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1. Cycles, disjoint cycle decompositions

The symmetric group Sn is the group of bijections of {1, . . . , n} to itself, also called permutations of n
things. A standard notation for the permutation that sends i −→ `i is(

1 2 3 . . . n
`1 `2 `3 . . . `n

)
Under composition of mappings, the permutations of {1, . . . , n} is a group.

The fixed points of a permutation f are the elements i ∈ {1, 2, . . . , n} such that f(i) = i.

A k-cycle is a permutation of the form

f(`1) = `2 f(`2) = `3 . . . f(`k−1) = `k and f(`k) = `1

for distinct `1, . . . , `k among {1, . . . , n}, and f(i) = i for i not among the `j . There is standard notation for
this cycle:

(`1 `2 `3 . . . `k)

Note that the same cycle can be written several ways, by cyclically permuting the `j : for example, it also
can be written as

(`2 `3 . . . `k `1) or (`3 `4 . . . `k `1 `2)

Two cycles are disjoint when the respective sets of indices properly moved are disjoint. That is, cycles
(`1 `2 `3 . . . `k) and (`′1 `

′
2 `
′
3 . . . `′k′) are disjoint when the sets {`1, `2, . . . , `k} and {`′1, `′2, . . . , `′k′} are

disjoint.

[1.0.1] Theorem: Every permutation is uniquely expressible as a product of disjoint cycles.
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192 Symmetric groups

Proof: Given g ∈ Sn, the cyclic subgroup 〈g〉 ⊂ Sn generated by g acts on the set X = {1, . . . , n} and
decomposes X into disjoint orbits

Ox = {gix : i ∈ Z}

for choices of orbit representatives x ∈ X. For each orbit representative x, let Nx be the order of g when
restricted to the orbit 〈g〉 · x, and define a cycle

Cx = (x gx g2x . . . gNx−1x)

Since distinct orbits are disjoint, these cycles are disjoint. And, given y ∈ X, choose an orbit representative
x such that y ∈ 〈g〉 · x. Then g · y = Cx · y. This proves that g is the product of the cycles Cx over orbit
representatives x. ///

2. Transpositions

The (adjacent) transpositions in the symmetric group Sn are the permutations si defined by

si(j) =

 i+ 1 (for j = i)
i (for j = i+ 1)
j (otherwise)

That is, si is a 2-cycle that interchanges i and i+ 1 and does nothing else.

[2.0.1] Theorem: The permutation group Sn on n things {1, 2, . . . , n} is generated by adjacent
transpositions si.

Proof: Induction on n. Given a permutation p of n things, we show that there is a product q of adjacent
transpositions such that (q ◦ p)(n) = n. Then q ◦ p can be viewed as a permutation in Sn−1, and we do
induction on n. We may suppose p(n) = i < n, or else we already have p(n) = n and we can do the induction
on n.

Do induction on i to get to the situation that (q ◦ p)(n) = n for some product q of adjacent transposition.
Suppose we have a product q of adjacent transpositions such that (q ◦p)(n) = i < n. For example, the empty
product q gives q ◦ p = p. Then (si ◦ q ◦ p)(n) = i+ 1. By induction on i we’re done. ///

The length of an element g ∈ Sn with respect to the generators s1, . . . , sn−1 is the smallest integer ` such
that

g = si1 si2 . . . si`−1 si`
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3. Worked examples

[13.1] Classify the conjugacy classes in Sn (the symmetric group of bijections of {1, . . . , n} to itself).

Given g ∈ Sn, the cyclic subgroup 〈g〉 generated by g certainly acts on X = {1, . . . , n} and therefore
decomposes X into orbits

Ox = {gix : i ∈ Z}

for choices of orbit representatives xi ∈ X. We claim that the (unordered!) list of sizes of the (disjoint!)
orbits of g on X uniquely determines the conjugacy class of g, and vice versa. (An unordered list that allows
the same thing to appear more than once is a multiset. It is not simply a set!)

To verify this, first suppose that g = tht−1. Then 〈g〉 orbits and 〈h〉 orbits are related by

〈g〉-orbit Otx ↔ 〈h〉-orbit Ox

Indeed,
g` · (tx) = (tht−1)` · (tx) = t(h` · x)

Thus, if g and h are conjugate, the unordered lists of sizes of their orbits must be the same.

