12. Polynomials over UFDs

12.1 Gauss' lemma

12.2 Fields of fractions
12.3 Worked examples

The goal here is to give a general result which has as corollary that that rings of polynomials in several variables

$$
k\left[x_{1}, \ldots, x_{n}\right]
$$

with coefficients in a field k are unique factorization domains in a sense made precise just below. Similarly, polynomial rings in several variables

$$
\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]
$$

with coefficients in \mathbb{Z} form a unique factorization domain. ${ }^{[1]}$

1. Gauss' lemma

A factorization of an element r into irreducibles in an integral domain R is an expression for r of the form

$$
r=u \cdot p_{1}^{e_{1}} \ldots p_{m}^{e_{m}}
$$

where u is a unit, p_{1} through p_{m} are non-associate ${ }^{[2]}$ irreducible elements, and the e_{i} s are positive integers. Two factorizations

$$
\begin{aligned}
& r=u \cdot p_{1}^{e_{1}} \ldots p_{m}^{e_{m}} \\
& r=v \cdot q_{1}^{f_{1}} \ldots q_{n}^{f_{n}}
\end{aligned}
$$

[^0]into irreducibles p_{i} and q_{j} with units u, v are equivalent if $m=n$ and (after possibly renumbering the irreducibles) q_{i} is associate to p_{i} for all indices i. A domain R is a unique factorization domain (UFD) if any two factorizations are equivalent.
[1.0.1] Theorem: (Gauss) Let R be a unique factorization domain. Then the polynomial ring in one variable $R[x]$ is a unique factorization domain.
[1.0.2] Remark: The proof factors $f(x) \in R[x]$ in the larger ring $k[x]$ where k is the field of fractions of R (see below), and rearranges constants to get coefficients into R rather than k. Uniqueness of the factorization follows from uniqueness of factorization in R and uniqueness of factorization in $k[x]$.
[1.0.3] Corollary: A polynomial ring $k\left[x_{1}, \ldots, x_{n}\right]$ in a finite number of variables x_{1}, \ldots, x_{n} over a field k is a unique factorization domain. (Proof by induction.)
[1.0.4] Corollary: A polynomial ring $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ in a finite number of variables x_{1}, \ldots, x_{n} over the integers \mathbb{Z} is a unique factorization domain. (Proof by induction.)

Before proving the theorem itself, we must verify that unique factorization recovers some naive ideas about divisibility. Recall that for $r, s \in R$ not both 0 , an element $g \in R$ dividing both r and s such that any divisor d of both r and s also divides g, is a greatest common divisor of r and s, denoted $g=\operatorname{gcd}(r, s)$.
[1.0.5] Proposition: Let R be a unique factorization domain. For r, s in R not both 0 there exists $\operatorname{gcd}(r, s)$ unique up to an element of R^{\times}. Factor both r and s into irreducibles

$$
r=u \cdot p_{1}^{e_{1}} \ldots p_{m}^{e_{m}} \quad s=v \cdot p_{1}^{f_{1}} \ldots p_{m}^{f_{n}}
$$

where u and v are units and the p_{i} are mutually non-associate irreducibles (allow the exponents to be 0 , to use a common set of irreducibles to express both r and s). Then the greatest common divisor has exponents which are the minima of those of r and s

$$
\operatorname{gcd}(r, s)=p_{1}^{\min \left(e_{1}, f_{1}\right)} \ldots p_{m}^{\min \left(e_{m}, f_{m}\right)}
$$

Proof: Let

$$
g=p_{1}^{\min \left(e_{1}, f_{1}\right)} \ldots p_{m}^{\min \left(e_{m}, f_{m}\right)}
$$

First, g does divide both r and s. On the other hand, let d be any divisor of both r and s. Enlarge the collection of inequivalent irreducibles p_{i} if necessary such that d can be expressed as

$$
d=w \cdot p_{1}^{h_{1}} \ldots p_{m}^{h_{m}}
$$

with unit w and non-negative integer exponents. From $d \mid r$ there is $D \in R$ such that $d D=r$. Let

$$
D=W \cdot p_{1}^{H_{1}} \ldots p_{m}^{H_{m}}
$$

Then

$$
w W \cdot p_{1}^{h_{1}+H_{1}} \ldots p_{m}^{h_{m}+H_{m}}=d \cdot D=r=u \cdot p_{1}^{e_{1}} \ldots p_{m}^{e_{m}}
$$

