11. Finitely-generated modules

11.1 Free modules
11.2 Finitely-generated modules over domains
11.3 PIDs are UFDs
11.4 Structure theorem, again
11.5 Recovering the earlier structure theorem
11.6 Submodules of free modules

1. Free modules

The following definition is an example of defining things by mapping properties, that is, by the way the object relates to other objects, rather than by internal structure. The first proposition, which says that there is at most one such thing, is typical, as is its proof.

Let R be a commutative ring with 1 . Let S be a set. A free R-module M on generators S is an R-module M and a set map $i: S \longrightarrow M$ such that, for any R-module N and any set map $f: S \longrightarrow N$, there is a unique R-module homomorphism $\tilde{f}: M \longrightarrow N$ such that

$$
\tilde{f} \circ i=f: S \longrightarrow N
$$

The elements of $i(S)$ in M are an R-basis for M.
[1.0.1] Proposition: If a free R-module M on generators S exists, it is unique up to unique isomorphism.
Proof: First, we claim that the only R-module homomorphism $F: M \longrightarrow M$ such that $F \circ i=i$ is the identity map. Indeed, by definition, ${ }^{[1]}$ given $i: S \longrightarrow M$ there is a unique $\tilde{i}: M \longrightarrow M$ such that $\tilde{i} \circ i=i$. The identity map on M certainly meets this requirement, so, by uniqueness, \tilde{i} can only be the identity.

Now let M^{\prime} be another free module on generators S, with $i^{\prime}: S \longrightarrow M^{\prime}$ as in the definition. By the defining property of (M, i), there is a unique $\widetilde{i^{\prime}}: M \longrightarrow M^{\prime}$ such that $\tilde{i^{\prime}} \circ i=i^{\prime}$. Similarly, there is a unique \tilde{i} such that $\tilde{i} \circ i^{\prime}=i$. Thus,

$$
i=\tilde{i} \circ i^{\prime}=\tilde{i} \circ \tilde{i^{\prime}} \circ i
$$

[^0]Similarly,

$$
i^{\prime}=\widetilde{i^{\prime}} \circ i=\widetilde{i^{\prime}} \circ \tilde{i} \circ i^{\prime}
$$

From the first remark of this proof, this shows that

$$
\begin{aligned}
& \tilde{i} \circ \widetilde{i^{\prime}}=\text { identity map on } M \\
& \widetilde{i^{\prime}} \circ \tilde{i}=\text { identity map on } M^{\prime}
\end{aligned}
$$

So $\widetilde{i^{\prime}}$ and \tilde{i} are mutual inverses. That is, M and M^{\prime} are isomorphic, and in a fashion that respects the maps i and i^{\prime}. Further, by uniqueness, there is no other map between them that respects i and i^{\prime}, so we have a unique isomorphism.

Existence of a free module remains to be demonstrated. We should be relieved that the uniqueness result above assures that any successful construction will invariably yield the same object. Before proving existence, and, thus, before being burdened with irrelevant internal details that arise as artifacts of the construction, we prove the basic facts about free modules.
[1.0.2] Proposition: A free R-module M on generators $i: S \longrightarrow M$ is generated by $i(S)$, in the sense that the only R-submodule of M containing the image $i(S)$ is M itself.

Proof: Let N be the submodule generated by $i(S)$, that is, the intersection of all submodules of M containing $i(S)$. Consider the quotient M / N, and the map $f: S \longrightarrow M / N$ by $f(s)=0$ for all $s \in S$. Let $\zeta: M \longrightarrow M / N$ be the 0 map. Certainly $\zeta \circ i=f$. If $M / N \neq 0$, then the quotient map $q: M \longrightarrow M / N$ is not the zero map ζ, and also $q \circ i=f$. But this would contradict the uniqueness in the definition of M.

For a set X of elements of an R-module M, if a relation

$$
\sum_{x \in X} r_{x} x=0
$$

with $r_{x} \in R$ and $x \in M$ (with all but finitely-many coefficients r_{x} being 0) implies that all coefficients r_{x} are 0 , say that the elements of X are linearly independent (over R).
[1.0.3] Proposition: Let M be a free R-module on generators $i: S \longrightarrow M$. Then any relation (with finitely-many non-zero coefficients $r_{s} \in R$)

$$
\sum_{s \in S} r_{s} i(s)=0
$$

must be trivial, that is, all coefficients r_{s} are 0 . That is, the elements of $i(S)$ are linearly independent.
Proof: Suppose $\sum_{s} r_{s} i(s)=0$ in the free module M. To show that every coefficient r_{s} is 0 , fix $s_{o} \in S$ and map $f: S \longrightarrow R$ itself by

$$
f(s)= \begin{cases}0 & \left(s \neq s_{o}\right) \\ 1 & \left(s=s_{o}\right)\end{cases}
$$

Let \tilde{f} be the associated R-module homomorphism $\tilde{f}: M \longrightarrow R$. Then

$$
0=\tilde{f}(0)=\tilde{f}\left(\sum_{s} r_{s} i(s)\right)=r_{s_{o}}
$$

This holds for each fixed index s_{o}, so any such relation is trivial.
[1.0.4] Proposition: Let $f: B \longrightarrow C$ be a surjection of R-modules, where C is free on generators S with $i: S \longrightarrow C$. Then there is an injection $j: C \longrightarrow B$ such that ${ }^{[2]}$

$$
f \circ j=1_{C} \quad \text { and } \quad B=(\operatorname{ker} f) \oplus j(C)
$$

