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1. Unique factorization

Let Z denote the integers. Say d divides m, equivalently, that m is a multiple of d, if there exists an
integer q such that m = qd. Write d|m if d divides m.

It is easy to prove, from the definition, that if d|x and d|y then d|(ax + by) for any integers x, y, a, b: let
x = rd and y = sd, and

ax+ by = a(rd) + b(sd) = d · (ar + bs)

[1.0.1] Theorem: Given an integer N and a non-zero integer m there are unique integers q and r, with
0 ≤ r < |m| such that

N = q ·m+ r

The integer r is the reduction modulo m of N .

Proof: Let S be the set of all non-negative integers expressible in the form N − sm for some integer s. The
set S is non-empty, so by well-ordering has a least element r = N − qm. Claim that r < |m|. If not, then
still r − |m| ≥ 0, and also

r − |m| = (N − qm)− |m| = N − (q ± 1)m

(with the sign depending on the sign of m) is still in the set S, contradiction. For uniqueness, suppose that
both N = qm+ r and N = q′m+ r′. Subtract to find

r − r′ = m · (q′ − q)

Thus, r − r′ is a multiple of m. But since −|m| < r − r′ < |m| we have r = r′. And then q = q′. ///
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2 The integers

[1.0.2] Remark: The conclusion of the theorem is that in Z one can divide and obtain a remainder
smaller than the divisor. That is, Z is Euclidean.

As an example of nearly trivial things that can be proven about divisibility, we have:

A divisor d of n is proper if it is neither ±n nor ±1. A positive integer p is prime if it has no proper
divisors and if p > 1.

[1.0.3] Proposition: A positive integer n is prime if and only if it is not divisible by any of the integers
d with 1 < d ≤

√
n.

Proof: Suppose that n has a proper factorization n = d · e, where d ≤ e. Then

d =
n

e
≤ n

d

gives d2 ≤ n, so d ≤
√
n. ///

[1.0.4] Remark: The previous proposition suggests that to test an integer n for primality we attempt
to divide n by all integers d = 2, 3, . . . in the range d ≤

√
n. If no such d divides n, then n is prime. This

procedure is trial division.

Two integers are relatively prime or coprime or mutually prime if for every integer d if d|m and d|n
then d = ±1.

An integer d is a common divisor of integers n1, . . . , nm if d divides each ni. An integer N is a common
multiple of integers n1, . . . , nm if N is a multiple of each. The following peculiar characterization of the
greatest common divisor of two integers is fundamental.

[1.0.5] Theorem: Let m,n be integers, not both zero. Among all common divisors of m,n there is a
unique d > 0 such that for every other common divisor e of m,n we have e|d. This d is the greatest common
divisor of m,n, denoted gcd(m,n). And

gcd(mn) = least positive integer of the form xm+ yn with x, y ∈ Z

Proof: Let D = xom + yon be the least positive integer expressible in the form xm + yn. First, we show
that any divisor d of both m and n divides D. Let m = m′d and n = n′d with m′, n′ ∈ Z. Then

D = xom+ yon = xo(m′d) + yo(n′d) = (xom
′ + yon

′) · d

which presents D as a multiple of d.

On the other hand, let m = qD + r with 0 ≤ r < D. Then

0 ≤ r = m− qD = m− q(xom+ yon) = (1− qxo) ·m+ (−yo) · n

That is, r is expressible as x′m+y′n. Since r < D, and since D is the smallest positive integer so expressible,
r = 0. Therefore, D|m, and similarly D|n. ///

Similarly:

[1.0.6] Corollary: Let m,n be integers, not both zero. Among all common multiples of m,n there is a
unique positive one N such that for every other common multiple M we have N |M . This multiple N is the
least common multiple of m,n, denoted lcm(m,n). In particular,

lcm(m,n) =
mn

gcd(m,n)
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Proof: Let
L =

mn

gcd(m,n)

First we show that L is a multiple of m and n. Indeed, let

m = m′ · gcd(m,n) n = n′ · gcd(m,n)

Then
L = m · n′ = m′ · n

expresses L as an integer multiple of m and of n. On the other hand, let M be a multiple of both m and n.
Let gcd(m,n) = am+ bn. Then

1 = a ·m′ + b · n′

Let N = rm and N = sn be expressions of N as integer multiples of m and n. Then

N = 1 ·N = (a ·m′ + b · n′) ·N = a ·m′ · sn+ b · n′ · rm = (as+ br) · L

as claimed. ///

The innocent assertion and perhaps odd-seeming argument of the following are essential for what follows.
Note that the key point is the peculiar characterization of the gcd, which itself comes from the Euclidean
property of Z.