Unique factorization and non-associateness of the p_{i} implies that the exponents are the same: for all i

$$
h_{i}+H_{i}=e_{i}
$$

Thus, $h_{i} \leq e_{i}$. The same argument applies with r replaced by s, so $h_{i} \leq f_{i}$, and $h_{i} \leq \min \left(e_{i}, f_{i}\right)$. Thus, $d \mid g$. For uniqueness, note that any other greatest common divisor h would have $g \mid h$, but also $h \mid r$ and $h \mid s$. Using the unique (up to units) factorizations, the exponents of the irreducibles in g and h must be the same, so g and h must differ only by a unit.
[1.0.6] Corollary: Let R be a unique factorization domain. For r and s in R, let $g=\operatorname{gcd}(r, s)$ be the greatest common divisor. Then $\operatorname{gcd}(r / g, s / g)=1$.

2. Fields of fractions

The field of fractions k of an integral domain R is the collection of fractions a / b with $a, b \in R$ and $b \neq 0$ and with the usual rules for addition and multiplication. More precisely, k is the set of ordered pairs (a, b) with $a, b \in R$ and $b \neq 0$, modulo the equivalence relation that

$$
(a, b) \sim(c, d)
$$

if and only if $a d-b c=0$. ${ }^{[3]}$ Multiplication and addition are [4]

$$
\begin{gathered}
(a, b) \cdot(c, d)=(a c, b d) \\
(a, b)+(c, d)=(a d+b c, b d)
\end{gathered}
$$

The map $R \longrightarrow k$ by $r \longrightarrow(r, 1) / \sim$ is readily verified to be a ring homomorphism. [5] Write a / b rather than $(a, b) / \sim$. When R is a unique factorization ring, whenever convenient suppose that fractions a / b are in lowest terms, meaning that $\operatorname{gcd}(a, b)=1$.

Extend the notions of divisibility to apply to elements of the fraction field k of R. [6] First, say that $x \mid y$ for two elements x and y in k if there is $r \in R$ such that $s=r x$. ${ }^{[7]}$ And, for r_{1}, \ldots, r_{n} in k, not all 0 , a greatest common divisor $\operatorname{gcd}\left(r_{1}, \ldots, r_{n}\right)$ is an element $g \in k$ such that g divides each r_{i} and such that if $d \in k$ divides each r_{i} then $d \mid g$.
[2.0.1] Proposition: In the field of fractions k of a unique factorization domain R (extended) greatest common divisors exist.

Proof: We reduce this to the case that everything is inside R. Given elements $x_{i}=a_{i} / b_{i}$ in k with a_{i} and b_{i} all in R, take $0 \neq r \in R$ such that $r x_{i} \in R$ for all i. Let G be the greatest common divisor of the $r x_{i}$, and put $g=G / r$. We claim this g is the greatest common divisor of the x_{i}. On one hand, from $G \mid r x_{i}$ it follows that $g \mid x_{i}$. On the other hand, if $d \mid x_{i}$ then $r d \mid r x_{i}$, so $r d$ divides $G=r g$ and $d \mid g$.

The content cont (f) of a polynomial f in $k[x]$ is the greatest common divisor ${ }^{[8]}$ of the coefficients of f.
[2.0.2] Lemma: (Gauss) Let f and g be two polynomials in $k[x]$. Then

$$
\operatorname{cont}(f g)=\operatorname{cont}(f) \cdot \operatorname{cont}(g)
$$

[3] This corresponds to the ordinary rule for equality of two fractions.
${ }^{[4]}$ As usual for fractions.
[5] The assumption that R is a domain, is needed to make this work so simply. For commutative rings (with 1) with proper 0-divisors the natural homomorphism $r \longrightarrow(r, 1)$ of the ring to its field of fractions will not be injective. And this construction will later be seen to be a simple extreme example of the more general notion of localization of rings.
[6] Of course notions of divisibility in a field itself are trivial, since any non-zero element divides any other. This is not what is happening now.
[7] For non-zero r in the domain $R, r x \mid r y$ if and only if $x \mid y$. Indeed, if $r y=m \cdot r x$ then by cancellation (using the domain property), $y=m \cdot x$. And $y=m \cdot x$ implies $r y=m \cdot r x$ directly.
[8] The values of the content function are only well-defined up to units R^{\times}. Thus, Gauss' lemma more properly concerns the equivalence classes of irreducibles dividing the respective coefficients.