[1.0.5] Remark: The map $j: C \longrightarrow B$ of this proposition is a section of the surjection $f: B \longrightarrow C$.
Proof: Let $\left\{b_{s}: s \in S\right\}$ be any set of elements of B such that $f\left(b_{s}\right)=i(s)$. Invoking the universal property of the free module, given the choice of $\left\{b_{x}\right\}$ there is a unique R-module homomorphism $j: C \longrightarrow B$ such that $(j \circ i)(s)=b_{s}$. It remains to show that $j C \oplus \operatorname{ker} f=B$. The intersection $j C \cap \operatorname{ker} f$ is trivial, since for $\sum_{s} r_{s} j(s)$ in the kernel (with all but finitely-many r_{s} just 0)

$$
C \ni 0=f\left(\sum_{s} r_{s} j(s)\right)=\sum_{s} r_{s} i(s)
$$

We have seen that any such relation must be trivial, so the intersection $f(C) \cap \operatorname{ker} f$ is trivial.
Given $b \in B$, let $f(b)=\sum_{s} r_{s} i(s)$ (a finite sum), using the fact that the images $i(s)$ generate the free module C. Then

$$
f(b-j(f(b)))=f\left(b-\sum_{s} r_{s} b_{s}\right)==f(b)-\sum_{s} r_{s} f\left(b_{s}\right)=\sum_{s} r_{s} i(s)-\sum_{s} r_{s} i(s)=0
$$

Thus, $j(C)+\operatorname{ker} f=B$.
We have one more basic result before giving a construction, and before adding any hypotheses on the ring R.

The following result uses an interesting trick, reducing the problem of counting generators for a free module F over a commutative ring R with 1 to counting generators for vector spaces over a field R / M, where M is a maximal proper ideal in R. We see that the number of generators for a free module over a commutative ring R with unit 1 has a well-defined cardinality, the R-rank of the free module.
[1.0.6] Theorem: Let F be a free R-module on generators $i: S \longrightarrow F$, where R is a commutative ring with 1 . Suppose that F is also a free R-module on generators $j: T \longrightarrow F$. Then $|S|=|T|$.

Proof: Let M be a maximal proper ideal in R, so $k=R / M$ is a field. Let

$$
E=M \cdot F=\text { collection of finite sums of elements } m x, m \in M, x \in F
$$

and consider the quotient

$$
V=F / E
$$

with quotient $\operatorname{map} q: F \longrightarrow V$. This quotient has a canonical k-module structure

$$
(r+M) \cdot(x+M \cdot F)=r x+M \cdot F
$$

We claim that V is a free k-module on generators $q \circ i: S \longrightarrow V$, that is, is a vector space on those generators. Lagrange's replacement argument shows that the cardinality of the number of generators for a vector space over a field is well-defined, so a successful comparison of generators for the original module and this vector space quotient would yield the result.

[^1]To show that V is free over k, consider a set map $f: S \longrightarrow W$ where W is a k-vectorspace. The k-vectorspace W has a natural R-module structure compatible with the k-vectorspace structure, given by

$$
r \cdot(x+M \cdot F)=r x+M \cdot F
$$

Let $\tilde{f}: F \longrightarrow W$ be the unique R-module homomorphism such that $\tilde{f} \circ i=f$. Since $m \cdot w=0$ for any $m \in M$ and $w \in W$, we have

$$
0=m \cdot f(s)=m \cdot \tilde{f}(i(s))=\tilde{f}(m \cdot i(s))
$$

so

$$
\operatorname{ker} \tilde{f} \supset M \cdot F
$$

Thus, $\bar{f}: V \longrightarrow W$ defined by

$$
\bar{f}(x+M \cdot F)=\tilde{f}(x)
$$

is well-defined, and $\bar{f} \circ(q \circ i)=f$. This proves the existence part of the defining property of a free module.
For uniqueness, the previous argument can be reversed, as follows. Given $\bar{f}: V \longrightarrow W$ such that $\bar{f} \circ(q \circ i)=f$, let $\tilde{f}=\bar{f} \circ q$. Since there is a unique $\tilde{f}: F \longrightarrow W$ with $\tilde{f} \circ i=f$, there is at most one \bar{f}.

Finally, we construct free modules, as a proof of existence. ${ }^{[3]}$
Given a non-empty set S, let M be the set of R-valued functions on S which take value 0 outside a finite subset of S (which may depend upon the function). Map $i: S \longrightarrow M$ by letting $i(s)$ be the function which takes value 1 at $s \in S$ and is 0 otherwise. Add functions value-wise, and let R act on M by value-wise multiplication.
[1.0.7] Proposition: The M and i just constructed is a free module on generators S. In particular, given a set map $f: S \longrightarrow N$ for another R-module N, for $m \in M$ define $\tilde{f}(m) \in N$ by ${ }^{[4]}$

$$
\tilde{f}(m)=\sum_{s \in S} m(s) \cdot f(s)
$$

Proof: We might check that the explicit expression (with only finitely-many summands non-zero) is an R-module homomorphism: that it respects addition in M is easy. For $r \in R$, we have

$$
\tilde{f}(r \cdot m)=\sum_{s \in S}(r \cdot m(s)) \cdot f(s)=r \cdot \sum_{s \in S} m(s) \cdot f(s)=r \cdot \tilde{f}(m)
$$