[1.0.7] Theorem: A prime p divides a product ab if and only if p|a or p|b.

Proof: If p|a we are done, so suppose p does not divide a. Since p is prime, and since gcd(p, a) 6= p, it must
be that gcd(p, a) = 1. Let r, s be integers such that 1 = rp+ sa, and let ab = kp. Then

b = b · 1 = b(rp+ sa) = p · (rb+ sk)

so b is a multiple of p. ///

Granting the theorem, the proof of unique factorization is nearly an afterthought:

[1.0.8] Corollary: (Unique Factorization) Every integer n can be written in an essentially unique way
(up to reordering the factors) as ± a product of primes:

n = ± pe1
1 pe2

2 . . . pem
m

with positive integer exponents and primes p1 < . . . < pm.

Proof: For existence, suppose n > 1 is the least integer not having a factorization. Then n cannot be prime
itself, or just ‘n = n’ is a factorization. Therefore n has a proper factorization n = xy with x, y > 1. Since
the factorization is proper, both x and y are strictly smaller than n. Thus, x and y both can be factored.
Putting together the two factorizations gives the factorization of n, contradicting the assumption that there
exist integers lacking prime factorizations.

Now uniqueness. Suppose
qe1
1 . . . qem

m = N = pf1
1 . . . pfn

n

where q1 < . . . < qm are primes, and p1 < . . . < pn are primes, and the exponents ei and fi are positive
integers. Since q1 divides the left-hand side of the equality, it divides the right-hand side. Therefore, q1 must
divide one of the factors on the right-hand side. So q1 must divide some pi. Since pi is prime, it must be
that q1 = pi.
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If i > 1 then p1 < pi. And p1 divides the left-hand side, so divides one of the qj , so is some qj , but then

p1 = qj ≥ q1 = pi > p1

which is impossible. Therefore, q1 = p1.

Without loss of generality, e1 ≤ f1. Thus, by dividing through by qe1
1 = pe!

1 , we see that the corresponding
exponents e1 and f1 must also be equal. Then do induction. ///

[1.0.9] Example: The simplest meaningful (and standard) example of the failure of unique factorization
into primes is in the collection of numbers

Z[
√
−5] = {a+ b

√
−5 : a, b ∈ Z}

The relation
6 = 2 · 3 = (1 +

√
−5)(1−

√
5)

gives two different-looking factorizations of 6. We must verify that 2, 3, 1 +
√
−5, and 1−

√
−5 are primes

in R, in the sense that they cannot be further factored.

To prove this, we use complex conjugation, denoted by a bar over the quantity to be conjugated: for real
numbers a and b,

a+ b
√
−5 = a− b

√
−5

For α, β in R,
α · β = α · β

by direct computation. Introduce the norm

N(α) = α · α

The multiplicative property
N(α · β) = N(α) ·N(β)

follows from the corresponding property of conjugation:

N(α) ·N(β) = ααββ = (αβ) · (αβ)

= (αβ) · (αβ) = N(αβ)

Note that 0 ≤ N(α) ∈ Z for α in R.

Now suppose 2 = αβ with α, β in R. Then

4 = N(2) = N(αβ) = N(α) ·N(β)

By unique factorization in Z, N(α) and N(β) must be 1, 4, or 2, 2, or 4, 1. The middle case is impossible,
since no norm can be 2. In the other two cases, one of α or β is ±1, and the factorization is not proper.
That is, 2 cannot be factored further in Z[

√
−5]. Similarly, 3 cannot be factored further.

If 1 +
√
−5 = αβ with α, β in R, then again

6 = N
(
1 +
√
−5
)

= N(αβ) = N(α) ·N(β)

Again, the integers N(α) and N(β) must either be 1, 6, 2, 3, 3, 2, or 6, 1. Since the norm cannot be 2 or 3,
the middle two cases are impossible. In the remaining two cases, one of α or β is ±1, and the factorization
is not proper. That is, 1 +

√
−5 cannot be factored further in R. Neither can 1−

√
−5. Thus,

6 = 2 · 3 =
(
1 +
√
−5
) (

1−
√

5
)
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is a factorization of 6 in two different ways into primes in Z[
√
−5].