Proof: From the remark just above for any $c \in k^{\times}$

$$
\operatorname{cont}(c \cdot f)=c \cdot \operatorname{cont}(f)
$$

Thus, since

$$
\operatorname{gcd}\left(\frac{a}{\operatorname{gcd}(a, b)}, \frac{b}{\operatorname{gcd}(a, b)}\right)=1
$$

without loss of generality $\operatorname{cont}(f)=1$ and $\operatorname{cont}(g)=1$. Thus, in particular, both f and g have coefficients in the ring R. Suppose $\operatorname{cont}(f g) \neq 1$. Then there is non-unit irreducible $p \in R$ dividing all the coefficients of $f g$. Put

$$
\begin{aligned}
& f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots \\
& g(x)=b_{0}+b_{1} x+b_{2} x^{2}+\ldots
\end{aligned}
$$

But p does not divide all the coefficients of f, nor all those of g. Let i be the smallest integer such that p does not divide a_{i}, j the largest integer such that p does not divide b_{j}, and consider the coefficient of x^{i+j} in $f g$. It is

$$
a_{0} b_{i+j}+a_{1} b_{i+j-1}+\ldots+a_{i-1} b_{j-1}+a_{i} b_{j}+a_{i+1} b_{j-1}+\ldots+a_{i+j-1} b_{1}+a_{i+j} b_{0}
$$

In summands to the left of $a_{i} b_{j}$ the factor a_{k} with $k<i$ is divisible by p, and in summands to the right of $a_{i} b_{j}$ the factor b_{k} with $k<j$ is divisible by p. This leaves only the summand $a_{i} b_{j}$ to consider. Since the whole sum is divisible by p, it follows that $p \mid a_{i} b_{j}$. Since R is a unique factorization domain, either $p \mid a_{i}$ or $p \mid b_{j}$, contradiction. Thus, it could not have been that p divided all the coefficients of $f g$.
[2.0.3] Corollary: Let f be a polynomial in $R[x]$. If f factors properly in $k[x]$ then f factors properly in $R[x]$. More precisely, if f factors as $f=g \cdot h$ with g and h polynomials in $k[x]$ of positive degree, then there is $c \in k^{\times}$such that $c g \in R[x]$ and $h / c \in R[x]$, and

$$
f=(c g) \cdot(h / c)
$$

is a factorization of f in $R[x]$.
Proof: Since f has coefficients in R, cont (f) is in R. By replacing f by f / c we may suppose that $\operatorname{cont}(f)=1$. By Gauss' lemma

$$
\operatorname{cont}(g) \cdot \operatorname{cont}(h)=\operatorname{cont}(f)=1
$$

Let $c=\operatorname{cont}(g)$. Then $\operatorname{cont}(h)=1 / c$, and $\operatorname{cont}(g / c)=1$ and $\operatorname{cont}(c \cdot h)=1$, so g / c and $c h$ are in $R[x]$, and $(g / c) \cdot(c h)=f$. Thus f is reducible in $R[x]$.
[2.0.4] Corollary: The irreducibles in $R[x]$ are of two sorts, namely irreducibles in R and polynomials f in $R[x]$ with $\operatorname{cont}(f)=1$ which are irreducible in $k[x]$.

Proof: If an irreducible p in R factored in $R[x]$ as $p=g h$, then the degrees of g and h would be 0 , and g and h would be in R. The irreducibility of p in R would imply that one of g or h would be a unit. Thus, irreducibles in R remain irreducible in $R[x]$.