And there should be no other R-module homomorphism from M to N such that $\tilde{f} \circ i=f$. Let $F: M \longrightarrow N$ be another one. Since the elements $\{i(s): s \in S\}$ generate M as an R-module, for an arbitrary collection $\left\{r_{s} \in R: s \in S\right\}$ with all but finitely-many 0 ,

$$
F\left(\sum_{s \in S} r_{s} \cdot i(s)\right)=\sum_{s \in S} r_{s} \cdot F(i(s))=\sum_{s \in S} r_{s} \cdot f(s)=\tilde{f}\left(\sum_{s \in S} r_{s} \cdot i(s)\right)
$$

so necessarily $F=\tilde{f}$, as desired.
[3] Quite pointedly, the previous results did not use any explicit internal details of what a free module might be, but, rather, only invoked the external mapping properties.
${ }^{\text {[4] }}$ In this formula, the function m on S is non-zero only at finitely-many $s \in S$, so the sum is finite. And $m(s) \in R$ and $f(s) \in N$, so this expression is a finite sum of R-multiples of elements of N, as required.
[1.0.8] Remark: For finite generator sets often one takes

$$
S=\{1,2, \ldots, n\}
$$

and then the construction above of the free module on generators S can be identified with the collection R^{n} of ordered n-tuples of elements of R, as usual.

2. Finitely-generated modules over a domain

In the sequel, the results will mostly require that R be a domain, or, more stringently, a principal ideal domain. These hypotheses will be carefully noted.
[2.0.1] Theorem: Let R be a principal ideal domain. Let M be a free R-module on generators $i: S \longrightarrow M$. Let N be an R-submodule. Then N is a free R-module on at most $|S|$ generators. ${ }^{[5]}$

Proof: Induction on the cardinality of S. We give the proof for finite sets S. First, for $M=R^{1}=R$ a free module on a single generator, an R-submodule is an ideal in R. The hypothesis that R is a PID assures that every ideal in R needs at most one generator. This starts the induction.

Let $M=R^{m}$, and let $p: R^{m} \longrightarrow R^{m-1}$ be the map

$$
p\left(r_{1}, r_{2}, r_{3}, \ldots, r_{m}\right)=\left(r_{2}, r_{3}, \ldots, r_{m}\right)
$$

The image $p(N)$ is free on $\leq m-1$ generators, by induction. From the previous section, there is always a section $j: p(N) \longrightarrow N$ such that $p \circ j=1_{p(N)}$ and

$$
N=\left.\operatorname{ker} p\right|_{N} \oplus j(p(N))
$$

Since $p \circ j=1_{p(N)}$, necessarily j is an injection, so is an isomorphism to its image, and $j(p(N))$ is free on $\leq m-1$ generators. And $\left.\operatorname{ker} p\right|_{N}$ is a submodule of R, so is free on at most 1 generator. We would be done if we knew that a direct sum $M_{1} \oplus M_{2}$ of free modules M_{1}, M_{2} on generators $i_{1}: S_{i} \longrightarrow M_{1}$ and $i_{2}: S_{2} \longrightarrow M_{2}$ is a free module on the disjoint union $S=S_{1} \cup S_{2}$ of the two sets of generators. We excise that argument to the following proposition.
[2.0.2] Proposition: A direct sum ${ }^{[6]} \quad M=M_{1} \oplus M_{2}$ of free modules M_{1}, M_{2} on generators $i_{1}: S_{i} \longrightarrow M_{1}$ and $i_{2}: S_{2} \longrightarrow M_{2}$ is a free module on the disjoint union $S=S_{1} \cup S_{2}$ of the two sets of generators. ${ }^{[7]}$

Proof: Given another module N and a set map $f: S \longrightarrow N$, the restriction f_{j} of f to S_{j} gives a unique module homomorphism $\tilde{f}_{j}: M_{j} \longrightarrow M$ such that $\tilde{f}_{j} \circ i_{j}=f_{j}$. Then

$$
\tilde{f}\left(m_{1}, m_{2}\right)=\left(f_{1} m_{1}, f_{2} m_{2}\right)
$$

[5] The assertion of the theorem is false without some hypotheses on R. For example, even in the case that M has a single generator, to know that every submodule needs at most a single generator is exactly to assert that every ideal in R is principal.
[6] Though we will not use it at this moment, one can give a definition of direct sum in the same mapping-theoretic style as we have given for free module. That is, the direct sum of a family $\left\{M_{\alpha}: \alpha \in A\right\}$ of modules is a module M and homomorphisms $i_{\alpha}: M_{\alpha} \longrightarrow M$ such that, for every family of homomorphisms $f_{\alpha}: M_{\alpha} \longrightarrow N$ to another module N, there is a unique $f: M \longrightarrow N$ such that every f_{α} factors through f in the sense that $f_{\alpha}=f \circ i_{\alpha}$.
${ }^{[7]}$ This does not need the assumption that R is a principal ideal domain.
is a module homomorphism from the direct sum to N with $\tilde{f} \circ i=f$. On the other hand, given any map $g: M \longrightarrow N$ such that $g \circ i=f$, by the uniqueness on the summands M_{1} and M_{2} inside M, if must be that $g \circ i_{j}=f_{j}$ for $j=1,2$. Thus, this g is \tilde{f}.

