5. Linear algebra I: dimension

5.1 Some simple results

5.2 Bases and dimension
5.3 Homomorphisms and dimension

1. Some simple results

Several observations should be made. Once stated explicitly, the proofs are easy. ${ }^{[1]}$

- The intersection of a (non-empty) set of subspaces of a vector space V is a subspace.

Proof: Let $\left\{W_{i}: i \in I\right\}$ be a set of subspaces of V. For w in every W_{i}, the additive inverse $-w$ is in W_{i}. Thus, $-w$ lies in the intersection. The same argument proves the other properties of subspaces.

The subspace spanned by a set X of vectors in a vector space V is the intersection of all subspaces containing X. From above, this intersection is a subspace.

- The subspace spanned by a set X in a vector space V is the collection of all linear combinations of vectors from X.

Proof: Certainly every linear combination of vectors taken from X is in any subspace containing X. On the other hand, we must show that any vector in the intersection of subspaces containing X is a linear combination of vectors in X. Now it is not hard to check that the collection of such linear combinations is itself a subspace of V, and contains X. Therefore, the intersection is no larger than this set of linear combinations.

[^0]A linearly independent set of vectors spanning a subspace W of V is a basis for W.
[1.0.1] Proposition: Given a basis e_{1}, \ldots, e_{n} for a vector space V, there is exactly one expression for an arbitrary vector $v \in V$ as a linear combination of e_{1}, \ldots, e_{n}.

Proof: That there is at least one expression follows from the spanning property. On the other hand, if

$$
\sum_{i} a_{i} e_{i}=v=\sum_{i} b_{i} e_{i}
$$

are two expressions for v, then subtract to obtain

$$
\sum_{i}\left(a_{i}-b_{i}\right) e_{i}=0
$$

Since the e_{i} are linearly independent, $a_{i}=b_{i}$ for all indices i.

2. Bases and dimension

The argument in the proof of the following fundamental theorem is the Lagrange replacement principle. This is the first non-trivial result in linear algebra.
[2.0.1] Theorem: Let v_{1}, \ldots, v_{m} be a linearly independent set of vectors in a vector space V, and let w_{1}, \ldots, w_{n} be a basis for V. Then $m \leq n$, and (renumbering the vectors w_{i} if necessary) the vectors

$$
v_{1}, \ldots, v_{m}, w_{m+1}, w_{m+2}, \ldots, w_{n}
$$

are a basis for V.
Proof: Since the w_{i} 's are a basis, we may express v_{1} as a linear combination

$$
v_{1}=c_{1} w_{1}+\ldots+c_{n} w_{n}
$$

Not all coefficients can be 0 , since v_{1} is not 0 . Renumbering the w_{i} 's if necessary, we can assume that $c_{1} \neq 0$. Since the scalars k are a field, we can express w_{1} in terms of v_{1} and w_{2}, \ldots, w_{n}

$$
w_{1}=c_{1}^{-1} v_{1}+\left(-c_{1}^{-1} c_{2}\right) w_{2}+\ldots+\left(-c_{1}^{-1} c_{2}\right) w_{n}
$$

Replacing w_{1} by v_{1}, the vectors $v_{1}, w_{2}, w_{3}, \ldots, w_{n}$ span V. They are still linearly independent, since if v_{1} were a linear combination of w_{2}, \ldots, w_{n} then the expression for w_{1} in terms of $v_{1}, w_{2}, \ldots, w_{n}$ would show that w_{1} was a linear combination of w_{2}, \ldots, w_{n}, contradicting the linear independence of w_{1}, \ldots, w_{n}.

Suppose inductively that $v_{1}, \ldots, v_{i}, w_{i+1}, \ldots, w_{n}$ are a basis for V, with $i<n$. Express v_{i+1} as a linear combination

$$
v_{i+1}=a_{1} v_{1}+\ldots+a_{i} v_{i}+b_{i+1} w_{i+1}+\ldots+b_{n} w_{n}
$$

Some b_{j} is non-zero, or else v_{i} is a linear combination of v_{1}, \ldots, v_{i}, contradicting the linear independence of the v_{j} 's. By renumbering the w_{j} 's if necessary, assume that $b_{i+1} \neq 0$. Rewrite this to express w_{i+1} as a linear combination of $v_{1}, \ldots, v_{i}, w_{i+1}, \ldots, w_{n}$

$$
\begin{aligned}
w_{i+1} & =\left(-b_{i+1}^{-1} a_{1}\right) v_{1}+\ldots+\left(-b_{i+1}^{-1} a_{i}\right) v_{i}+\left(b_{i+1}^{-1}\right) v_{i+1} \\
& +\left(-b_{i+1}^{-1} b_{i+2}\right) w_{i+2}+\ldots+\left(-b_{i+1}^{-1} b_{n}\right) w_{n}
\end{aligned}
$$