Suppose p was irreducible in $R[x]$ of positive degree. If $g=\operatorname{cont}(p)$ was a non-unit, then $p=(p / g) \cdot g$ would be a proper factorization of p, contradiction. Thus, $\operatorname{cont}(p)=1$. The previous corollary shows that p is irreducible in $k[x]$.
Last suppose that f is irreducible in $k[x]$, and has $\operatorname{cont}(f)=1$. The irreducibility in $k[x]$ implies that if $f=g h$ in $R[x]$ then the degree one of g or h must be 0 . Without loss of generality suppose $\operatorname{deg} g=0$, so cont $(g)=g$. Since

$$
1=\operatorname{cont}(f)=\operatorname{cont}(g) \operatorname{cont}(h)
$$

g is a unit in R, so $f=g h$ is not a proper factorization, and f is irreducible in $R[x]$.
Proof: (of theorem) We can now combine the corollaries of Gauss' lemma to prove the theorem. Given a polynomial f in $R[x]$, let $c=\operatorname{cont}(f)$, so from above $\operatorname{cont}(f / c)=1$. The hypothesis that R is a unique factorization domain allows us to factor u into irreducibles in R, and we showed just above that these irreducibles remain irreducible in $R[x]$.
Replace f by $f / \operatorname{cont}(f)$ to assume now that $\operatorname{cont}(f)=1$. Factor f into irreducibles in $k[x]$ as

$$
f=u \cdot p_{1}^{e_{1}} \cdots p_{m}^{e_{m}}
$$

where u is in k^{\times}, the p_{i} s are irreducibles in $k[x]$, and the e_{i} s are positive integers. We can replace each p_{i} by $p_{i} / \operatorname{cont}\left(p_{i}\right)$ and replace u by

$$
u \cdot \operatorname{cont}\left(p_{1}\right)^{e_{1}} \cdots \operatorname{cont}\left(p_{m}\right)^{e_{m}}
$$

so then the new p_{i} s are in $R[x]$ and have content 1 . Since content is multiplicative, from $\operatorname{cont}(f)=1$ we find that $\operatorname{cont}(u)=1$, so u is a unit in R. The previous corollaries demonstrate the irreducibility of the (new) $p_{i} \mathrm{~s}$ in $R[x]$, so this gives a factorization of f into irreducibles in $R[x]$. That is, we have an explicit existence of a factorization into irreducibles.

Now suppose that we have two factorizations

$$
f=u \cdot p_{1}^{e_{1}} \cdots p_{m}^{e_{m}}=v \cdot q_{1}^{f_{1}} \cdots q_{n}^{f_{n}}
$$

where u, v are in R (and have unique factorizations there) and the p_{i} and q_{j} are irreducibles in $R[x]$ of positive degree. From above, all the contents of these irreducibles must be 1 . Looking at this factorization in $k[x]$, it must be that $m=n$ and up to renumbering p_{i} differs from q_{i} by a constant in k^{\times}, and $e_{i}=f_{i}$. Since all these polynomials have content 1 , in fact p_{i} differs from q_{i} by a unit in R. By equating the contents of both sides, we see that u and v differ by a unit in R^{\times}. Thus, by the unique factorization in R their factorizations into irreducibles in R (and, from above, in $R[x]$) must be essentially the same. Thus, we obtain uniqueness of factorization in $R[x]$.

3. Worked examples

[12.1] Let R be a principal ideal domain. Let I be a non-zero prime ideal in R. Show that I is maximal.
Suppose that I were strictly contained in an ideal J. Let $I=R x$ and $J=R y$, since R is a PID. Then x is a multiple of y, say $x=r y$. That is, $r y \in I$. But y is not in I (that is, not a multiple of p), since otherwise $R y \subset R x$. Thus, since I is prime, $r \in I$, say $r=a p$. Then $p=a p y$, and (since R is a domain) $1=a y$. That is, the ideal generated by y contains 1 , so is the whole ring R. That is, I is maximal (proper).
[12.2] Let k be a field. Show that in the polynomial ring $k[x, y]$ in two variables the ideal $I=$ $k[x, y] \cdot x+k[x, y] \cdot y$ is not principal.

Suppose that there were a polynomial $P(x, y)$ such that $x=g(x, y) \cdot P(x, y)$ for some polynomial g and $y=h(x, y) \cdot P(x, y)$ for some polynomial h.