For an R-module M, for $m \in M$ the annihilator $\operatorname{Ann}_{R}(m)$ of m in R is

$$
\operatorname{Ann}_{R}(m)=\{r \in R: r m=0\}
$$

It is easy to check that the annihilator is an ideal in R. An element $m \in M$ is a torsion element of M if its annihilator is not the 0 ideal. The torsion submodule $M^{\text {tors }}$ of M is

$$
M^{\text {tors }}=\left\{m \in M: \operatorname{Ann}_{R}(m) \neq\{0\}\right\}
$$

A module is torsion free if its torsion submodule is trivial.
[2.0.3] Proposition: For a domain R, the torsion submodule $M^{\text {tors }}$ of a given R-module M is an R-submodule of M, and $M / M^{\text {tors }}$ is torsion-free.

Proof: For torsion elements m, n in M, let x be a non-zero element of $\operatorname{Ann}_{R}(m)$ and y a non-zero element of $\left.\operatorname{Ann}_{(} n\right)$. Then $x y \neq 0$, since R is a domain, and

$$
(x y)(m+n)=y(x m)+x(y n)=y \cdot 0+x \cdot 0=0
$$

And for $r \in R$,

$$
x(r m)=r(x m)=r \cdot 0=0
$$

Thus, the torsion submodule is a submodule.
To show that the quotient $M / M^{\text {tors }}$ is torsion free, suppose $r \cdot\left(m+M^{\text {tors }}\right) \subset M^{\text {tors }}$ for $r \neq 0$. Then $r m \in M^{\text {tors }}$. Thus, there is $s \neq 0$ such that $s(r m)=0$. Since R is a domain, $r s \neq 0$, so m itself is torsion, so $m+M^{\text {tors }}=M^{\text {tors }}$, which is 0 in the quotient.

An R-module M is finitely generated if there are finitely-many m_{1}, \ldots, m_{n} such that $\sum_{i} R m_{i}=M .{ }^{[8]}$
[2.0.4] Proposition: Let R be a domain. ${ }^{[9]}$ Given a finitely-generated ${ }^{[10]} R$-module M, there is a (not necessarily unique) maximal free submodule F, and M / F is a torsion module.

Proof: Let X be a set of generators for M, and let S be a maximal subset of X such that (with inclusion $i: S \longrightarrow M)$ the submodule generated by S is free. To be careful, consider why there is such a maximal subset. First, for ϕ not to be maximal means that there is $x_{1} \in X$ such that $R x_{1} \subset M$ is free on generator $\left\{x_{1}\right\}$. If $\left\{x_{1}\right\}$ is not maximal with this property, then there is $x_{2} \in X$ such that $R x_{1}+R x_{2}$ is free on generators $\left\{x_{1}, x_{2}\right\}$. Since X is finite, there is no issue of infinite ascending unions of free modules. Given $x \in X$ but not in S, by the maximality of S there are coefficients $0 \neq r \in R$ and $r_{s} \in R$ such that

$$
r x+\sum_{s \in S} r_{s} \cdot i(s)=0
$$

[^2]so M / F is torsion.
[2.0.5] Theorem: Over a principal ideal domain R a finitely-generated torsion-free module M is free.
Proof: Let X be a finite set of generators of M. From the previous proposition, let S be a maximal subset of X such that the submodule F generated by the inclusion $i: S \longrightarrow M$ is free. Let x_{1}, \ldots, x_{n} be the elements of X not in S, and since M / F is torsion, for each x_{i} there is $0 \neq r_{i} \in R$ be such that $r_{i} x_{i} \in F$. Let $r=\prod_{i} r_{i}$. This is a finite product, and is non-zero since R is a domain. Thus, $r \cdot M \subset F$. Since F is free, $r M$ is free on at most $|S|$ generators. Since M is torsion-free, the multiplication by r map $m \longrightarrow r m$ has trivial kernel in M, so $M \approx r M$. That is, M is free.
[2.0.6] Corollary: Over a principal ideal domain R a finitely-generated module M is expressible as
$$
M \approx M^{\text {tors }} \oplus F
$$
where F is a free module and $M^{\text {tors }}$ is the torsion submodule of M.
Proof: We saw above that $M / M^{\text {tors }}$ is torsion-free, so (being still finitely-generated) is free. The quotient map $M \longrightarrow M / M^{\text {tors }}$ admits a section $\sigma: M / M^{\text {tors }} \longrightarrow M$, and thus
$$
M=M^{\text {tors }} \oplus \sigma\left(M / M^{\text {tors }}\right)=M^{\text {tors }} \oplus \text { free }
$$
as desired.
[2.0.7] Corollary: Over a principal ideal domain R, a submodule N of a finitely-generated R-module M is finitely-generated.

