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1. Free modules

The following definition is an example of defining things by mapping properties, that is, by the way the object
relates to other objects, rather than by internal structure. The first proposition, which says that there is at
most one such thing, is typical, as is its proof.

Let R be a commutative ring with 1. Let S be a set. A free R-module M on generators S is an R-module
M and a set map i : S −→ M such that, for any R-module N and any set map f : S −→ N , there is a
unique R-module homomorphism f̃ : M −→ N such that

f̃ ◦ i = f : S −→ N

The elements of i(S) in M are an R-basis for M .

[1.0.1] Proposition: If a free R-module M on generators S exists, it is unique up to unique isomorphism.

Proof: First, we claim that the only R-module homomorphism F : M −→ M such that F ◦ i = i is the
identity map. Indeed, by definition, [1] given i : S −→M there is a unique ĩ : M −→M such that ĩ ◦ i = i.
The identity map on M certainly meets this requirement, so, by uniqueness, ĩ can only be the identity.

Now let M ′ be another free module on generators S, with i′ : S −→M ′ as in the definition. By the defining
property of (M, i), there is a unique ĩ′ : M −→ M ′ such that ĩ′ ◦ i = i′. Similarly, there is a unique ĩ such
that ĩ ◦ i′ = i. Thus,

i = ĩ ◦ i′ = ĩ ◦ ĩ′ ◦ i
[1] Letting letting i : S −→M take the role of f : S −→ N in the definition.
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168 Finitely-generated modules

Similarly,
i′ = ĩ′ ◦ i = ĩ′ ◦ ĩ ◦ i′

From the first remark of this proof, this shows that

ĩ ◦ ĩ′ = identity map on M

ĩ′ ◦ ĩ = identity map on M ′

So ĩ′ and ĩ are mutual inverses. That is, M and M ′ are isomorphic, and in a fashion that respects the maps
i and i′. Further, by uniqueness, there is no other map between them that respects i and i′, so we have a
unique isomorphism. ///

Existence of a free module remains to be demonstrated. We should be relieved that the uniqueness result
above assures that any successful construction will invariably yield the same object. Before proving existence,
and, thus, before being burdened with irrelevant internal details that arise as artifacts of the construction,
we prove the basic facts about free modules.

[1.0.2] Proposition: A free R-module M on generators i : S −→ M is generated by i(S), in the sense
that the only R-submodule of M containing the image i(S) is M itself.

Proof: Let N be the submodule generated by i(S), that is, the intersection of all submodules of M containing
i(S). Consider the quotientM/N , and the map f : S −→M/N by f(s) = 0 for all s ∈ S. Let ζ : M −→M/N
be the 0 map. Certainly ζ ◦ i = f . If M/N 6= 0, then the quotient map q : M −→M/N is not the zero map
ζ, and also q ◦ i = f . But this would contradict the uniqueness in the definition of M . ///

For a set X of elements of an R-module M , if a relation∑
x∈X

rx x = 0

with rx ∈ R and x ∈ M (with all but finitely-many coefficients rx being 0) implies that all coefficients rx
are 0, say that the elements of X are linearly independent (over R).

[1.0.3] Proposition: Let M be a free R-module on generators i : S −→ M . Then any relation (with
finitely-many non-zero coefficients rs ∈ R) ∑

s∈S
rs i(s) = 0

must be trivial, that is, all coefficients rs are 0. That is, the elements of i(S) are linearly independent.

Proof: Suppose
∑
s rs i(s) = 0 in the free module M . To show that every coefficient rs is 0, fix so ∈ S and

map f : S −→ R itself by

f(s) =
{

0 (s 6= so)
1 (s = so)

Let f̃ be the associated R-module homomorphism f̃ : M −→ R. Then

0 = f̃(0) = f̃(
∑
s

rs i(s)) = rso

This holds for each fixed index so, so any such relation is trivial. ///
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[1.0.4] Proposition: Let f : B −→ C be a surjection of R-modules, where C is free on generators S
with i : S −→ C. Then there is an injection j : C −→ B such that [2]

f ◦ j = 1C and B = (ker f)⊕ j(C)

[1.0.5] Remark: The map j : C −→ B of this proposition is a section of the surjection f : B −→ C.