[1.0.10] Example: The Gaussian integers

Z[i] = {a+ bi : a, b ∈ Z}

where i2 = −1 do have a Euclidean property, and thus have unique factorization. Use the integer-valued
norm

N(a+ bi) = a2 + b2 = (a+ bi) · (a+ bi)

It is important that the notion of size be integer-valued and respect multiplication. We claim that, given
α, δ ∈ Z[i] there is q ∈ Z[i] such that

N(α− q · δ) < N(δ)

Since N is multiplicative (see above), we can divide through by δ inside

Q(i) = {a+ bi : a, b,∈ Q}

(where Q is the rationals) to see that we are asking for q ∈ Z[i] such that

N(
α

δ
− q) < N(1) = 1

That is, given β = α/δ in Q(i), we must be able to find q ∈ Z[i] such that

N(β − q) < 1

With β = a+ bi with a, b ∈ Q, let
a = r + f1 b = s+ f2

with r, s ∈ Z and f1, f2 rational numbers with

|fi| ≤
1
2

That this is possible is a special case of the fact that any real number is at distance at most 1/2 from some
integer. Then take

q = r + si

Then
β − q = (a+ bi)− (r + si) = f1 + if2

and

N(β − q) = N(f1 + if2) = f2
1 + f2

2 ≤
(

1
2

)2

+
(

1
2

)2

=
1
2
< 1

Thus, indeed Z[i] has the Euclidean property, and, by the same proof as above, has unique factorization.

2. Irrationalities

The usual proof that there is no square root of 2 in the rationals Q uses a little bit of unique factorization, in
the notion that it is possible to put a fraction into lowest terms, that is, having relatively prime numerator
and denominator.

That is, given a fraction a/b (with b 6= 0), letting a′ = a/gcd(a, b) and b′ = b/gcd(a, b), one can and should
show that gcd(a′, b′) = 1. That is, a′b/b′ is in lowest terms. And

a′

b′
=
a

b
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[2.0.1] Example: Let p be a prime number. We claim that there is no
√
p in the rationals Q. Suppose,

to the contrary, that a/b =
√
p. Without loss of generality, we can assume that gcd(a, b) = 1. Then, squaring

and multiplying out,
a2 = pb2

Thus, p|a2. Since p|cd implies p|c or p|d, necessarily p|a. Let a = pa′. Then

(pa′)2 = pb2

or
pa′2 = b2

Thus, p|b, contradicting the fact that gcd(a, b) = 1. ///

The following example illustrates a possibility that will be subsumed later by Eisenstein’s criterion, which
is itself an application of Newton polygons attached to polynomials.

[2.0.2] Example: Let p be a prime number. We claim that there is no rational solution to

x5 + px+ p = 0

Indeed, suppose that a/b were a rational solution, in lowest terms. Then substitute and multiply through
by b5 to obtain

a5 + pab4 + pb5 = 0

From this, p|a5, so, since p is prime, p|a. Let a = pa′. Then

(pa′)5 + p(pa′)b4 + pb5 = 0

or
p4a′5 + p2a′b4 + b5 = 0

From this, p|b5, so p|b since p is prime. This contradicts the lowest-terms hypothesis.

3. Z/m, the integers mod m

Recall that a relation R on a set S is a subset of the cartesian product S × S. Write

x R y

if the ordered pair (x, y) lies in the subset R of S × S. An equivalence relation R on a set S is a relation
satisfying
• Reflexivity: x R x for all x ∈ S
• Symmetry: If x R y then y R x
• Transitivity: If x R y and y R z then x R z

A common notation for an equivalence relation is

x ∼ y

that is, with a tilde rather than R.

Let ∼ be an equivalence relation on a set S. For x ∈ S, the ∼ - equivalence class x̄ containing x is the
subset

x̄ = {x′ ∈ S : x′ ∼ x}
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The set of equivalence classes of ∼ on S is denoted by

S/ ∼

(as a quotient). Every element z ∈ S is contained in an equivalence class, namely the equivalence class z̄
of all s ∈ S so that s ∼ z. Given an equivalence class A inside S, an x in the set S such that x̄ = A is a
representative for the equivalence class. That is, any element of the subset A is a representative.