Proof: Let F be a finitely-generated free module which surjects to M, for example by choosing generators S for M and then forming the free module on S. The inverse image of N in F is a submodule of a free module on finitely-many generators, so (from above) needs at most that many generators. Mapping these generators forward to N proves the finite-generation of N.
[2.0.8] Proposition: Let R be a principal ideal domain. Let e_{1}, \ldots, e_{k} be elements of a finitely-generated free R-module M which are linearly independent over R, and such that

$$
M /\left(R e_{1}+\ldots+R e_{k}\right) \quad \text { is torsion-free, hence free }
$$

Then this collection can be extended to an R-basis for M.
Proof: Let N be the submodule $N=R e_{1}+\ldots+R e_{k}$ generated by the e_{i}. The quotient M / N, being finitely-generated and torsion-less, is free. Let e_{k+1}, \ldots, e_{n} be elements of M whose images in M / N are a basis for M / N. Let $q: M \longrightarrow M / N$ be the quotient map. Then, as above, q has a section $\sigma: M / N \longrightarrow M$ which takes $q\left(e_{i}\right)$ to e_{i}. And, as above,

$$
M=\operatorname{ker} q \oplus \sigma(M / N)=N \oplus \sigma(M / N)
$$

Since e_{k+1}, \ldots, e_{n} is a basis for M / N, the collection of all e_{1}, \ldots, e_{n} is a basis for M.

3. PIDs are UFDs

We have already observed that Euclidean rings are unique factorization domains and are principal ideal domains. The two cases of greatest interest are the ordinary integers \mathbb{Z} and polynomials $k[x]$ in one variable over a field k. But, also, we do have

[3.0.1] Theorem: A principal ideal domain is a unique factorization domain.

Before proving this, there are relatively elementary remarks that are of independent interest, and useful in the proof. Before anything else, keep in mind that in a domain R (with identity 1), for $x, y \in R$,

$$
R x=R y \quad \text { if and only if } \quad x=u y \text { for some unit } u \in R^{\times}
$$

Indeed, $x \in R y$ implies that $x=u y$, while $y \in R x$ implies $y=v x$ for some v, and then $y=u v \cdot y$ or $(1-u v) y=0$. Since R is a domain, either $y=0$ (in which case this discussion was trivial all along) or $u v=1$, so u and v are units, as claimed.

Next recall that divisibility $x \mid y$ is inclusion-reversion for the corresponding ideals, that is

$$
R x \supset R y \quad \text { if and only if } \quad x \mid y
$$

Indeed, $y=m x$ implies $y \in R x$, so $R y \subset R x$. Conversely, $R y \subset R x$ implies $y \in R x$, so $y=m x$ for some $m \in R$.

Next, given x, y in a PID R, we claim that $g \in R$ such that

$$
R g=R x+R y
$$

is a greatest common divisor for x and y, in the sense that for any $d \in R$ dividing both x and y, also d divides g (and g itself divides x and y). Indeed, $d \mid x$ gives $R x \subset R d$. Thus, since $R d$ is closed under addition, any common divisor d of x and y has

$$
R x+R y \subset R d
$$

Thus, $g \in R g \subset R d$, so $g=r d$ for some $r \in R$. And $x \in R g$ and $y \in R g$ show that this g does divide both x and y.
Further, note that since a $g c d g=\operatorname{gcd}(x, y)$ of two elements x, y in the PID R is a generator for $R x+R y$, this $g c d$ is expressible as $g=r x+s y$ for some $r, s \in R$.

In particular, a point that starts to address unique factorization is that an irreducible element p in a PID R is prime, in the sense that $p \mid a b$ implies $p \mid a$ or $p \mid b$. Indeed, the proof is the same as for integers, as follows. If p does not divide a, then the irreducibility of p implies that $1=\operatorname{gcd}(p, a)$, since (by definition of irreducible) p has no proper divisors. Let $r, s \in R$ be such that $1=r p+s a$. Let $a b=t p$. Then

$$
b=b \cdot 1=b \cdot(r p+s a)=b r \cdot p+s \cdot a b=p \cdot(b r+s t)
$$

and, thus, b is a multiple of p.
[3.0.2] Corollary: (of proof) Any ascending chain

$$
I_{1} \subset I_{2} \subset \ldots
$$

of ideals in a principal ideal domain is finite, in the sense that there is an index i such that

$$
I_{i}=I_{i+1}=I_{i+2}=\ldots
$$

That is, a PID is Noetherian.
Proof: First, prove the Noetherian property, that any ascending chain of proper ideals

$$
I_{1} \subset I_{2} \subset \ldots
$$

in R must be finite. Indeed, the union I is still a proper ideal, since if it contained 1 some I_{i} would already contain 1, which is not so. Further, $I=R x$ for some $x \in R$, but x must lie in some I_{i}, so already $I=I_{i}$. That is,

$$
I_{i}=I_{i+1}=I_{i+2}=\ldots
$$

Let r be a non-unit in R. If r has no proper factorization $r=x y$ (with neither x nor y a unit), then r is irreducible, and we have factored r. Suppose r has no factorization into irreducibles. Then r itself is not irreducible, so factors as $r=x_{1} y_{1}$ with neither x_{1} nor y_{1} a unit. Since r has no factorization into irreducibles, one of x_{1} or y_{1}, say y_{1}, has no factorization into irreducibles. Thus, $y_{1}=x_{2} y_{2}$ with neither x_{2} nor y_{2} a unit. Continuing, we obtain a chain of inclusions

$$
R r \subset R y_{1} \subset R y_{2} \subset \ldots
$$

with all inclusions strict. This is impossible, by the Noetherian-ness property just proven. ${ }^{[11]}$ That is, all ring elements have factorizations into irreducibles.