Proof: Let {bs : s ∈ S} be any set of elements of B such that f(bs) = i(s). Invoking the universal property
of the free module, given the choice of {bx} there is a unique R-module homomorphism j : C −→ B such
that (j ◦ i)(s) = bs. It remains to show that jC ⊕ ker f = B. The intersection jC ∩ ker f is trivial, since for∑
s rs j(s) in the kernel (with all but finitely-many rs just 0)

C 3 0 = f

(∑
s

rs j(s)

)
=
∑
s

rs i(s)

We have seen that any such relation must be trivial, so the intersection f(C) ∩ kerf is trivial.

Given b ∈ B, let f(b) =
∑
s rs i(s) (a finite sum), using the fact that the images i(s) generate the free

module C. Then

f(b− j(f(b))) = f(b−
∑
s

rsbs) == f(b)−
∑
s

rsf(bs) =
∑
s

rsi(s)−
∑
s

rsi(s) = 0

Thus, j(C) + ker f = B. ///

We have one more basic result before giving a construction, and before adding any hypotheses on the ring
R.

The following result uses an interesting trick, reducing the problem of counting generators for a free module
F over a commutative ring R with 1 to counting generators for vector spaces over a field R/M , where M is
a maximal proper ideal in R. We see that the number of generators for a free module over a commutative
ring R with unit 1 has a well-defined cardinality, the R-rank of the free module.

[1.0.6] Theorem: Let F be a free R-module on generators i : S −→ F , where R is a commutative ring
with 1. Suppose that F is also a free R-module on generators j : T −→ F . Then |S| = |T |.

Proof: Let M be a maximal proper ideal in R, so k = R/M is a field. Let

E = M · F = collection of finite sums of elements mx, m ∈M,x ∈ F

and consider the quotient
V = F/E

with quotient map q : F −→ V . This quotient has a canonical k-module structure

(r +M) · (x+M · F ) = rx+M · F

We claim that V is a free k-module on generators q◦i : S −→ V , that is, is a vector space on those generators.
Lagrange’s replacement argument shows that the cardinality of the number of generators for a vector space
over a field is well-defined, so a successful comparison of generators for the original module and this vector
space quotient would yield the result.

[2] The property which we are about to prove is enjoyed by free modules is the defining property of projective

modules. Thus, in these terms, we are proving that free modules are projective.
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To show that V is free over k, consider a set map f : S −→W where W is a k-vectorspace. The k-vectorspace
W has a natural R-module structure compatible with the k-vectorspace structure, given by

r · (x+M · F ) = rx+M · F

Let f̃ : F −→ W be the unique R-module homomorphism such that f̃ ◦ i = f . Since m · w = 0 for any
m ∈M and w ∈W , we have

0 = m · f(s) = m · f̃(i(s)) = f̃(m · i(s))

so
ker f̃ ⊃M · F

Thus, f̄ : V −→W defined by
f̄(x+M · F ) = f̃(x)

is well-defined, and f̄ ◦ (q ◦ i) = f . This proves the existence part of the defining property of a free module.

For uniqueness, the previous argument can be reversed, as follows. Given f̄ : V −→W such that f̄◦(q◦i) = f ,
let f̃ = f̄ ◦ q. Since there is a unique f̃ : F −→W with f̃ ◦ i = f , there is at most one f̄ . ///

Finally, we construct free modules, as a proof of existence. [3]

Given a non-empty set S, let M be the set of R-valued functions on S which take value 0 outside a finite
subset of S (which may depend upon the function). Map i : S −→M by letting i(s) be the function which
takes value 1 at s ∈ S and is 0 otherwise. Add functions value-wise, and let R act on M by value-wise
multiplication.