A set S of non-empty subsets of a set S whose union is the whole S, and which are mutually disjoint, is a
partition of S. One can readily check that the equivalence classes of an equivalence relation on a set S form
a partition of S, and, conversely, any partition of S defines an equivalence relation by positing that x ∼ y if
and only if they lie in the same set of the partition. ///

If two integers x, y differ by a multiple of a non-zero integer m, that is, if m|(x − y), then x is congruent
to y modulo m, written

x ≡ y mod m

Such a relation is a congruence modulo m, and m is the modulus. When Gauss first used this notion 200
years ago, it was sufficiently novel that it deserved a special notation, but, now that the novelty has worn
off, we will simply write

x = y mod m

and (unless we want special emphasis) simply say that x is equal to y modulo m.

[3.0.1] Proposition: (For fixed modulus m) equality modulo m is an equivalence relation. ///

Compatibly with the general usage for equivalence relations, the congruence class (or residue class or
equivalence class) of an integer x modulo m, denoted x̄ (with only implicit reference to m) is the set of
all integers equal to x mod m:

x̄ = {y ∈ Z : y = x mod m}

The integers mod m, denoted Z/m, is the collection of congruence classes of integers modulo m. For some
X ∈ Z/m, a choice of ordinary integer x so that x̄ = X is a representative for the congruence class X.

[3.0.2] Remark: A popular but unfortunate notation for Z/m is Zm. We will not use this notation. It
is unfortunate because for primes p the notation Zp is the only notation for the p-adic integers.

[3.0.3] Remark: On many occasions, the bar is dropped, so that x-mod-m may be written simply as ‘x’.

[3.0.4] Remark: The traditionally popular collection of representatives for the equivalence classes modulo
m, namely

{0̄, 1̄, 2̄, . . .m− 2,m− 1}

is not the only possibility.

The benefit Gauss derived from the explicit notion of congruence was that congruences behave much
like equalities, thus allowing us to benefit from our prior experience with equalities. Further, but not
surprisingly with sufficient hindsight, congruences behave nicely with respect to the basic operations of
addition, subtraction, and multiplication:

[3.0.5] Proposition: Fix the modulus m. If x = x′ mod m and y = y′ mod m, then

x+ y = x′ + y′ mod m

xy = x′y′ mod m
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Proof: Since m|(x′−x) there is an integer k such that mk = x′−x. Similarly, y′ = y+ `m for some integer
`. Then

x′ + y′ = (x+mk) + (y +m`) = x+ y +m · (k + `)

Thus, x′ + y′ = x+ y mod m. And

x′ · y′ = (x+mk) · (y +m`) = x · y + xm`+mky +mk ·m` = x · y +m · (k + `+mk`)

Thus, x′y′ = xy mod m. ///

As a corollary, congruences inherit many basic properties from ordinary arithmetic, simply because x = y
implies x = y mod m:
• Distributivity: x(y + z) = xy + xz mod m
• Associativity of addition: (x+ y) + z = x+ (y + z) mod m
• Associativity of multiplication: (xy)z = x(yz) mod m
• Property of 1: 1 · x = x · 1 = x mod m
• Property of 0: 0 + x = x+ 0 = x mod m

In this context, a multiplicative inverse mod m to an integer a is an integer b (if it exists) such that

a · b = 1 mod m

[3.0.6] Proposition: An integer a has a multiplicative inverse modulo m if and only if gcd(a,m) = 1.

Proof: If gcd(a,m) = 1 then there are r, s such that ra+ sm = 1, and

ra = 1− sm = 1 mod m

The other implication is easy. ///

In particular, note that if a is invertible mod m then any a′ in the residue class of a mod m is likewise
invertible mod m, and any other element b′ of the residue class of an inverse b is also an inverse. Thus, it
makes sense to refer to elements of Z/m as being invertible or not. Notation:

(Z/m)× = {x̄ ∈ Z/m : gcd(x,m) = 1}

This set (Z/m)× is the multiplicative group or group of units of Z/m.

[3.0.7] Remark: It is easy to verify that the set (Z/m)× is closed under multiplication in the sense
that a, b ∈ (Z/m)× implies ab ∈ (Z/m)×, and is closed under inverses in the sense that a ∈ (Z/m)×

implies a−1 ∈ (Z/m)×.