The more serious part of the argument is the uniqueness of the factorization, up to changing irreducibles by units, and changing the ordering of the factors. Consider

$$
p_{1}^{e_{1}} \ldots p_{m}^{e_{m}}=(\text { unit }) \cdot q_{1}^{f_{1}} \ldots q_{n}^{f_{n}}
$$

where the p_{i} and q_{j} are irreducibles, and the exponents are positive integers. The fact that $p_{1} \mid a b$ implies $p_{1} \mid a$ or $p_{1} \mid b$ (from above) shows that p_{1} must differ only by a unit from one of the q_{j}. Remove this factor from both sides and continue, by induction.

4. Structure theorem, again

The form of the following theorem is superficially stronger than our earlier version, and is more useful.
[4.0.1] Theorem: Let R be a principal ideal domain, M a finitely-generated free module over R, and N an R-submodule of M. Then there are elements ${ }^{[12]} \quad d_{1}|\ldots| d_{t}$ of R, uniquely determined up to \mathbb{R}^{\times}, and an R-module basis m_{1}, \ldots, m_{t} of M, such that $d_{1} e_{1}, \ldots, d_{t} e_{t}$ is an R-basis of N (or $d_{i} e_{i}=0$).

Proof: From above, the quotient M / N has a well-defined torsion submodule T, and $F=(M / N) / T$ is free. Let $q: M \longrightarrow(M / N) / T$ be the quotient map. Let $\sigma: F \longrightarrow M$ be a section of q, such that

$$
M=\operatorname{ker} q \oplus \sigma(F)
$$

Note that $N \subset \operatorname{ker} q$, and $(\operatorname{ker} q) / N$ is a torsion module. The submodule $\operatorname{ker} q$ of M is canonically defined, though the free complementary submodule ${ }^{[13]} \sigma(F)$ is not. Since $\sigma(F)$ can be described as a sum of a uniquely-determined (from above) number of copies $R /\langle 0\rangle$, we see that this free submodule in M complementary to $\operatorname{ker} q$ gives the 0 elementary divisors. It remains to treat the finitely-generated torsion module $(\operatorname{ker} q) / N$. Thus, without loss of generality, suppose that M / N is torsion (finitely-generated).

[^3]For λ in the set of R-linear functionals $\operatorname{Hom}_{R}(M, R)$ on M, the image $\lambda(M)$ is an ideal in R, as is the image $\lambda(N)$. Let λ be such that $\lambda(N)$ is maximal among all ideals occurring as $\lambda(N)$. ${ }^{[14]}$ Let $\lambda(N)=R x$ for some $x \in R$. We claim that $x \neq 0$. Indeed, express an element $n \in N$ as $n=\sum_{i} r_{i} e_{i}$ for a basis e_{i} of M with $r_{i} \in R$, and with respect to this basis define dual functionals $\mu_{i} \in \operatorname{Hom}_{R}(M, R)$ by

$$
\mu_{i}\left(\sum_{j} s_{j} e_{j}\right)=e_{i} \quad\left(\text { where } s_{j} \in R\right)
$$

If $n \neq 0$ then some coefficient r_{i} is non-zero, and $\mu_{i}(n)=r_{i}$. Take $n \in N$ such that $\lambda(n)=x$.
Claim $\mu(n) \in R x$ for any $\mu \in \operatorname{Hom}_{R}(M, R)$. Indeed, if not, let $r, s \in R$ such that $r \lambda(n)+s \mu(n)$ is the $g c d$ of the two, and $(r \lambda+s \mu)(N)$ is a strictly larger ideal than $R x$, contradiction.

Thus, in particular, $\mu_{i}(n) \in R x$ for all dual functionals μ_{i} for a given basis e_{i} of M. That is, $n=x m$ for some $m \in M$. Then $\lambda(m)=1$. And

$$
M=R m \oplus \operatorname{ker} \lambda
$$

since for any $m^{\prime} \in M$

$$
\lambda\left(m^{\prime}-\lambda\left(m^{\prime}\right) m\right)=\lambda\left(m^{\prime}\right)-\lambda\left(m^{\prime}\right) \cdot 1=0
$$

Further, for $n^{\prime} \in N$ we have $\lambda\left(n^{\prime}\right) \in R x$. Let $\lambda\left(n^{\prime}\right)=r x$. Then

$$
\lambda\left(n^{\prime}-r \cdot n\right)=\lambda\left(n^{\prime}\right)-r \cdot \lambda(n)=\lambda\left(n^{\prime}\right)-r x=0
$$

That is,

$$
N=\left.R n \oplus \operatorname{ker} \lambda\right|_{N}
$$

Thus,

$$
M / N \approx R m / R n \oplus(\operatorname{ker} \lambda) /\left(\left.\operatorname{ker} \lambda\right|_{N}\right)
$$

with $n=x m$. And

$$
R m / R n=R m / R x n \approx R / R x=R /\langle x\rangle
$$

The submodule ker λ is free, being a submodule of a free module over a PID, as is ker $\left.\lambda\right|_{N}$. And the number of generators is reduced by 1 from the number of generators of M. Thus, by induction, we have a basis m_{1}, \ldots, m_{t} of M and x_{1}, \ldots, x_{t} in R such that $n_{i}=x_{i} m_{i}$ is a basis for N, using functional λ_{i} whose kernel is $R m_{i+1}+\ldots+R m_{t}$, and $\lambda_{i}\left(n_{i}\right)=x_{i}$.