[1.0.7] Proposition: The M and i just constructed is a free module on generators S. In particular,
given a set map f : S −→ N for another R-module N , for m ∈M define f̃(m) ∈ N by [4]

f̃(m) =
∑
s∈S

m(s) · f(s)

Proof: We might check that the explicit expression (with only finitely-many summands non-zero) is an
R-module homomorphism: that it respects addition in M is easy. For r ∈ R, we have

f̃(r ·m) =
∑
s∈S

(r ·m(s)) · f(s) = r ·
∑
s∈S

m(s) · f(s) = r · f̃(m)

And there should be no other R-module homomorphism from M to N such that f̃ ◦ i = f . Let F : M −→ N
be another one. Since the elements {i(s) : s ∈ S} generate M as an R-module, for an arbitrary collection
{rs ∈ R : s ∈ S} with all but finitely-many 0,

F

(∑
s∈S

rs · i(s)

)
=
∑
s∈S

rs · F (i(s)) =
∑
s∈S

rs · f(s) = f̃

(∑
s∈S

rs · i(s)

)

so necessarily F = f̃ , as desired. ///

[3] Quite pointedly, the previous results did not use any explicit internal details of what a free module might be, but,

rather, only invoked the external mapping properties.

[4] In this formula, the function m on S is non-zero only at finitely-many s ∈ S, so the sum is finite. And m(s) ∈ R
and f(s) ∈ N , so this expression is a finite sum of R-multiples of elements of N , as required.
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[1.0.8] Remark: For finite generator sets often one takes

S = {1, 2, . . . , n}

and then the construction above of the free module on generators S can be identified with the collection Rn

of ordered n-tuples of elements of R, as usual.

2. Finitely-generated modules over a domain

In the sequel, the results will mostly require that R be a domain, or, more stringently, a principal ideal
domain. These hypotheses will be carefully noted.

[2.0.1] Theorem: Let R be a principal ideal domain. Let M be a free R-module on generators
i : S −→M . Let N be an R-submodule. Then N is a free R-module on at most |S| generators. [5]

Proof: Induction on the cardinality of S. We give the proof for finite sets S. First, for M = R1 = R a free
module on a single generator, an R-submodule is an ideal in R. The hypothesis that R is a PID assures that
every ideal in R needs at most one generator. This starts the induction.

Let M = Rm, and let p : Rm −→ Rm−1 be the map

p(r1, r2, r3, . . . , rm) = (r2, r3, . . . , rm)

The image p(N) is free on ≤ m − 1 generators, by induction. From the previous section, there is always a
section j : p(N) −→ N such that p ◦ j = 1p(N) and

N = ker p|N ⊕ j(p(N))

Since p ◦ j = 1p(N), necessarily j is an injection, so is an isomorphism to its image, and j(p(N)) is free on
≤ m−1 generators. And ker p|N is a submodule of R, so is free on at most 1 generator. We would be done if
we knew that a direct sum M1⊕M2 of free modules M1,M2 on generators i1 : Si −→M1 and i2 : S2 −→M2

is a free module on the disjoint union S = S1 ∪ S2 of the two sets of generators. We excise that argument
to the following proposition. ///

[2.0.2] Proposition: A direct sum[6] M = M1⊕M2 of free modulesM1,M2 on generators i1 : Si −→M1

and i2 : S2 −→M2 is a free module on the disjoint union S = S1 ∪ S2 of the two sets of generators. [7]

Proof: Given another module N and a set map f : S −→ N , the restriction fj of f to Sj gives a unique
module homomorphism f̃j : Mj −→M such that f̃j ◦ ij = fj . Then

f̃(m1, m2) = (f1m1, f2m2)

[5] The assertion of the theorem is false without some hypotheses on R. For example, even in the case that M has a

single generator, to know that every submodule needs at most a single generator is exactly to assert that every ideal

in R is principal.

[6] Though we will not use it at this moment, one can give a definition of direct sum in the same mapping-theoretic

style as we have given for free module. That is, the direct sum of a family {Mα : α ∈ A} of modules is a module

M and homomorphisms iα : Mα −→ M such that, for every family of homomorphisms fα : Mα −→ N to another

module N , there is a unique f : M −→ N such that every fα factors through f in the sense that fα = f ◦ iα.