An intuitively appealing thing to say is that since y does not appear in the polynomial x, it could not appear in $P(x, y)$ or $g(x, y)$. Similarly, since x does not appear in the polynomial y, it could not appear in $P(x, y)$ or $h(x, y)$. And, thus, $P(x, y)$ would be in k. It would have to be non-zero to yield x and y as multiples, so would be a unit in $k[x, y]$. Without loss of generality, $P(x, y)=1$. (Thus, we need to show that I is proper.)

On the other hand, since $P(x, y)$ is supposedly in the ideal I generated by x and y, it is of the form $a(x, y) \cdot x+b(x, y) \cdot y$. Thus, we would have

$$
1=a(x, y) \cdot x+b(x, y) \cdot y
$$

Mapping $x \longrightarrow 0$ and $y \longrightarrow 0$ (while mapping k to itself by the identity map, thus sending 1 to $1 \neq 0$), we would obtain

$$
1=0
$$

contradiction. Thus, there is no such $P(x, y)$.
We can be more precise about that admittedly intuitively appealing first part of the argument. That is, let's show that if

$$
x=g(x, y) \cdot P(x, y)
$$

then the degree of $P(x, y)$ (and of $g(x, y))$ as a polynomial in y (with coefficients in $k[x]$) is 0 . Indeed, looking at this equality as an equality in $k(x)[y]$ (where $k(x)$ is the field of rational functions in x with coefficients in k), the fact that degrees $a d d$ in products gives the desired conclusion. Thus,

$$
P(x, y) \in k(x) \cap k[x, y]=k[x]
$$

Similarly, $P(x, y)$ lies in $k[y]$, so P is in k.
[12.3] Let k be a field, and let $R=k\left[x_{1}, \ldots, x_{n}\right]$. Show that the inclusions of ideals

$$
R x_{1} \subset R x_{1}+R x_{2} \subset \ldots \subset R x_{1}+\ldots+R x_{n}
$$

are strict, and that all these ideals are prime.
One approach, certainly correct in spirit, is to say that obviously

$$
k\left[x_{1}, \ldots, x_{n}\right] / R x_{1}+\ldots+R x_{j} \approx k\left[x_{j+1}, \ldots, x_{n}\right]
$$

The latter ring is a domain (since k is a domain and polynomial rings over domains are domains: proof?) so the ideal was necessarily prime.
But while it is true that certainly x_{1}, \ldots, x_{j} go to 0 in the quotient, our intuition uses the explicit construction of polynomials as expressions of a certain form. Instead, one might try to give the allegedly trivial and immediate proof that sending x_{1}, \ldots, x_{j} to 0 does not somehow cause 1 to get mapped to 0 in k, nor accidentally impose any relations on x_{j+1}, \ldots, x_{n}. A too classical viewpoint does not lend itself to clarifying this. The point is that, given a k-algebra homomorphism $f_{o}: k \longrightarrow k$, here taken to be the identity, and given values 0 for x_{1}, \ldots, x_{j} and values x_{j+1}, \ldots, x_{n} respectively for the other indeterminates, there is a unique k-algebra homomorphism $f: k\left[x_{1}, \ldots, x_{n}\right] \longrightarrow k\left[x_{j+1}, \ldots, x_{n}\right]$ agreeing with f_{o} on k and sending x_{1}, \ldots, x_{n} to their specified targets. Thus, in particular, we can guarantee that $1 \in k$ is not somehow accidentally mapped to 0 , and no relations among the $x_{j+1} \ldots, x_{n}$ are mysteriously introduced.
[12.4] Let k be a field. Show that the ideal M generated by x_{1}, \ldots, x_{n} in the polynomial ring $R=k\left[x_{1}, \ldots, x_{n}\right]$ is maximal (proper).

We prove the maximality by showing that R / M is a field. The universality of the polynomial algebra implies that, given a k-algebra homomorphism such as the identity $f_{o}: k \longrightarrow k$, and given $\alpha_{i} \in k$ (take $\alpha_{i}=0$ here), there exists a unique k-algebra homomorphism $f: k\left[x_{1}, \ldots, x_{n}\right] \longrightarrow k$ extending f_{o}. The kernel of f certainly contains M, since M is generated by the x_{i} and all the x_{i} go to 0 .

As in the previous exercise, one perhaps should verify that M is proper, since otherwise accidentally in the quotient map $R \longrightarrow R / M$ we might not have $1 \longrightarrow 1$. If we do know that M is a proper ideal, then by the uniqueness of the map f we know that $R \longrightarrow R / M$ is (up to isomorphism) exactly f, so M is maximal proper.