We claim that the above procedure makes $x_{i} \mid x_{i+1}$. By construction,

$$
n_{i+1} \in \operatorname{ker} \lambda_{i} \quad \text { and } n_{i} \in \operatorname{ker} \lambda_{i+1}
$$

Thus, with $r, s \in R$ such that $r x_{i}+s x_{i+1}$ is the greatest common divisor $g=\operatorname{gcd}\left(x_{i}, x_{i+1}\right)$, we have

$$
\begin{gathered}
\left(r \lambda_{i}+s \lambda_{i+1}\right)\left(n_{i}+n_{i+1}\right)=r \cdot \lambda_{i}\left(n_{i}\right)+r \cdot \lambda_{i}\left(n_{i+1}\right)++s \cdot \lambda_{i+1}\left(n_{i}\right)+s \cdot \lambda_{i+1}\left(n_{i+1}\right) \\
=r \cdot x_{i}+0++0+s \cdot x_{i+1}=\operatorname{gcd}\left(x_{i}, x_{i+1}\right)
\end{gathered}
$$

That is, $R g \supset R x_{i}$ and $R g \supset R x_{i+1}$. The maximality property of $R x_{i}$ requires that $R x_{i}=R g$. Thus, $R x_{i+1} \subset R x_{i}$, as claimed.

This proves existence of a decomposition as indicated. Proof of uniqueness is far better treated after introduction of a further idea, namely, exterior algebra. Thus, for the moment, we will not prove uniqueness, but will defer this until the later point when we treat exterior algebra.

[^4]
5. Recovering the earlier structure theorem

The above structure theorem on finitely-generated free modules M over PIDs R and submodules $N \subset M$ gives the structure theorem for finitely-generated modules as a corollary, as follows.

Let F be a finitely-generated R-module with generators ${ }^{[15]} \quad f_{1}, \ldots, f_{n}$. Let $S=\left\{f_{1}, \ldots, f_{n}\right\}$, and let M be the free R-module on generators $i: S \longrightarrow M$. Let

$$
q: M \longrightarrow F
$$

be the unique R-module homomorphism such that $q\left(i\left(f_{k}\right)\right)=f_{k}$ for each generator f_{k}. Since $q(M)$ contains all the generators of F, the map q is surjective. ${ }^{[16]}$

Let $N=\operatorname{ker} q$, so by a basic isomorphism theorem

$$
F \approx M / N
$$

By the theorem of the last section, M has a basis m_{1}, \ldots, m_{t} and there are uniquely determined ${ }^{[17]}$ $r_{1}\left|r_{2}\right| \ldots \mid r_{t} \in R$ such that $r_{1} m_{1}, \ldots, r_{t} m_{t}$ is a basis for N. Then

$$
F \approx M / N \approx\left(R m_{1} / R r_{1} m_{1}\right) \oplus \ldots \oplus\left(R m_{t} / R r m_{t}\right) \approx R /\left\langle r_{1}\right\rangle \oplus \ldots R /\left\langle r_{t}\right\rangle
$$

since

$$
R m_{i} / R r_{i} m_{i} \approx R /\left\langle r_{i}\right\rangle
$$

by

$$
r m_{i}+R r_{i} m_{i} \longrightarrow r+R r_{i}
$$

This gives an expression for F of the sort desired.

6. Submodules of free modules

Let R be a principal ideal domain. Let A be a well-ordered set, and M a free module on generators e_{α} for $\alpha \in A$. Let N be a submodule of M.

For $\alpha \in A$, let

$$
I_{\alpha}=\left\{r \in R: \text { there exist } r_{\beta}, \beta<\alpha: r \cdot e_{\alpha}+\sum_{\beta<\alpha} r_{\beta} \cdot e_{\beta} \in N\right\}
$$

Since R is a PID, the ideal I_{α} has a single generator ρ_{α} (which may be 0). Let $n_{\alpha} \in N$ be such that

$$
n_{\alpha}=\rho_{\alpha} \cdot e_{\alpha}+\sum_{\beta<\alpha} r_{\beta} \cdot e_{\beta}
$$

for some $r_{\beta} \in R$. This defines ρ_{α} and n_{α} for all $\alpha \in A$ by transfinite induction.
[6.0.1] Theorem: N is free on the (non-zero elements among) n_{α}.
${ }^{[15]}$ It does not matter whether or not this set is minimal, only that it be finite.
[16] We will have no further use for the generators f_{k} of F after having constructed the finitely-generated free module M which surjects to F.
[17] Uniquely determined up to units.

Proof: It is clear that I_{α} is an ideal in R, so at least one element n_{α} exists, though it may be 0 . For any element $n \in N$ lying in the span of $\left\{e_{\beta}: \beta \leq \alpha\right\}$, for some $r \in R$ the difference $n-r n_{\alpha}$ lies in the span of $\left\{e_{\beta}: \beta<\alpha\right\}$.
We claim that the n_{α} span N. Suppose not, and let $\alpha \in A$ be the first index such that there is $n \in N$ not in that span, with n expressible as $n=\sum_{\beta \leq \alpha} r_{\beta} e_{\beta}$. Then $r_{\alpha}=r \cdot \rho_{\alpha}$ for some $r \in R$, and for suitable coefficients $s_{\beta} \in R$

$$
n-r n_{\alpha}=\sum_{\beta<\alpha} s_{\beta} \cdot e_{\beta}
$$

This element must still fail to be in the span of the n_{γ} 's. Since that sum is finite, the supremum of the indices with non-zero coefficient is strictly less than α. This gives a contradiction to the minimality of α, proving that the n_{α} span N.