[7] This does not need the assumption that R is a principal ideal domain.
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is a module homomorphism from the direct sum to N with f̃ ◦ i = f . On the other hand, given any map
g : M −→ N such that g ◦ i = f , by the uniqueness on the summands M1 and M2 inside M , if must be that
g ◦ ij = fj for j = 1, 2. Thus, this g is f̃ . ///

For an R-module M , for m ∈M the annihilator AnnR(m) of m in R is

AnnR(m) = {r ∈ R : rm = 0}

It is easy to check that the annihilator is an ideal in R. An element m ∈ M is a torsion element of M if
its annihilator is not the 0 ideal. The torsion submodule M tors of M is

M tors = {m ∈M : AnnR(m) 6= {0}}

A module is torsion free if its torsion submodule is trivial.

[2.0.3] Proposition: For a domain R, the torsion submodule M tors of a given R-module M is an
R-submodule of M , and M/M tors is torsion-free.

Proof: For torsion elements m,n in M , let x be a non-zero element of AnnR(m) and y a non-zero element
of Ann(n). Then xy 6= 0, since R is a domain, and

(xy)(m+ n) = y(xm) + x(yn) = y · 0 + x · 0 = 0

And for r ∈ R,
x(rm) = r(xm) = r · 0 = 0

Thus, the torsion submodule is a submodule.

To show that the quotient M/M tors is torsion free, suppose r · (m + M tors) ⊂ M tors for r 6= 0. Then
rm ∈ M tors. Thus, there is s 6= 0 such that s(rm) = 0. Since R is a domain, rs 6= 0, so m itself is torsion,
so m+M tors = M tors, which is 0 in the quotient. ///

An R-module M is finitely generated if there are finitely-many m1, . . . ,mn such that
∑
i Rmi = M . [8]

[2.0.4] Proposition: Let R be a domain. [9] Given a finitely-generated [10] R-module M , there is a
(not necessarily unique) maximal free submodule F , and M/F is a torsion module.

Proof: Let X be a set of generators for M , and let S be a maximal subset of X such that (with inclusion
i : S −→ M) the submodule generated by S is free. To be careful, consider why there is such a maximal
subset. First, for φ not to be maximal means that there is x1 ∈ X such that Rx1 ⊂ M is free on generator
{x1}. If {x1} is not maximal with this property, then there is x2 ∈ X such that Rx1 + Rx2 is free on
generators {x1, x2}. Since X is finite, there is no issue of infinite ascending unions of free modules. Given
x ∈ X but not in S, by the maximality of S there are coefficients 0 6= r ∈ R and rs ∈ R such that

rx+
∑
s∈S

rs · i(s) = 0

[8] This is equivalent to saying that the mi generate M in the sense that the intersection of submodules containing

all the mi is just M itself.

[9] The hypothesis that the ring R is a domain assures that if rixi = 0 for i = 1, 2 with 0 6= ri ∈ R and xi in an

R-module, then not only (r1r2)(x1 + x2) = 0 but also r1r2 6= 0. That is, the notion of torsion module has a simple

sense over domains R.

[10] The conclusion is false in general without an assumption of finite generation. For example, the Z-module Q is

the ascending union of the free Z-modules 1
N · Z, but is itself not free.
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so M/F is torsion. ///

[2.0.5] Theorem: Over a principal ideal domain R a finitely-generated torsion-free module M is free.

Proof: Let X be a finite set of generators of M . From the previous proposition, let S be a maximal subset
of X such that the submodule F generated by the inclusion i : S −→ M is free. Let x1, . . . , xn be the
elements of X not in S, and since M/F is torsion, for each xi there is 0 6= ri ∈ R be such that rixi ∈ F .
Let r =

∏
i ri. This is a finite product, and is non-zero since R is a domain. Thus, r ·M ⊂ F . Since F is

free, rM is free on at most |S| generators. Since M is torsion-free, the multiplication by r map m −→ rm
has trivial kernel in M , so M ≈ rM . That is, M is free. ///

[2.0.6] Corollary: Over a principal ideal domain R a finitely-generated module M is expressible as

M ≈M tors ⊕ F

where F is a free module and M tors is the torsion submodule of M .