On the other hand, suppose that the unordered lists of sizes of the orbits of g and h are the same. Choose
an ordering of orbits of the two such that the cardinalities match up:

|O(g)
xi
| = |O(h)

yi
| (for i = 1, . . . ,m)

where O
(g)
xi is the 〈g〉-orbit containing xi and O

(h)
yi is the 〈g〉-orbit containing yi. Fix representatives as

indicated for the orbits. Let p be a permutation such that, for each index i, p bijects O(g)
xi to O(g)

xi by

p(g`xi) = h`yi

The only slightly serious point is that this map is well-defined, since there are many exponents ` which may
give the same element. And, indeed, it is at this point that we use the fact that the two orbits have the
same cardinality: we have

O(g)
xi
↔ 〈g〉/〈g〉xi

(by g`〈g〉xi
↔ g`xi)

where 〈g〉xi
is the isotropy subgroup of xi. Since 〈g〉 is cyclic, 〈g〉xi

is necessarily 〈gN 〉 where N is the
number of elements in the orbit. The same is true for h, with the same N . That is, g`xi depends exactly on
` mod N , and h`yi likewise depends exactly on ` mod N . Thus, the map p is well-defined.

Then claim that g and h are conjugate. Indeed, given x ∈ X, take O(g)
xi containing x = g`xi and O

(h)
yi

containing px = h`yi. The fact that the exponents of g and h are the same is due to the definition of p.
Then

p(gx) = p(g · g`xi) = h1+` yi = h · h` yi = h · p(g` xi) = h(px)

Thus, for all x ∈ X
(p ◦ g)(x) = (h ◦ p)(x)

Therefore,
p ◦ g = h ◦ p

or
pgp−1 = h

(Yes, there are usually many different choices of p which accomplish this. And we could also have tried to
say all this using the more explicit cycle notation, but it’s not clear that this would have been a wise choice.)
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[13.2] The projective linear group PGLn(k) is the group GLn(k) modulo its center k, which is the
collection of scalar matrices. Prove that PGL2(F3) is isomorphic to S4, the group of permutations of 4
things. (Hint: Let PGL2(F3) act on lines in F2

3, that is, on one-dimensional F3-subspaces in F2
3.)

The group PGL2(F3) acts by permutations on the set X of lines in F2
3, because GL2(F3) acts on non-zero

vectors in F2
3. The scalar matrices in GL2(F3) certainly stabilize every line (since they act by scalars), so

act trivially on the set X.

On the other hand, any non-scalar matrix
(
a b
c d

)
acts non-trivially on some line. Indeed, if

(
a b
c d

)(
∗
0

)
=
(
∗
0

)
then c = 0. Similarly, if (

a b
c d

)(
0
∗

)
=
(

0
∗

)
then b = 0. And if (

a 0
0 d

)(
1
1

)
= λ ·

(
1
1

)
for some λ then a = d, so the matrix is scalar.

Thus, the map from GL2(F3) to permutations Autset(X) of X has kernel consisting exactly of scalar matrices,
so factors through (that is, is well defined on) the quotient PGL2(F3), and is injective on that quotient. (Since
PGL2(F3) is the quotient of GL2(F3) by the kernel of the homomorphism to Autset(X), the kernel of the
mapping induced on PGL2(F3) is trivial.)

Computing the order of PGL2(F3) gives

|PGL2(F3)| = |GL2(F3)|/|scalar matrices| = (32 − 1)(32 − 3)
3− 1

= (3 + 1)(32 − 3) = 24

(The order of GLn(Fq) is computed, as usual, by viewing this group as automorphisms of Fn
q .)

This number is the same as the order of S4, and, thus, an injective homomorphism must be surjective, hence,
an isomorphism.

(One might want to verify that the center of GLn(Fq) is exactly the scalar matrices, but that’s not strictly
necessary for this question.)

[13.3] An automorphism of a group G is inner if it is of the form g −→ xgx−1 for fixed x ∈ G. Otherwise
it is an outer automorphism. Show that every automorphism of the permutation group S3 on 3 things is
inner. (Hint: Compare the action of S3 on the set of 2-cycles by conjugation.)