[3.0.8] Remark: The superscript is not an ‘x’ but is a ‘times’, making a reference to multiplication and
multiplicative inverses mod m. Some sources write Z/m∗, but the latter notation is inferior, as it is too
readily confused with other standard notation (for duals).

4. Fermat’s little theorem

[4.0.1] Theorem: Let p be a prime number. Then for any integer x

xp = x mod p
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Proof: First, by the binomial theorem

(x+ y)p =
∑

0≤i≤p

(
p

i

)
xi yp−i

In particular, the binomial coefficients are integers. Now we can show that the prime p divides the binomial
coefficients (

p

i

)
=

p!
i! (p− i)!

with 1 ≤ i ≤ p− 1. We have (
p

i

)
· i! · (p− i)! = p!

(Since we know that the binomial coefficient is an integer, the following argument makes sense.) The prime
p divides the right-hand side, so divides the left-hand side, but does not divide i! nor (p− i)! (for 0 < i < p)
since these two numbers are products of integers smaller than p and (hence) not divisible by p. Again using
the fact that p|ab implies p|a or p|b, p does not divide i! · (p− i)!, so p must divide the binomial coefficient.

Now we prove Fermat’s Little Theorem for positive integers x by induction on x. Certainly 1p = 1 mod p.
Now suppose that we know that

xp = x mod p

Then

(x+ 1)p =
∑

0≤i≤p

(
p

i

)
xi 1p−i = xp +

∑
0<i<p

(
p

i

)
xi + 1

All the coefficients in the sum in the middle of the last expression are divisible by p, so

(x+ 1)p = xp + 0 + 1 = x+ 1 mod p

This proves the theorem for positive x. ///

[4.0.2] Example: Let p be a prime with p = 3 mod 4. Suppose that a is a square modulo p, in the
sense that there exists an integer b such that

b2 = a mod p

Such b is a square root modulo p of a. Then we claim that a(p+1)/4 is a square root of a mod p. Indeed,(
a(p+1)/4

)2

=
(

(b2)(p+1)/4
)2

= bp+1 = bp · b = b · b mod p

by Fermat. Then this is a mod p. ///

[4.0.3] Example: Somewhat more generally, let q be a prime, and let p be another prime with p = 1 mod q
but p 6= 1 mod q2.

r = q−1 mod
p− 1
q

Then when a is a qth power modulo p, a qth root of a mod p is given by the formula

qth root of a mod p = ar mod p

If a is not a qth power mod p then this formula does not product a qth root.
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[4.0.4] Remark: For prime q and prime p 6= 1 mod q there is an even simpler formula for qth roots,
namely let

r = q−1 mod p− 1

and then
qth root of a mod p = ar mod p

Further, as can be seen from the even-easier proof of this formula, everything mod such p is a qth power.

For a positive integer n, the Euler phi-function ϕ(n) is the number of integers b so that 1 ≤ b ≤ n and
gcd(b, n) = 1. Note that

ϕ(n) = cardinality of (Z/n)×

[4.0.5] Theorem: (Euler) For x relatively prime to a positive integer n,

xϕ(n) = 1 mod n

[4.0.6] Remark: The special case that n is prime is Fermat’s Little Theorem.

Proof: Let G = (Z/m)×, for brevity. First note that the product

P =
∏
g∈G

g = product of all elements of G

is again in G. Thus, P has a multiplicative inverse mod n, although we do not try to identify it. Let x be
an element of G. Then we claim that the map f : G −→ G defined by

f(g) = xg

is a bijection of G to itself. First, check that f really maps G to itself: for x and g both invertible mod n,

(xg)(g−1x−1) = 1 mod n

Next, injectivity: if f(g) = f(h), then xg = xh mod n. Multiply this equality by x−1 mod n to obtain
g = h mod n. Last, surjectivity: given g ∈ G, note that f(x−1g) = g.

Then
P =

∏
g∈G

g =
∏
g∈G

f(g)

since the map f merely permutes the elements of G. Then

P =
∏
g∈G

f(g) =
∏
g∈G

xg = xϕ(n)
∏
g∈G

g = xϕ(n) · P

Since P is invertible mod n, multiply through by P−1 mod n to obtain

1 = xϕ(n) mod n

This proves Euler’s Theorem. ///

[4.0.7] Remark: This proof of Euler’s theorem, while subsuming Fermat’s Little Theorem as a special
case, strangely uses fewer specifics. There is no mention of binomial coefficients, for example.