Proof: We saw above that M/M tors is torsion-free, so (being still finitely-generated) is free. The quotient
map M −→M/M tors admits a section σ : M/M tors −→M , and thus

M = M tors ⊕ σ(M/M tors) = M tors ⊕ free

as desired. ///

[2.0.7] Corollary: Over a principal ideal domain R, a submodule N of a finitely-generated R-module
M is finitely-generated.

Proof: Let F be a finitely-generated free module which surjects to M , for example by choosing generators
S for M and then forming the free module on S. The inverse image of N in F is a submodule of a free
module on finitely-many generators, so (from above) needs at most that many generators. Mapping these
generators forward to N proves the finite-generation of N . ///

[2.0.8] Proposition: Let R be a principal ideal domain. Let e1, . . . , ek be elements of a finitely-generated
free R-module M which are linearly independent over R, and such that

M/(Re1 + . . .+Rek) is torsion-free, hence free

Then this collection can be extended to an R-basis for M .

Proof: Let N be the submodule N = Re1 + . . . + Rek generated by the ei. The quotient M/N , being
finitely-generated and torsion-less, is free. Let ek+1, . . . , en be elements of M whose images in M/N are a
basis for M/N . Let q : M −→M/N be the quotient map. Then, as above, q has a section σ : M/N −→M
which takes q(ei) to ei. And, as above,

M = ker q ⊕ σ(M/N) = N ⊕ σ(M/N)

Since ek+1, . . . , en is a basis for M/N , the collection of all e1, . . . , en is a basis for M . ///

3. PIDs are UFDs

We have already observed that Euclidean rings are unique factorization domains and are principal ideal
domains. The two cases of greatest interest are the ordinary integers Z and polynomials k[x] in one variable
over a field k. But, also, we do have
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[3.0.1] Theorem: A principal ideal domain is a unique factorization domain.

Before proving this, there are relatively elementary remarks that are of independent interest, and useful in
the proof. Before anything else, keep in mind that in a domain R (with identity 1), for x, y ∈ R,

Rx = Ry if and only if x = uy for some unit u ∈ R×

Indeed, x ∈ Ry implies that x = uy, while y ∈ Rx implies y = vx for some v, and then y = uv · y or
(1 − uv)y = 0. Since R is a domain, either y = 0 (in which case this discussion was trivial all along) or
uv = 1, so u and v are units, as claimed.

Next recall that divisibility x|y is inclusion-reversion for the corresponding ideals, that is

Rx ⊃ Ry if and only if x|y

Indeed, y = mx implies y ∈ Rx, so Ry ⊂ Rx. Conversely, Ry ⊂ Rx implies y ∈ Rx, so y = mx for some
m ∈ R.

Next, given x, y in a PID R, we claim that g ∈ R such that

Rg = Rx+Ry

is a greatest common divisor for x and y, in the sense that for any d ∈ R dividing both x and y, also d
divides g (and g itself divides x and y). Indeed, d|x gives Rx ⊂ Rd. Thus, since Rd is closed under addition,
any common divisor d of x and y has

Rx+Ry ⊂ Rd

Thus, g ∈ Rg ⊂ Rd, so g = rd for some r ∈ R. And x ∈ Rg and y ∈ Rg show that this g does divide both x
and y.

Further, note that since a gcd g = gcd(x, y) of two elements x, y in the PID R is a generator for Rx + Ry,
this gcd is expressible as g = rx+ sy for some r, s ∈ R.

In particular, a point that starts to address unique factorization is that an irreducible element p in a PID R
is prime, in the sense that p|ab implies p|a or p|b. Indeed, the proof is the same as for integers, as follows. If
p does not divide a, then the irreducibility of p implies that 1 = gcd(p, a), since (by definition of irreducible)
p has no proper divisors. Let r, s ∈ R be such that 1 = rp+ sa. Let ab = tp. Then

b = b · 1 = b · (rp+ sa) = br · p+ s · ab = p · (br + st)

and, thus, b is a multiple of p.

