // C // 0

is a short exact sequence of R-modules. Consider the exact sequence of complexes of R-modules

0

��

0

��

0

��
0 // A

T

��

i // B

T

��

q // C

T

��

// 0

0 // A
i //

��

B
q //

��

C //

��

0

0 0 0
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Viewing a complex (M,T )

0
i // M

T // M
z // 0

attached to an R-module M and R-endomorphism T as being a chain complex, the associated homology is

H0(M,T ) = ker z/ImT = M/ImT H1(M,T ) = kerT/Imi = kerT

and higher homology is all 0. Therefore, the long exact sequence in homology shortens to

0 −→ H1(A, T ) −→ H1(B, T ) −→ H1(C, T ) −→ H0(A, T ) −→ H0(B, T ) −→ H0(C, T ) −→ 0

which is

0 −→ kerA T −→ kerB T −→ kerC T −→ A/ImAT −→ B/ImBT −→ C/ImCT −→ 0

Thus, if T : A −→ A is surjective, H0(A, T ) = A/ImAT = 0, and

kerB T −→ kerC T −→ A/ImAT = 0

is exact, so the natural map kerB T −→ kerC T is surjective. And, if H1(A, T ) = kerA T = 0, then

0 = kerA T −→ kerB T −→ kerC T

is exact, so the natural map kerB T −→ kerC T is injective. ///

There are several similar questions which use the same short exact sequence of complexes

0 −→ (A, T ) −→ (B, T ) −→ (C, T ) −→ 0

attached to the exact sequence of modules

0 −→ A −→ B −→ C −→ 0

and an endomorphism T . The associated long exact sequence in homology

0 −→ H1(A, T ) −→ H1(B, T ) −→ H1(C, T ) −→ H0(A, T ) −→ H0(B, T ) −→ H0(C, T ) −→ 0

is more explicitly

0 −→ kerA T −→ kerB T −→ kerC T −→ A/ImAT −→ B/ImBT −→ C/ImCT −→ 0

and then one may choose various pieces of this long exact sequence and create questions which are
immediately interpretable as asking about vanishing of one or more of the six modules appearing.

3. Projectives and injectives

Let R be a ring. An R-module P is projective if every diagram

P

��
M // N // 0

4



Paul Garrett: Homology and Derived Functors (June 14, 2011)

can be extended to a commutative diagram

P

��~~}
}

}
}

M // N // 0

Always a free module is projective, at least if the ring has a unit. Quite generally, sums of projectives are
projective. An R-module I is injective if every diagram

0 // M //

��

N

I

can be extended to a commutative diagram

0 // M //

��

N

~~}
}

}
}

I

Quite generally, products of injectives are injectives. For example, it is not too hard to show that Q/Z is an
injective module in the category of Z-modules.

Note that the notions of projective and injective make sense in more general categories, not merely categories
of modules, since their definitions are diagram-theoretic.

4. Resolutions

Let M an R-module. A (left) resolution of M is an exact sequence

. . . −→ Pn −→ . . . −→ P1 −→ P0 −→M −→ 0

Similarly, a (right) resolution of M is an exact sequence

0 −→M −→ I0 −→ I1 −→ I2 −→ . . .

If each Pi in a left resolution is projective, then the resolution is called a projective resolution. Likewise, if
every Pi is free, then the resolution is termed a free resolution. Since free implies projective, construction
of a free resolution for any M will show that every M admits a projective resolution. We construct a free
(left) resolution as follows. Let P0 be the free R-module on the set M , and P0 −→M the natural surjection,
with kernel K0. Let P1 be the free R-module on the set K0 with natural surjection P1 −→ K0, so that

P1 −→ P0 −→M −→ 0

is exact. Continuing inductively we obtain a free resolution, hence a projective resolution. A category in
which every object is the quotient of a projective, and (hence) has a projective resolution, is said to have
enough projectives. The argument just given shows that any category of all modules over a ring with unit
(so that free implies projective) has enough projectives.

If each Ii in a right resolution is injective, then the resolution is called an injective resolution. A category
in which every object has in injection to an injective, and (hence) has an injective resolution, is said to
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have enough injectives. The simplest example of a category with enough injectives is the category of
finite-dimensional vector spaces over a field. The category of torsion Z-modules is a less trivial example of
a category with enough injectives.

5. Derived functors

A functor F from R-modules to R-modules is an additive functor if we have natural isomorphisms

F (M ⊕N) ≈ FM ⊕ FN

for all R-modules M,N . Let F be a (covariant) additive functor from R-modules to R-modules. It is easy
to check that, given a complex

. . . // Cn
∂n // . . . ∂2 // C1

∂1 // C0
∂0 // 0

the image

. . . // FCn
F∂n // . . . F∂2 // FC1

F∂1 // FC0
F∂0 // 0

of C under F is still a complex. A projective resolution

. . . // Pn
∂n // . . . ∂2 // P1

∂1 // P0
ε // M // 0

of an R-module M is exact, so is certainly a complex. Application of F gives a complex

. . . // FPn
F∂n // . . . F∂2 // FP1

F∂1 // FP0
Fε // FM // 0

The associated deleted complex FP ′ is defined to be

. . . // FPn
F∂n // . . . F∂2 // FP1

F∂1 // FP0
// 0

The n-th left derived functor LnF of F evaluated on M is defined to be the nth homology

LnF (M) = Hn(FP ′)

of the deleted complex FP ′. Similarly, for a left exact (additive) functor F , let

0 −→M −→ I0 −→ I1 −→ . . .

be an injective resolution of M . Apply F to obtain a complex

0 −→ FM −→ FI0 −→ FI1 −→ . . .

and then the deleted complex FI ′

0 −→ FI0 −→ FI1 −→ . . .