Given a relation

$$
1=\sum_{i} f_{i} \cdot x_{i}
$$

with polynomials f_{i}, using the universal mapping property send all x_{i} to 0 by a k-algebra homomorphism to k that does send 1 to 1 , obtaining $1=0$, contradiction.
[3.0.1] Remark: One surely is inclined to allege that obviously $R / M \approx k$. And, indeed, this quotient is at most k, but one should at least acknowledge concern that it not be accidentally 0 . Making the point that not only can the images of the x_{i} be chosen, but also the k-algebra homomorphism on k, decisively eliminates this possibility.
[12.5] Show that the maximal ideals in $R=\mathbb{Z}[x]$ are all of the form

$$
I=R \cdot p+R \cdot f(x)
$$

where p is a prime and $f(x)$ is a monic polynomial which is irreducible modulo p.
Suppose that no non-zero integer n lies in the maximal ideal I in R. Then \mathbb{Z} would inject to the quotient R / I, a field, which then would be of characteristic 0 . Then R / I would contain a canonical copy of \mathbb{Q}. Let α be the image of x in K. Then $K=\mathbb{Z}[\alpha]$, so certainly $K=\mathbb{Q}[\alpha]$, so α is algebraic over \mathbb{Q}, say of degree n. Let $f(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0}$ be a polynomial with rational coefficient such that $f(\alpha)=0$, and with all denominators multiplied out to make the coefficients integral. Then let $\beta=c_{n} \alpha$: this β is still algebraic over \mathbb{Q}, so $\mathbb{Q}[\beta]=\mathbb{Q}(\beta)$, and certainly $\mathbb{Q}(\beta)=\mathbb{Q}(\alpha)$, and $\mathbb{Q}(\alpha)=\mathbb{Q}[\alpha]$. Thus, we still have $K=\mathbb{Q}[\beta]$, but now things have been adjusted so that β satisfies a monic equation with coefficients in \mathbb{Z} : from

$$
0=f(\alpha)=f\left(\frac{\beta}{c_{n}}\right)=c_{n}^{1-n} \beta^{n}+c_{n-1} c_{n}^{1-n} \beta^{n-1}+\ldots+c_{1} c_{n}^{-1} \beta+c_{0}
$$

we multiply through by c_{n}^{n-1} to obtain

$$
0=\beta^{n}+c_{n-1} \beta^{n-1}+c_{n-2} c_{n} \beta^{n-2}+c_{n-3} c_{n}^{2} \beta^{n-3}+\ldots+c_{2} c_{n}^{n-3} \beta^{2}+c_{1} c_{n}^{n-2} \beta+c_{0} c_{n}^{n-1}
$$

Since $K=\mathbb{Q}[\beta]$ is an n-dimensional Q-vectorspace, we can find rational numbers b_{i} such that

$$
\alpha=b_{0}+b_{1} \beta+b_{2} \beta^{2}+\ldots+b_{n-1} \beta^{n-1}
$$

Let N be a large-enough integer such that for every index i we have $b_{i} \in \frac{1}{N} \cdot \mathbb{Z}$. Note that because we made β satisfy a monic integer equation, the set

$$
\Lambda=\mathbb{Z}+\mathbb{Z} \cdot \beta+\mathbb{Z} \cdot \beta^{2}+\ldots+\mathbb{Z} \cdot \beta^{n-1}
$$

is closed under multiplication: β^{n} is a \mathbb{Z}-linear combination of lower powers of β, and so on. Thus, since $\alpha \in N^{-1} \Lambda$, successive powers α^{ℓ} of α are in $N^{-\ell} \Lambda$. Thus,

$$
\mathbb{Z}[\alpha] \subset \bigcup_{\ell \geq 1} N^{-\ell} \Lambda
$$

But now let p be a prime not dividing N. We claim that $1 / p$ does not lie in $\mathbb{Z}[\alpha]$. Indeed, since $1, \beta, \ldots, \beta^{n-1}$ are linearly independent over \mathbb{Q}, there is a unique expression for $1 / p$ as a \mathbb{Q}-linear combination of them, namely the obvious $\frac{1}{p}=\frac{1}{p} \cdot 1$. Thus, $1 / p$ is not in $N^{-\ell} \cdot \Lambda$ for any $\ell \in \mathbb{Z}$. This (at last) contradicts the supposition that no non-zero integer lies in a maximal ideal I in $\mathbb{Z}[x]$.