Thus, $v_{1}, \ldots, v_{i+1}, w_{i+2}, \ldots, w_{n}$ span V. Claim that these vectors are linearly independent: if for some coefficients a_{j}, b_{j}

$$
a_{1} v_{1}+\ldots+a_{i+1} v_{i+1}+b_{i+2} w_{i+2}+\ldots+b_{n} w_{n}=0
$$

then some a_{i+1} is non-zero, because of the linear independence of $v_{1}, \ldots, v_{i}, w_{i+1}, \ldots, w_{n}$. Thus, rearrange to express v_{i+1} as a linear combination of $v_{1}, \ldots, v_{i}, w_{i+2}, \ldots, w_{n}$. The expression for w_{i+1} in terms of $v_{1}, \ldots, v_{i}, v_{i+1}, w_{i+2}, \ldots, w_{n}$ becomes an expression for w_{i+1} as a linear combination of $v_{1}, \ldots, v_{i}, w_{i+2}, \ldots, w_{n}$. But this would contradict the (inductively assumed) linear independence of $v_{1}, \ldots, v_{i}, w_{i+1}, w_{i+2}, \ldots, w_{n}$.

Consider the possibility that $m>n$. Then, by the previous argument, v_{1}, \ldots, v_{n} is a basis for V. Thus, v_{n+1} is a linear combination of v_{1}, \ldots, v_{n}, contradicting their linear independence. Thus, $m \leq n$, and $v_{1}, \ldots, v_{m}, w_{m+1}, \ldots, w_{n}$ is a basis for V, as claimed.

Now define the $\left(k\right.$-)dimension ${ }^{[2]}$ of a vector space (over field k) as the number of elements in a (k-)basis. The theorem says that this number is well-defined. Write

$$
\operatorname{dim} V=\text { dimension of } V
$$

A vector space is finite-dimensional if it has a finite basis. ${ }^{[3]}$
[2.0.2] Corollary: A linearly independent set of vectors in a finite-dimensional vector space can be augmented to be a basis.

Proof: Let v_{1}, \ldots, v_{m} be as linearly independent set of vectors, let w_{1}, \ldots, w_{n} be a basis, and apply the theorem.
[2.0.3] Corollary: The dimension of a proper subspace of a finite-dimensional vector space is strictly less than the dimension of the whole space.

Proof: Let w_{1}, \ldots, w_{m} be a basis for the subspace. By the theorem, it can be extended to a basis $w_{1}, \ldots, w_{m}, v_{m+1}, \ldots, v_{n}$ of the whole space. It must be that $n>m$, or else the subspace is the whole space.
[2.0.4] Corollary: The dimension of k^{n} is n. The vectors

$$
\begin{aligned}
e_{1} & =(1,0,0, \ldots, 0,0) \\
e_{2} & =(0,1,0, \ldots, 0,0) \\
e_{3} & =(0,0,1, \ldots, 0,0) \\
& \ldots \\
e_{n} & =(0,0,0, \ldots, 0,1)
\end{aligned}
$$

are a basis (the standard basis).
Proof: Those vectors span k^{n}, since

$$
\left(c_{1}, \ldots, c_{n}\right)=c_{1} e_{1}+\ldots+c_{n} e_{n}
$$

[^1]On the other hand, a linear dependence relation

$$
0=c_{1} e_{1}+\ldots+c_{n} e_{n}
$$

gives

$$
\left(c_{1}, \ldots, c_{n}\right)=(0, \ldots, 0)
$$

from which each c_{i} is 0 . Thus, these vectors are a basis for k^{n}.

