The $105^{\text {th }}$ cyclotomic polynomial

Paul Garrett garrett@umn.edu https://www-users.cse.umn.edu/ ~garrett/

Based on fairly extensive hand calculations, one might imagine that all coefficients of all cyclotomic polynomials are either $+1,-1$, or 0 , but this is not true! It is true for n prime, and for n having at most 2 distinct prime factors, but not generally.

The smallest n where $\Phi_{n}(x)$ has an exotic coefficient is $n=105$. It is no coincidence that $105=3 \cdot 5 \cdot 7$ is the product of the first 3 primes above 2 .

Part of the point in finding an exotic coefficient of Φ_{105} is demonstration that insightful hand calculation can go much further than we might imagine, giving directly-human-verifiable information.

$$
\begin{gathered}
\Phi_{105}(x)=\frac{x^{105}-1}{\Phi_{1}(x) \Phi_{3}(x) \Phi_{5}(x) \Phi_{7}(x) \Phi_{15}(x) \Phi_{21}(x) \Phi_{35}(x)}=\frac{x^{105}-1}{\Phi_{3}(x) \Phi_{15}(x) \Phi_{21}(x)\left(x^{35}-1\right)} \\
=\frac{x^{70}+x^{35}+1}{\Phi_{3}(x) \Phi_{15}(x) \Phi_{21}(x)}=\frac{\left(x^{70}+x^{35}+1\right)\left(x^{7}-1\right)}{\Phi_{15}(x)\left(x^{21}-1\right)}=\frac{\left(x^{70}+x^{35}+1\right)\left(x^{7}-1\right) \Phi_{1}(x) \Phi_{3}(x) \Phi_{5}(x)}{\left(x^{15}-1\right)\left(x^{21}-1\right)} \\
=\frac{\left(x^{70}+x^{35}+1\right)\left(x^{7}-1\right)\left(x^{5}-1\right)\left(x^{2}+x+1\right)}{\left(x^{15}-1\right)\left(x^{21}-1\right)}
\end{gathered}
$$

Instead of polynomial computations, it suffices to do power series computations, imagining either that $|x|<1$, or that we are computing in formal power series rings. Thus,

$$
\frac{1}{x^{21}-1}=\frac{-1}{1-x^{21}}=-\left(1+x^{21}+x^{42}+x^{63}+\ldots\right)
$$

The degree of $\Phi_{105}(x)$ is $\varphi(105)=(3-1)(5-1)(7-1)=48$, and the coefficients of cyclotomic polynomials are the same back-to-front as front-to-back. Thus, in power series in x, to hunt for exotic coefficients of Φ_{105}, it suffices to ignore terms of degree above 24 . That is, in $\mathbb{Z}[[x]] /\left\langle x^{25}\right\rangle$,

$$
\begin{aligned}
& \Phi_{105}(x)=\frac{\left(x^{70}+x^{35}+1\right)\left(x^{7}-1\right)\left(x^{5}-1\right)\left(x^{2}+x+1\right)}{\left(x^{15}-1\right)\left(x^{21}-1\right)}=\left(1+x+x^{2}\right)\left(1-x^{7}\right)\left(1-x^{5}\right)\left(1+x^{15}\right)\left(1+x^{21}\right) \\
& =\left(1+x+x^{2}\right) \times\left(1-x^{5}-x^{7}+x^{12}+x^{15}-x^{20}+x^{21}-x^{22}\right) \\
& =1+x+x^{2}-x^{5}-x^{6}-x^{7}-x^{7}-x^{8}-x^{9}+x^{12}+x^{13}+x^{14}+x^{15}+x^{16}+x^{17}-x^{20}-x^{21}-x^{22}+x^{21}+x^{22}+x^{23}-x^{22}-x^{23}-x^{24} \\
& =1+x+x^{2}-x^{5}-x^{6}-2 x^{7}-x^{8}-x^{9}+x^{12}+x^{13}+x^{14}+x^{15}+x^{16}+x^{17}-x^{20}-x^{22}-x^{24}
\end{aligned}
$$

Looking closely, we have a $-2 x^{7}$.