Note that the previous argument uses the infinitude of primes.
Thus, \mathbb{Z} does not inject to the field R / I, so R / I has positive characteristic p, and the canonical \mathbb{Z}-algebra homomorphism $\mathbb{Z} \longrightarrow R / I$ factors through \mathbb{Z} / p. Identifying $\mathbb{Z}[x] / p \approx(\mathbb{Z} / p)[x]$, and granting (as proven in an earlier homework solution) that for $J \subset I$ we can take a quotient in two stages

$$
R / I \approx(R / J) /(\text { image of } J \text { in } R / I)
$$

Thus, the image of I in $(\mathbb{Z} / p)[x]$ is a maximal ideal. The ring $(\mathbb{Z} / p)[x]$ is a PID, since \mathbb{Z} / p is a field, and by now we know that the maximal ideals in such a ring are of the form $\langle f\rangle$ where f is irreducible and of positive degree, and conversely. Let $F \in \mathbb{Z}[x]$ be a polynomial which, when we reduce its coefficients modulo p, becomes f. Then, at last,

$$
I=\mathbb{Z}[x] \cdot p+\mathbb{Z}[x] \cdot f(x)
$$

as claimed.
[12.6] Let R be a PID, and x, y non-zero elements of R. Let $M=R /\langle x\rangle$ and $N=R /\langle y\rangle$. Determine $\operatorname{Hom}_{R}(M, N)$.

Any homomorphism $f: M \longrightarrow N$ gives a homomorphism $F: R \longrightarrow N$ by composing with the quotient map $q: R \longrightarrow M$. Since R is a free R-module on one generator 1 , a homomorphism $F: R \longrightarrow N$ is completely determined by $F(1)$, and this value can be anything in N. Thus, the homomorphisms from R to N are exactly parametrized by $F(1) \in N$. The remaining issue is to determine which of these maps F factor through M, that is, which such F admit $f: M \longrightarrow N$ such that $F=f \circ q$. We could try to define (and there is no other choice if it is to succeed)

$$
f(r+R x)=F(r)
$$

but this will be well-defined if and only if $\operatorname{ker} F \supset R x$.
Since $0=y \cdot F(r)=F(y r)$, the kernel of $F: R \longrightarrow N$ invariably contains $R y$, and we need it to contain $R x$ as well, for F to give a well-defined $\operatorname{map} R / R x \longrightarrow R / R y$. This is equivalent to

$$
\operatorname{ker} F \supset R x+R y=R \cdot \operatorname{gcd}(x, y)
$$

or

$$
F(\operatorname{gcd}(x, y))=\{0\} \subset R / R y=N
$$

By the R-linearity,

$$
R / R y \ni 0=F(\operatorname{gcd}(x, y))=\operatorname{gcd}(x, y) \cdot F(1)
$$

Thus, the condition for well-definedness is that

$$
F(1) \in R \cdot \frac{y}{\operatorname{gcd}(x, y)} \subset R / R y
$$

Therefore, the desired homomorphisms f are in bijection with

$$
F(1) \in R \cdot \frac{y}{\operatorname{gcd}(x, y)} / R y \subset R / R y
$$

where

$$
f(r+R x)=F(r)=r \cdot F(1)
$$

[12.7] (A warm-up to Hensel's lemma) Let p be an odd prime. Fix $a \not \equiv 0 \bmod p$ and suppose $x^{2}=a \bmod p$ has a solution x_{1}. Show that for every positive integer n the congruence $x^{2}=a \bmod p^{n}$ has a solution x_{n}. (Hint: Try $x_{n+1}=x_{n}+p^{n} y$ and solve for $y \bmod p$).