[4.0.8] Remark: The argument above is a prototype example for the basic Lagrange’s Theorem in basic
group theory.
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5. Sun-Ze’s theorem

The result of this section is sometimes known as the Chinese Remainder Theorem. Indeed, the earliest
results (including and following Sun-Ze’s) were obtained in China, but such sloppy attribution is not good.
Sun-Ze’s result was obtained before 850, and the statement below was obtained by Chin Chiu Shao about
1250. Such results, with virtually the same proofs, apply much more generally.

[5.0.1] Theorem: (Sun-Ze) Let m and n be relatively prime positive integers. Let r and s be integers
such that

rm+ sn = 1

Then the function
f : Z/m× Z/n −→ Z/mn

defined by
f(x, y) = y · rm+ x · sn

is a bijection. The inverse map
f−1 : Z/mn −→ Z/m× Z/n

is
f−1(z) = (x-mod-m, y-mod-n)

Proof: First, the peculiar characterization of gcd(m,n) as the smallest positive integer expressible in the
form rm+ sn assures (since here gcd(m,n) = 1) that integers r and s exist such that rm+ sn = 1. Second,
the function f is well-defined, that is, if x′ = x+ am and y′ = y + bn for integers a and b, then still

f(x′, y′) = f(x, y)

Indeed,
f(x′, y′) = y′rm+ x′sn = (y + an)rm+ (x+ am)sn

= yrm+ xsn+mn(ar + bs) = f(x, y) mod mn

proving the well-definedness.

To prove surjectivity of f , for any integer z, let x = z and y = z. Then

f(x, y) = zrm+ zsn = z(rm+ sn) = z · 1 mod mn

(To prove injectivity, we could use the fact that Z/m× Z/n and Z/mn are finite sets of the same size, so a
surjective function is necessarily injective, but a more direct argument is more instructive.) Suppose

f(x′, y′) = f(x, y)

Then modulo m the yrm and y′rm are 0, so

xsn = x′sn mod m

From rm+ sn = 1 mod mn we obtain sn = 1 mod m, so

x = x′ mod m

Symmetrically,
y = y′ mod n



12 The integers

giving injectivity.

Finally, by the same reasoning,

f(x, y) = yrm+ xsn = y · 0 + x · 1 mod m = x mod m

and similarly
f(x, y) = yrm+ xsn = y · 1 + x · 0 mod n = y mod n

This completes the argument. ///

[5.0.2] Remark: The above result is the simplest prototype for a very general result.

6. Worked examples

[1.1] Let D be an integer that is not the square of an integer. Prove that there is no
√
D in Q.

Suppose that a, b were integers (b 6= 0) such that (a/b)2 = D. The fact/principle we intend to invoke here
is that fractions can be put in lowest terms, in the sense that the numerator and denominator have greatest
common divisor 1. This follows from existence of the gcd, and from the fact that, if gcd(a, b) > 1, then let
c = a/gcd(a, b) and d = b/gcd(a, b) and we have c/d = a/b. Thus, still c2/d2 = D. One way to proceed
is to prove that c2/d2 is still in lowest terms, and thus cannot be an integer unless d = ±1. Indeed, if
gcd(c2, d2) > 1, this gcd would have a prime factor p. Then p|c2 implies p|c, and p|d2 implies p|d, by the
critical proven property of primes. Thus, gcd(c, d) > 1, contradiction.

[1.2] Let p be prime, n > 1 an integer. Show (directly) that the equation xn − px+ p = 0 has no rational
root (where n > 1).

Suppose there were a rational root a/b, without loss of generality in lowest terms. Then, substituting and
multiplying through by bn, one has

an − pbn−1a+ pbn = 0

Then p|an, so p|a by the property of primes. But then p2 divides the first two terms, so must divide pbn, so
p|bn. But then p|b, by the property of primes, contradicting the lowest-common-terms hypothesis.

[1.3] Let p be prime, b an integer not divisible by p. Show (directly) that the equation xp − x+ b = 0 has
no rational root.