[3.0.2] Corollary: (of proof) Any ascending chain

I1 ⊂ I2 ⊂ . . .

of ideals in a principal ideal domain is finite, in the sense that there is an index i such that

Ii = Ii+1 = Ii+2 = . . .

That is, a PID is Noetherian.

Proof: First, prove the Noetherian property, that any ascending chain of proper ideals

I1 ⊂ I2 ⊂ . . .
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in R must be finite. Indeed, the union I is still a proper ideal, since if it contained 1 some Ii would already
contain 1, which is not so. Further, I = Rx for some x ∈ R, but x must lie in some Ii, so already I = Ii.
That is,

Ii = Ii+1 = Ii+2 = . . .

Let r be a non-unit in R. If r has no proper factorization r = xy (with neither x nor y a unit), then r is
irreducible, and we have factored r. Suppose r has no factorization into irreducibles. Then r itself is not
irreducible, so factors as r = x1y1 with neither x1 nor y1 a unit. Since r has no factorization into irreducibles,
one of x1 or y1, say y1, has no factorization into irreducibles. Thus, y1 = x2y2 with neither x2 nor y2 a unit.
Continuing, we obtain a chain of inclusions

Rr ⊂ Ry1 ⊂ Ry2 ⊂ . . .

with all inclusions strict. This is impossible, by the Noetherian-ness property just proven. [11] That is, all
ring elements have factorizations into irreducibles.

The more serious part of the argument is the uniqueness of the factorization, up to changing irreducibles by
units, and changing the ordering of the factors. Consider

pe11 . . . pem
m = (unit) · qf11 . . . qfn

n

where the pi and qj are irreducibles, and the exponents are positive integers. The fact that p1|ab implies
p1|a or p1|b (from above) shows that p1 must differ only by a unit from one of the qj . Remove this factor
from both sides and continue, by induction. ///

4. Structure theorem, again

The form of the following theorem is superficially stronger than our earlier version, and is more useful.

[4.0.1] Theorem: Let R be a principal ideal domain, M a finitely-generated free module over R, and N
an R-submodule of M . Then there are elements [12] d1| . . . |dt of R, uniquely determined up to R×, and an
R-module basis m1, . . . ,mt of M , such that d1e1, . . . , dtet is an R-basis of N (or diei = 0).

Proof: From above, the quotient M/N has a well-defined torsion submodule T , and F = (M/N)/T is free.
Let q : M −→ (M/N)/T be the quotient map. Let σ : F −→M be a section of q, such that

M = ker q ⊕ σ(F )

Note that N ⊂ ker q, and (ker q)/N is a torsion module. The submodule ker q of M is canonically
defined, though the free complementary submodule [13] σ(F ) is not. Since σ(F ) can be described as a
sum of a uniquely-determined (from above) number of copies R/〈0〉, we see that this free submodule in M
complementary to ker q gives the 0 elementary divisors. It remains to treat the finitely-generated torsion
module (ker q)/N . Thus, without loss of generality, suppose that M/N is torsion (finitely-generated).

[11] Yes, this proof actually shows that in any Noetherian commutative ring with 1 every element has a factorization

into irreducibles. This does not accomplish much, however, as the uniqueness is far more serious than existence of

factorization.

[12] Elementary divisors.

[13] Given a submodule A of a module B, a complementary submodule A′ to A in B is another submodule A′ of

B such that B = A⊕A′. In general, submodules do not admit complementary submodules. Vector spaces over fields

are a marked exception to this failure.
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For λ in the set of R-linear functionals HomR(M,R) on M , the image λ(M) is an ideal in R, as is the image
λ(N). Let λ be such that λ(N) is maximal among all ideals occurring as λ(N). [14] Let λ(N) = Rx for
some x ∈ R. We claim that x 6= 0. Indeed, express an element n ∈ N as n =

∑
i riei for a basis ei of M

with ri ∈ R, and with respect to this basis define dual functionals µi ∈ HomR(M,R) by

µi(
∑
j

sj ej) = ei (where sj ∈ R)

If n 6= 0 then some coefficient ri is non-zero, and µi(n) = ri. Take n ∈ N such that λ(n) = x.