3. Homomorphisms and dimension

Now we see how dimension behaves under homomorphisms.
Again, a vector space homomorphism ${ }^{[4]} \quad f: V \longrightarrow W$ from a vector space V over a field k to a vector space W over the same field k is a function f such that

$$
\begin{aligned}
f\left(v_{1}+v_{2}\right) & =f\left(v_{1}\right)+f\left(v_{2}\right) & & \left(\text { for all } v_{1}, v_{2} \in V\right) \\
f(\alpha \cdot v) & =\alpha \cdot f(v) & & \text { (for all } \alpha \in k, v \in V)
\end{aligned}
$$

The kernel of f is

$$
\operatorname{ker} f=\{v \in V: f(v)=0\}
$$

and the image of f is

$$
\operatorname{Im} f=\{f(v): v \in V\}
$$

A homomorphism is an isomorphism if it has a two-sided inverse homomorphism. For vector spaces, a homomorphism that is a bijection is an isomorphism. ${ }^{[5]}$

- A vector space homomorphism $f: V \longrightarrow W$ sends 0 (in V) to 0 (in W, and, for $v \in V, f(-v)=-f(v)$. [6]
[3.0.1] Proposition: The kernel and image of a vector space homomorphism $f: V \longrightarrow W$ are vector subspaces of V and W, respectively.

Proof: Regarding the kernel, the previous proposition shows that it contains 0 . The last bulleted point was that additive inverses of elements in the kernel are again in the kernel. For $x, y \in \operatorname{ker} f$

$$
f(x+y)=f(x)+f(y)=0+0=0
$$

so ker f is closed under addition. For $\alpha \in k$ and $v \in V$

$$
f(\alpha \cdot v)=\alpha \cdot f(v)=\alpha \cdot 0=0
$$

so $\operatorname{ker} f$ is closed under scalar multiplication. Thus, the kernel is a vector subspace.
Similarly, $f(0)=0$ shows that 0 is in the image of f. For $w=f(v)$ in the image of f and $\alpha \in k$

$$
\alpha \cdot w=\alpha \cdot f(v)=f(\alpha v) \in \operatorname{Im} f
$$

[4] Or linear map or linear operator.

[5] In most of the situations we will encounter, bijectivity of various sorts of homomorphisms is sufficient (and certainly necessary) to assure that there is an inverse map of the same sort, justifying this description of isomorphism.
[6] This follows from the analogous result for groups, since V with its additive structure is an abelian group.

For $x=f(u)$ and $y=f(v)$ both in the image of f,

$$
x+y=f(u)+f(v)=f(u+v) \in \operatorname{Im} f
$$

And from above

$$
f(-v)=-f(v)
$$

so the image is a vector subspace.
[3.0.2] Corollary: A linear map $f: V \longrightarrow W$ is injective if and only if its kernel is the trivial subspace $\{0\}$.

Proof: This follows from the analogous assertion for groups.
[3.0.3] Corollary: Let $f: V \longrightarrow W$ be a vector space homomorphism, with V finite-dimensional. Then

$$
\operatorname{dim} \operatorname{ker} f+\operatorname{dim} \operatorname{Im} f=\operatorname{dim} V
$$

Proof: Let v_{1}, \ldots, v_{m} be a basis for $\operatorname{ker} f$, and, invoking the theorem, let w_{m+1}, \ldots, w_{n} be vectors in V such that $v_{1}, \ldots, v_{m}, w_{m+1}, \ldots, w_{n}$ form a basis for V. We claim that the images $f\left(w_{m+1}\right), \ldots, f\left(w_{n}\right)$ are a basis for $\operatorname{Im} f$. First, show that these vectors span. For $f(v)=w$, express v as a linear combination

$$
v=a_{1} v_{1}+\ldots+a_{m} v_{m}+b_{m+1} w_{m+1}+\ldots+b_{n} w_{n}
$$

and apply f

$$
\begin{gathered}
w=a_{1} f\left(v_{1}\right)+\ldots+a_{m} f\left(v_{m}\right)+b_{m+1} f\left(w_{m+1}\right)+\ldots+b_{n} f\left(w_{n}\right) \\
=a_{1} \cdot 0+\ldots+a_{m} \cdot 0\left(v_{m}\right)+b_{m+1} f\left(w_{m+1}\right)+\ldots+b_{n} f\left(w_{n}\right) \\
\\
=b_{m+1} f\left(w_{m+1}\right)+\ldots+b_{n} f\left(w_{n}\right)
\end{gathered}
$$