Suppose there were a rational root c/d, without loss of generality in lowest terms. Then, substituting and
multiplying through by dp, one has

cp − dp−1c+ bdp = 0

If d 6= ±1, then some prime q divides d. From the equation, q|cp, and then q|c, contradiction to the
lowest-terms hypothesis. So d = 1, and the equation is

cp − c+ b = 0

By Fermat’s Little Theorem, p|cp − c, so p|b, contradiction.

[1.4] Let r be a positive integer, and p a prime such that gcd(r, p− 1) = 1. Show that every b in Z/p has
a unique rth root c, given by the formula

c = bs mod p

where rs = 1 mod (p− 1). [Corollary of Fermat’s Little Theorem.]



Garrett: Abstract Algebra 13

[1.5] Show that R = Z[
√
−2] and Z[ 1+

√
−7

2 ] are Euclidean.

First, we consider R = Z[
√
−D] for D = 1, 2, . . .. Let ω =

√
−D. To prove Euclidean-ness, note that the

Euclidean condition that, given α ∈ Z[ω] and non-zero δ ∈ Z[ω], there exists q ∈ Z[ω] such that

|α− q · δ| < |δ|

is equivalent to
|α/δ − q| < |1| = 1

Thus, it suffices to show that, given a complex number α, there is q ∈ Z[ω] such that

|α− q| < 1

Every complex number α can be written as x + yω with real x and y. The simplest approach to analysis
of this condition is the following. Let m,n be integers such that |x − m| ≤ 1/2 and |y − n| ≤ 1/2. Let
q = m+ nω. Then α− q is of the form r + sω with |r| ≤ 1/2 and |s| ≤ 1/2. And, then,

|α− q|2 = r2 +Ds2 ≤ 1
4

+
D

4
=

1 +D

4

For this to be strictly less than 1, it suffices that 1 + D < 4, or D < 3. This leaves us with Z[
√
−1] and

Z[
√
−2].

In the second case, consider Z[ω] where ω = (1 +
√
−D)/2 and D = 3 mod 4. (The latter condition assures

that Z[x] works the way we hope, namely that everything in it is expressible as a + bω with a, b ∈ Z.) For
D=3 (the Eisenstein integers) the previous approach still works, but fails for D = 7 and for D = 11. Slightly
more cleverly, realize that first, given complex α, integer n can be chosen such that

−
√
D/4 ≤ imaginary part(α− nω) ≤ +

√
D/4

since the imaginary part of ω is
√
D/2. Then choose integer m such that

−1/2 ≤ real part(α− nω −m) ≤ 1/2

Then take q = m + nω. We have chosen q such that α − q is in the rectangular box of complex numbers
r + s

√
−7 with

|r| ≤ 1/2 and |s| ≤ 1/4

Yes, 1/4, not 1/2. Thus, the size of α− q is at most

1/4 +D/16

The condition that this be strictly less than 1 is that 4 +D < 16, or D < 12 (and D = 1 mod 4). This gives
D = 3, 7, 11.

[1.6] Let f : X −→ Y be a function from a set X to a set Y . Show that f has a left inverse if and only if
it is injective. Show that f has a right inverse if and only if it is surjective. (Note where, if anywhere, the
Axiom of Choice is needed.)

[1.7] Let h : A −→ B, g : B −→ C, f : C −→ D. Prove the associativity

(f ◦ g) ◦ h = f ◦ (g ◦ h)

Two functions are equal if and only if their values (for the same inputs) are the same. Thus, it suffices to
evaluate the two sides at a ∈ A, using the definition of composite:

((f ◦ g) ◦ h)(a) = (f ◦ g)(h(a)) = f(g((h(a))) = f((g ◦ h)(a)) = (f ◦ (g ◦ h))(a)



14 The integers

[1.8] Show that a set is infinite if and only if there is an injection of it to a proper subset of itself. Do not
set this up so as to trivialize the question.

The other definition of finite we’ll take is that a set S is finite if there is a surjection to it from one of the
sets

{}, {1}, {1, 2}, {1, 2, 3}, . . .

And a set is infinite if it has no such surjection.