The n-th right derived functor RnF of F evaluated on M is the nth cohomology Hn(FI ′) of the deleted
complex FI ′.

In both cases, for the derived functors to be well-defined we must show that the indicated (co-)homology
groups do not depend upon the choice of resolution. We will treat the projective case only, as the injective
case is identical except for the direction of arrows. The following assertion is more than we need.
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Given a diagram

. . . // P1
∂1 // P0

ε // M //

f−1

��

0

. . . // C1

∂′1 // C0
ε′ // M // 0

where both rows are complexes, the Pi are projective, and the lower row is exact. Then there is a chain
complex map f = {fi} extending f−1 in the sense that the squares commute in

. . . // P1
∂1 //

f1

��

P0
ε //

f0

��

M //

f−1

��

0

. . . // C1

∂′1 // C0
ε′ // M // 0

Further, any two such chain maps f and g extending f−1 are chain homotopic. Both assertions follow easily
by induction, using the defining property of projectivity.

Now we want to show that a short exact sequence

0 −→M1 −→M2 −→M3 −→ 0

gives rise (‘naturally’) to a long exact sequence

. . . −→ L2F (M1) −→ L2F (M2) −→ L2F (M3) −→ L1F (M1) −→ L1F (M2) −→ L1F (M3) −→

−→ L0F (M1) −→ L0F (M2) −→ L0F (M3) −→ 0

Evidently, one must create compatible projective resolutions P i of M i to obtain a diagram

0

��

0

��

0

��
. . . // P 1

1

��

// P 1
0

��

// M1

��

// 0

. . . // P 2
1

��

// P 2
0

��

// M2

��

// 0

. . . // P 3
1

��

// P 3
0

��

// M3

��

// 0

0 0 0

with exact rows and columns. Further, we must require that upon application of F and taking deleted
complexes (FP i)′, we have a short exact sequence of complexes

0 −→ (FP 1)′ −→ (FP 2)′ −→ (FP 3)′ −→ 0

For construction of compatible projective resolutions, it suffices to prove the following. If P 1 −→ M1 and
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P 3 −→M3 are surjections with P i projective, then the diagram

0

��
P 1 // M1 //

��

0

M2 //

��

0

P 3 // M3 //

��

0

0

may be enlarged to a diagram

0

��

0

��
P 1 //

��

M1 //

��

0

P 1 ⊕ P 3

��

// M2 //

��

0

P 3

��

// M3 //

��

0

0 0

with exact rows and columns. This is done as follows. The map P 1 ⊕ P 3 −→M2 should be defined on the
summand P 1 via P 1 −→ M1 −→ M2, and on the summand P 3 via the map P 3 −→ M3 and invoking the
projectivity.

It remains to show that, for an exact sequence

0 −→ P ′ −→ P −→ P ′′ −→ 0

of projective modules, and for a right-exact functor F from R-modules to R-modules, the sequence

0 −→ FP ′ −→ FP −→ FP ′′ −→ 0

is also exact. Since P ′′ is projective, the short exact sequence splits. Thus, there is some isomorphism

P ≈ P ′ ⊕ P ′′

so that the maps P −→ P ′′ and P ′ −→ P induce the natural quotient map P ′⊕P ′′ −→ P ′′ and the natural
inclusion P ′ −→ P ′ ⊕ P ′′, respectively. Then application of F gives the natural sequence of maps

FP ′ −→ FP ′ ⊕ FP ′′ −→ FP ′′

by the additivity of F . Certainly

0 −→ FP ′ −→ FP ′ ⊕ FP ′′ −→ FP ′′ −→ 0
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is exact. That is, the sequence

0 −→ (FP 1)′ −→ (FP 2)′ −→ (FP 3)′ −→ 0

of deleted complexes is a short exact sequence of complexes, so gives rise to a long exact sequence as claimed,
which is the long exact sequence for the left derived functors LnF . ///

6. Acyclic resolutions

More generally, for a fixed right-exact (resp., left-exact) functor F , say that a module A is (F -)acyclic if
all higher left (resp., right) derived functors of F annihilate A, i.e., if LnF (A) = 0 (resp., RnF (A) = 0) for
n > 0.

In fact, the proof that left (resp., right) derived functors’ definitions do not depend upon the choice of
projective (resp., injective) resolution shows that, if

0 // S // I1
f1 // I2

f2 // . . .

is injective and

0 // S // A1
g1 // A2

g2 // . . .

is merely F -acyclic, then we have a chain homotopy from

0 // FS // FI1
Ff1 // FI2

Ff2 // . . .

to

0 // FS // FA1
Fg1 // FA2

Fg2 // . . .

Therefore,
RnF (S) ≈ ker Fgn/imFgn−1

That is, if there is at least one injective resolution of S, then the right derived functors RnF of F evaluated
on S can be computed via any F -acyclic resolution. The same argument, with arrows reversed, shows that
shows that if there is at least one projective resolution of M , then the left derived functors LnF of F can be
computed via any F -acyclic resolution.

The notions of injective and projective are extrinsic to the extent that they depends upon the ambient
category. From the definition of derived functors it follows immediately that injectives are acyclic for any
right derived functors, and projectives are acyclic for any left derived functors. One certainly might imagine
that universal acyclicity of is than what is needed to prove acyclicity for specific functors.
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