Claim µ(n) ∈ Rx for any µ ∈ HomR(M,R). Indeed, if not, let r, s ∈ R such that rλ(n) + sµ(n) is the gcd of
the two, and (rλ+ sµ)(N) is a strictly larger ideal than Rx, contradiction.

Thus, in particular, µi(n) ∈ Rx for all dual functionals µi for a given basis ei of M . That is, n = xm for
some m ∈M . Then λ(m) = 1. And

M = Rm⊕ kerλ

since for any m′ ∈M
λ(m′ − λ(m′)m) = λ(m′)− λ(m′) · 1 = 0

Further, for n′ ∈ N we have λ(n′) ∈ Rx. Let λ(n′) = rx. Then

λ(n′ − r · n) = λ(n′)− r · λ(n) = λ(n′)− rx = 0

That is,
N = Rn⊕ kerλ|N

Thus,
M/N ≈ Rm/Rn⊕ (kerλ)/(kerλ|N )

with n = xm. And
Rm/Rn = Rm/Rxn ≈ R/Rx = R/〈x〉

The submodule kerλ is free, being a submodule of a free module over a PID, as is kerλ|N . And the number
of generators is reduced by 1 from the number of generators of M . Thus, by induction, we have a basis
m1, . . . ,mt of M and x1, . . . , xt in R such that ni = ximi is a basis for N , using functional λi whose kernel
is Rmi+1 + . . .+Rmt, and λi(ni) = xi.

We claim that the above procedure makes xi|xi+1. By construction,

ni+1 ∈ kerλi and ni ∈ kerλi+1

Thus, with r, s ∈ R such that rxi + sxi+1 is the greatest common divisor g = gcd(xi, xi+1), we have

(rλi + sλi+1)(ni + ni+1) = r · λi(ni) + r · λi(ni+1) + +s · λi+1(ni) + s · λi+1(ni+1)

= r · xi + 0 + +0 + s · xi+1 = gcd(xi, xi+1)

That is, Rg ⊃ Rxi and Rg ⊃ Rxi+1. The maximality property of Rxi requires that Rxi = Rg. Thus,
Rxi+1 ⊂ Rxi, as claimed.

This proves existence of a decomposition as indicated. Proof of uniqueness is far better treated after
introduction of a further idea, namely, exterior algebra. Thus, for the moment, we will not prove uniqueness,
but will defer this until the later point when we treat exterior algebra.

[14] At this point it is not clear that this maximal ideal is unique, but by the end of the proof we will see that it is.

The fact that any ascending chain of proper ideals in a PID has a maximal element, that is, that a PID is Noetherian,

is proven along with the proof that a PID is a unique factorization domain.
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5. Recovering the earlier structure theorem

The above structure theorem on finitely-generated free modules M over PIDs R and submodules N ⊂ M
gives the structure theorem for finitely-generated modules as a corollary, as follows.

Let F be a finitely-generated R-module with generators [15] f1, . . . , fn. Let S = {f1, . . . , fn}, and let M be
the free R-module on generators i : S −→M . Let

q : M −→ F

be the unique R-module homomorphism such that q(i(fk)) = fk for each generator fk. Since q(M) contains
all the generators of F , the map q is surjective. [16]

Let N = ker q, so by a basic isomorphism theorem

F ≈M/N

By the theorem of the last section, M has a basis m1, . . . ,mt and there are uniquely determined [17]

r1|r2| . . . |rt ∈ R such that r1m1, . . . , rtmt is a basis for N . Then

F ≈M/N ≈ (Rm1/Rr1m1)⊕ . . .⊕ (Rmt/Rrmt) ≈ R/〈r1〉 ⊕ . . . R/〈rt〉

since
Rmi/Rrimi ≈ R/〈ri〉

by
rmi +Rrimi −→ r +Rri

This gives an expression for F of the sort desired. ///

6. Submodules of free modules

Let R be a principal ideal domain. Let A be a well-ordered set, and M a free module on generators eα for
α ∈ A. Let N be a submodule of M .