since the $v_{i} \mathrm{~S}$ are in the kernel. Thus, the $f\left(w_{j}\right)$'s span the image. For linear independence, suppose

$$
0=b_{m+1} f\left(w_{m+1}\right)+\ldots+b_{n} f\left(w_{n}\right)
$$

Then

$$
0=f\left(b_{m+1} w_{m+1}+\ldots+b_{n} w_{n}\right)
$$

Then, $b_{m+1} w_{m+1}+\ldots+b_{n} w_{n}$ would be in the kernel of f, so would be a linear combination of the v_{i} 's, contradicting the fact that $v_{1}, \ldots, v_{m}, w_{m+1}, \ldots, w_{n}$ is a basis, unless all the b_{j} 's were 0 . Thus, the $f\left(w_{j}\right)$ are linearly independent, so are a basis for $\operatorname{Im} f$.

Exercises

5.[3.0.1] For subspaces V, W of a vector space over a field k, show that

$$
\operatorname{dim}_{k} V+\operatorname{dim}_{k} W=\operatorname{dim}_{k}(V+W)+\operatorname{dim}_{k}(V \cap W)
$$

5.[3.0.2] Given two bases e_{1}, \ldots, e_{n} and f_{1}, \ldots, f_{n} for a vector space V over a field k, show that there is a unique k-linear map $T: V \longrightarrow V$ such that $T\left(e_{i}\right)=f_{i}$.
5.[3.0.3] Given a basis e_{1}, \ldots, e_{n} of a k-vectorspace V, and given arbitrary vectors w_{1}, \ldots, w_{n} in a k vectorspace W, show that there is a unique k-linear map $T: V \longrightarrow W$ such that $T e_{i}=w_{i}$ for all indices i.
5.[3.0.4] The space $\operatorname{Hom}_{k}(V, W)$ of k-linear maps from one k-vectorspace V to another, W, is a k vectorspace under the operation

$$
(\alpha \dot{T})(v)=\alpha \cdot(T(v))
$$

for $\alpha \in k$ and $T \in \operatorname{Hom}_{k}(V, W)$. Show that

$$
\operatorname{dim}_{k} \operatorname{Hom}_{k}(V, W)=\operatorname{dim}_{k} V \cdot \operatorname{dim}_{k} W
$$

5.[3.0.5] A flag $V_{1} \subset \ldots \subset V_{\ell}$ of subspaces of a k-vectorspace V is simply a collection of subspaces satisfying the indicated inclusions. The type of the flag is the list of dimensions of the subspaces V_{i}. Let W be a k-vectorspace, with a flag $W_{1} \subset \ldots \subset W_{\ell}$ of the same type as the flag in V. Show that there exists a k-linear map $T: V \longrightarrow W$ such that T restricted to V_{i} is an isomorphism $V_{i} \longrightarrow W_{i}$.
5.[3.0.6] Let $V_{1} \subset V_{\ell}$ be a flag of subspace inside a finite-dimensional k-vectorspace V, and $W_{1} \subset \ldots \subset W_{\ell}$ a flag inside another finite-dimensional k-vectorspace W. We do not suppose that the two flags are of the same type. Compute the dimension of the space of k-linear homomorphisms $T: V \longrightarrow W$ such that $T V_{i} \subset W_{i}$.

[^0]: [1] At the beginning of the abstract form of this and other topics, there are several results which have little informational content, but, rather, only serve to assure us that the definitions/axioms have not included phenomena too violently in opposition to our expectations. This is not surprising, considering that the definitions have endured several decades of revision exactly to address foundational and other potential problems.

[^1]: [2] This is an instance of terminology that is nearly too suggestive. That is, a naive person might all too easily accidentally assume that there is a connection to the colloquial sense of the word dimension, or that there is an appeal to physical or visual intuition. Or one might assume that it is somehow obvious that dimension is a welldefined invariant.
 [3] We proved only the finite-dimensional case of the well-definedness of dimension. The infinite-dimensional case needs transfinite induction or an equivalent.