Now prove that the (non-zero) n_{α} 's are linearly independent. Indeed, if we have a non-trivial (finite) relation

$$
0=\sum_{\beta} r_{\beta} \cdot n_{\beta}
$$

let α be the highest index (among finitely-many) with $r_{\alpha} \neq 0$ and $n_{\alpha} \neq 0$. Since n_{α} is non-zero, it must be that $\rho_{\alpha} \neq 0$, and then the expression of n_{α} in terms of the basis $\left\{e_{\gamma}\right\}$ includes e_{α} with non-zero coefficient (namely, ρ_{α}). But no n_{β} with $\beta<\alpha$ needs e_{α} in its expression, so for suitable $s_{\beta} \in R$

$$
0=\sum_{\beta} r_{\beta} \cdot n_{\beta}=r_{\alpha} \rho_{\alpha} \cdot e_{\alpha}+\sum_{\beta<\alpha} s_{\beta} \cdot e_{\beta}
$$

contradicting the linear independence of the e_{α} 's. Thus, we conclude that the n_{β} 's are linearly independent.

Exercises

11.[6.0.1] Find two integer vectors $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ such that $\operatorname{gcd}\left(x_{1}, x_{2}\right)=1$ and $\operatorname{gcd}\left(y_{1}, y_{2}\right)=1$, but $\mathbb{Z}^{2} /(\mathbb{Z} x+\mathbb{Z} y)$ has non-trivial torsion.
11.[6.0.2] Show that the \mathbb{Z}-module \mathbb{Q} is torsion-free, but is not free.
11.[6.0.3] Let G be the group of positive rational numbers under multiplication. Is G a free \mathbb{Z}-module? Torsion-free? Finitely-generated?
11.[6.0.4] Let G be the quotient group \mathbb{Q} / \mathbb{Z}. Is G a free \mathbb{Z}-module? Torsion-free? Finitely-generated?
11.[6.0.5] Let $R=\mathbb{Z}[\sqrt{5}]$, and let $M=R \cdot 2+R \cdot(1+\sqrt{5}) \subset \mathbb{Q}(\sqrt{5})$. Show that M is not free over R, although it is torsion-free.
11.[6.0.6] Given an m-by- n matrix M with entries in a PID R, give an existential argument that there are matrices A (n-by- n) and B (m-by- m) with entries in R and with inverses with entries in R, such that $A M B$ is diagonal.
11.[6.0.7] Describe an algorithm which, given a 2-by-3 integer matrix M, finds integer matrices A, B (with integer inverses) such that $A M B$ is diagonal.
11.[6.0.8] Let A be a torsion abelian group, meaning that for every $a \in A$ there is $1 \leq n \in Z$ such that $n \cdot a=0$. Let $A(p)$ be the subgroup of A consisting of elements a such that $p^{\ell} \cdot a=0$ for some integer power p^{ℓ} of a prime p. Show that A is the direct sum of its subgroups $A(p)$ over primes p.
11.[6.0.9] $\left(^{*}\right)$ Let A be a subgroup of \mathbb{R}^{n} such that in each ball there are finitely-many elements of A. Show that A is a free abelian group on at most n generators.

[^0]: ${ }^{[1]}$ Letting letting $i: S \longrightarrow M$ take the role of $f: S \longrightarrow N$ in the definition.

[^1]: [2] The property which we are about to prove is enjoyed by free modules is the defining property of projective modules. Thus, in these terms, we are proving that free modules are projective.

[^2]: [8] This is equivalent to saying that the m_{i} generate M in the sense that the intersection of submodules containing all the m_{i} is just M itself.
 [9] The hypothesis that the ring R is a domain assures that if $r_{i} x_{i}=0$ for $i=1,2$ with $0 \neq r_{i} \in R$ and x_{i} in an R-module, then not only $\left(r_{1} r_{2}\right)\left(x_{1}+x_{2}\right)=0$ but also $r_{1} r_{2} \neq 0$. That is, the notion of torsion module has a simple sense over domains R.
 ${ }^{[10]}$ The conclusion is false in general without an assumption of finite generation. For example, the \mathbb{Z}-module \mathbb{Q} is the ascending union of the free \mathbb{Z}-modules $\frac{1}{N} \cdot \mathbb{Z}$, but is itself not free.

[^3]: [11] Yes, this proof actually shows that in any Noetherian commutative ring with 1 every element has a factorization into irreducibles. This does not accomplish much, however, as the uniqueness is far more serious than existence of factorization.
 [12] Elementary divisors.
 [13] Given a submodule A of a module B, a complementary submodule A^{\prime} to A in B is another submodule A^{\prime} of B such that $B=A \oplus A^{\prime}$. In general, submodules do not admit complementary submodules. Vector spaces over fields are a marked exception to this failure.

[^4]: [14] At this point it is not clear that this maximal ideal is unique, but by the end of the proof we will see that it is. The fact that any ascending chain of proper ideals in a PID has a maximal element, that is, that a PID is Noetherian, is proven along with the proof that a PID is a unique factorization domain.