Induction, following the hint: Given x_{n} such that $x_{n}^{2}=a \bmod p^{n}$, with $n \geq 1$ and $p \neq 2$, show that there will exist y such that $x_{n+1}=x_{n}+y p^{n}$ gives $x_{n+1}^{2}=a \bmod p^{n+1}$. Indeed, expanding the desired equality, it is equivalent to

$$
a=x_{n+1}^{2}=x_{n}^{2}+2 x_{n} p^{n} y+p^{2 n} y^{2} \bmod p^{n+1}
$$

Since $n \geq 1,2 n \geq n+1$, so this is

$$
a=x_{n}^{2}+2 x_{n} p^{n} y \bmod p^{n+1}
$$

Since $a-x_{n}^{2}=k \cdot p^{n}$ for some integer k, dividing through by p^{n} gives an equivalent condition

$$
k=2 x_{n} y \bmod p
$$

Since $p \neq 2$, and since $x_{n}^{2}=a \neq 0 \bmod p, 2 x_{n}$ is invertible $\bmod p$, so no matter what k is there exists y to meet this requirement, and we're done.
[12.8] (Another warm-up to Hensel's lemma) Let p be a prime not 3. Fix $a \neq 0 \bmod p$ and suppose $x^{3}=a \bmod p$ has a solution x_{1}. Show that for every positive integer n the congruence $x^{3}=a \bmod p^{n}$ has a solution x_{n}. (Hint: Try $x_{n+1}=x_{n}+p^{n} y$ and solve for $y \bmod p$.)
Induction, following the hint: Given x_{n} such that $x_{n}^{3}=a \bmod p^{n}$, with $n \geq 1$ and $p \neq 3$, show that there will exist y such that $x_{n+1}=x_{n}+y p^{n}$ gives $x_{n+1}^{3}=a \bmod p^{n+1}$. Indeed, expanding the desired equality, it is equivalent to

$$
a=x_{n+1}^{3}=x_{n}^{3}+3 x_{n}^{2} p^{n} y+3 x_{n} p^{2 n} y^{2}+p^{3 n} y^{3} \bmod p^{n+1}
$$

Since $n \geq 1,3 n \geq n+1$, so this is

$$
a=x_{n}^{3}+3 x_{n}^{2} p^{n} y \bmod p^{n+1}
$$

Since $a-x_{n}^{3}=k \cdot p^{n}$ for some integer k, dividing through by p^{n} gives an equivalent condition

$$
k=3 x_{n}^{2} y \bmod p
$$

Since $p \neq 3$, and since $x_{n}^{3}=a \neq 0 \bmod p, 3 x_{n}^{2}$ is invertible $\bmod p$, so no matter what k is there exists y to meet this requirement, and we're done.

Exercises

12.[3.0.1] Let k be a field. Show that every non-zero prime ideal in $k[x]$ is maximal.
12.[3.0.2] Let k be a field. Let x, y, z be indeterminates. Show that the ideal I in $k[x, y, z]$ generated by x, y, z is not principal.
12.[3.0.3] Let R be a commutative ring with identity that is not necessarily an integral domain. Let S be a multiplicative subset of R. The localization $S^{-1} R$ is defined to be the set of pairs (r, s) with $r \in R$ and $s \in S$ modulo the equivalence relation

$$
(r, s) \sim\left(r^{\prime}, s^{\prime}\right) \Longleftrightarrow \text { there is } t \in S \text { such thatt } \cdot\left(r s^{\prime}-r^{\prime} s\right)=0
$$

Show that the natural map $i_{S}: r \longrightarrow(r, 1)$ is a ring homomorphism, and that $S^{-1} R$ is a ring in which every element of S becomes invertible.
12.[3.0.4] Indeed, in the situation of the previous exercise, show that every ring homomorphism $\varphi: R \longrightarrow$ R^{\prime} such that $\varphi(s)$ is invertible in R^{\prime} for $s \in S$ factors uniquely through $S^{-1} R$. That is, there is a unique $f: S^{-1} R \longrightarrow R^{\prime}$ such that $\varphi=f \circ i_{S}$ with the natural map i_{S}.

[^0]: [1] Among other uses, these facts are used to discuss Vandermonde determinants, and in the proof that the parity (or sign) of a permutation is well-defined.
 ${ }^{[2]}$ Recall that two elements x, y of a commutative ring R are associate if $x=y u$ for some unit u in R. This terminology is most often applied to prime or irreducible elements.