For α ∈ A, let
Iα = {r ∈ R : there exist rβ , β < α : r · eα +

∑
β<α

rβ · eβ ∈ N}

Since R is a PID, the ideal Iα has a single generator ρα (which may be 0). Let nα ∈ N be such that

nα = ρα · eα +
∑
β<α

rβ · eβ

for some rβ ∈ R. This defines ρα and nα for all α ∈ A by transfinite induction.

[6.0.1] Theorem: N is free on the (non-zero elements among) nα.

[15] It does not matter whether or not this set is minimal, only that it be finite.

[16] We will have no further use for the generators fk of F after having constructed the finitely-generated free module

M which surjects to F .

[17] Uniquely determined up to units.
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Proof: It is clear that Iα is an ideal in R, so at least one element nα exists, though it may be 0. For any
element n ∈ N lying in the span of {eβ : β ≤ α}, for some r ∈ R the difference n − rnα lies in the span of
{eβ : β < α}.

We claim that the nα span N . Suppose not, and let α ∈ A be the first index such that there is n ∈ N not
in that span, with n expressible as n =

∑
β≤α rβeβ . Then rα = r · ρα for some r ∈ R, and for suitable

coefficients sβ ∈ R
n− rnα =

∑
β<α

sβ · eβ

This element must still fail to be in the span of the nγ ’s. Since that sum is finite, the supremum of the
indices with non-zero coefficient is strictly less than α. This gives a contradiction to the minimality of α,
proving that the nα span N .

Now prove that the (non-zero) nα’s are linearly independent. Indeed, if we have a non-trivial (finite) relation

0 =
∑
β

rβ · nβ

let α be the highest index (among finitely-many) with rα 6= 0 and nα 6= 0. Since nα is non-zero, it must be
that ρα 6= 0, and then the expression of nα in terms of the basis {eγ} includes eα with non-zero coefficient
(namely, ρα). But no nβ with β < α needs eα in its expression, so for suitable sβ ∈ R

0 =
∑
β

rβ · nβ = rα ρα · eα +
∑
β<α

sβ · eβ

contradicting the linear independence of the eα’s. Thus, we conclude that the nβ ’s are linearly independent.
///
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Exercises

11.[6.0.1] Find two integer vectors x = (x1, x2) and y = (y1, y2) such that gcd(x1, x2) = 1 and
gcd(y1, y2) = 1, but Z2/(Zx+ Zy) has non-trivial torsion.

11.[6.0.2] Show that the Z-module Q is torsion-free, but is not free.

11.[6.0.3] Let G be the group of positive rational numbers under multiplication. Is G a free Z-module?
Torsion-free? Finitely-generated?

11.[6.0.4] Let G be the quotient group Q/Z. Is G a free Z-module? Torsion-free? Finitely-generated?

11.[6.0.5] Let R = Z[
√

5], and let M = R · 2 + R · (1 +
√

5) ⊂ Q(
√

5). Show that M is not free over R,
although it is torsion-free.

11.[6.0.6] Given an m-by-n matrix M with entries in a PID R, give an existential argument that there
are matrices A (n-by-n) and B (m-by-m) with entries in R and with inverses with entries in R, such that
AMB is diagonal.

11.[6.0.7] Describe an algorithm which, given a 2-by-3 integer matrix M , finds integer matrices A, B
(with integer inverses) such that AMB is diagonal.

11.[6.0.8] Let A be a torsion abelian group, meaning that for every a ∈ A there is 1 ≤ n ∈ Z such that
n · a = 0. Let A(p) be the subgroup of A consisting of elements a such that p` · a = 0 for some integer power
p` of a prime p. Show that A is the direct sum of its subgroups A(p) over primes p.

11.[6.0.9] (*) Let A be a subgroup of Rn such that in each ball there are finitely-many elements of A.
Show that A is a free abelian group on at most n generators.