We find a denumerable subset of an infinite set S, as follows. For infinite S, since S is not empty (or there’d
be a surjection to it from {}), there is an element s1. Define

f1 : {1} −→ S

by f(1) = s1. This cannot be surjective, so there is s2 6= s1. Define

f2 : {1, 2} −→ S

by f(1) = s1, f(2) = s2. By induction, for each natural number n we obtain an injection fn : {1, . . .} −→ S,
and distinct elements s1, s2, . . .. Let S′ be the complement to {s1, s2, . . .} in S. Then define F : S −→ S by

F (si) = si+1 F (s′) = s′ (for s′ ∈ S′)

This is an injection to the proper subset S − {s1}.

On the other hand, we claim that no set {1, . . . , n} admits an injection to a proper subset of itself. If there
were such, by Well-Ordering there would be a least n such that this could happen. Let f be an injection of
S = {1, . . . , n} to a proper subset of itself.

By hypothesis, f restricted to S′ = {1, 2, . . . , n − 1} does not map S′ to a proper subset of itself. The
restriction of an injective function is still injective. Thus, either f(i) = n for some 1 ≤ i < n, or f(S′) is the
whole set S′. In the former case, let j be the least element not in the image f(S). (Since f(i) = n, j 6= n,
but this doesn’t matter.) Replace f by π ◦ f where π is the permutation of {1, . . . , n} that interchanges j
and n and leaves everything else fixed. Since permutations are bijections, this π ◦ f is still an injection of S
to a proper subset. Thus, we have reduced to the second case, that f(S′) = S′. By injectivity, f(n) can’t be
in S′, but then f(n) = n, and the image f(S) is not a proper subset of S after all, contradiction. ///

In a similar vein, one can prove the Pigeon-Hole Principle, namely, that for m < n a function

f : {1, . . . , n} −→ {1, . . . ,m}

cannot be injective. Suppose this is false. Let n be the smallest such that there is m < n with an injective
map as above. The restriction of an injective map is still injective, so f on {1, . . . , n − 1} is still injective.
By the minimality of n, it must be that n − 1 = m, and that f restricted to {1, . . . ,m} is a bijection of
that set to itself. But then there is no possibility for f(n) in {1, . . . ,m} without violating the injectivity.
Contradiction. Thus, there is no such injection to a smaller set.

Exercises

1.[6.0.1] Let f(x) = xn + an−1x
n−1 + . . . + a1x + a0 be a polynomial with integer coefficients ai. Show

that if f(x) = 0 has a root in Q, then this root is an integer dividing a0.

1.[6.0.2] Show that x2 − y2 = 102 has no solutions in integers.

1.[6.0.3] Show that x3 − y3 = 3 has no solutions in integers.



Garrett: Abstract Algebra 15

1.[6.0.4] Show that x3 + y3 − z3 = 4 has no solutions in integers.

1.[6.0.5] Show that x2 + 3y2 + 6z3 − 9w5 = 2 has no solutions in integers.

1.[6.0.6] The defining property of ordered pair (a, b) is that (a, b) = (a′, b′) if and only if a = a′ and b = b′.
Show that the set-theoretic construction (a, b) = {{a}, {a, b}} succeeds in making an object that behaves as
an ordered pair is intended. (Hint: Beware: if x = y, then {x, y} = {x}.)

1.[6.0.7] Let p be a prime, and q a positive integer power of p. Show that p divides the binomial coefficients(
q
i

)
= q!/i!(q − i)! for 0 < i < q.

1.[6.0.8] Show that the greatest common divisor of non-zero integers x, y, z is the smallest positive integer
expressible as ax+ by + cz for integers a, b, c.

1.[6.0.9] Let m,n be relatively prime integers. Without using factorizations, prove that m|N and n|N
implies mn|N .

1.[6.0.10] (A warm-up to Hensel’s lemma) Let p > 2 be a prime. Suppose that b is an integer not divisible
by p such that there is a solution y to the equation y2 = b mod p. Show (by induction on n) that for n ≥ 1
there is a unique x mod pn such that x = b mod p and

xp = b mod pn

1.[6.0.11] (Another warm-up to Hensel’s lemma) Let p > 2 be a prime. Let y be an integer such that
y ≡ 1 mod p. Show (by induction on n) that for n ≥ 1 there is a unique x mod pn so that

xp = y mod pn

1.[6.0.12] Let ϕ be Euler’s phi-function, equal to the number of integers ` such that 1 ≤ ` < n with `
relatively prime to n. Show that for a positive integer n

n =
∑

d|n, d>0

ϕ(d)