Let G be the group of automorphisms, and X the set of 2-cycles. We note that an automorphism must send
order-2 elements to order-2 elements, and that the 2-cycles are exactly the order-2 elements in S3. Further,
since the 2-cycles generate S3, if an automorphism is trivial on all 2-cycles it is the trivial automorphism.
Thus, G injects to Autset(X), which is permutations of 3 things (since there are three 2-cycles).

On the other hand, the conjugation action of S3 on itself stabilizes X, and, thus, gives a group homomorphism
f : S3 −→ Autset(X). The kernel of this homomorphism is trivial: if a non-trivial permutation p conjugates
the two-cycle t = (1 2) to itself, then

(ptp−1)(3) = t(3) = 3

so tp−1(3) = p−1(3). That is, t fixes the image p−1(3), which therefore is 3. A symmetrical argument shows
that p−1(i) = i for all i, so p is trivial. Thus, S3 injects to permutations of X.
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In summary, we have group homomorphisms

S3 −→ Autgroup(S3) −→ Autset(X)

where the map of automorphisms of S3 to permutations of X is an isomorphism, and the composite map of
S3 to permutations of X is surjective. Thus, the map of S3 to its own automorphism group is necessarily
surjective.

[13.4] Identify the element of Sn requiring the maximal number of adjacent transpositions to express it,
and prove that it is unique.

We claim that the permutation that takes i −→ n− i+1 is the unique element requiring n(n−1)/2 elements,
and that this is the maximum number.

For an ordered listing (t1, . . . , tn) of {1, . . . , n}, let

do(t1, . . . , tn) = number of indices i < j such that ti > tj

and for a permutation p let
d(p) = do(p(1), . . . , p(n))

Note that if ti < tj for all i < j, then the ordering is (1, . . . , n). Also, given a configuration (t1, . . . , tn)
with some ti > tj for i < j, necessarily this inequality holds for some adjacent indices (or else the opposite
inequality would hold for all indices, by transitivity!). Thus, if the ordering is not the default (1, . . . , n), then
there is an index i such that ti > ti+1. Then application of the adjacent transposition si of i, i + 1 reduces
by exactly 1 the value of the function do().

Thus, for a permutation p with d(p) = ` we can find a product q of exactly ` adjacent transpositions such
that q ◦ p = 1. That is, we need at most d(p) = ` adjacent transpositions to express p. (This does not
preclude less efficient expressions.)

On the other hand, we want to be sure that d(p) = ` is the minimum number of adjacent transpositions
needed to express p. Indeed, application of si only affects the comparison of p(i) and p(i+ 1). Thus, it can
decrease d(p) by at most 1. That is,

d(si ◦ p) ≥ d(p)− 1

and possibly d(si ◦ p) = d(p). This shows that we do need at least d(p) adjacent transpositions to express p.

Then the permutation wo that sends i to n− i+ 1 has the effect that wo(i) > wo(j) for all i < j, so it has
the maximum possible d(wo) = n(n− 1)/2. For uniqueness, suppose p(i) > p(j) for all i < j. Evidently, we
must claim that p = wo. And, indeed, the inequalities

p(n) < p(n− 1) < p(n− 2) < . . . < p(2) < p(1)

leave no alternative (assigning distinct values in {1, . . . , n}) but

p(n) = 1 < p(n− 1) = 2 < . . . < p(2) = n− 1 < p(1) = n

(One might want to exercise one’s technique by giving a more careful inductive proof of this.)

[13.5] Let the permutation group Sn on n things act on the polynomial ring Z[x1, . . . , xn] by Z-algebra
homomorphisms defined by p(xi) = xp(i) for p ∈ Sn. (The universal mapping property of the polynomial
ring allows us to define the images of the indeterminates xi to be whatever we want, and at the same
time guarantees that this determines the Z-algebra homomorphism completely.) Verify that this is a group
homomorphism

Sn −→ AutZ−alg(Z[x1, . . . , xn])
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Consider
D =

∏
i<j

(xi − xj)

Show that for any p ∈ Sn

p(D) = σ(p) ·D
where σ(p) = ±1. Infer that σ is a (non-trivial) group homomorphism, the sign homomorphism on Sn.

Since these polynomial algebras are free on the indeterminates, we check that the permutation group acts
(in the technical sense) on the set of indeterminates. That is, we show associativity and that the identity of
the group acts trivially. The latter is clear. For the former, let p, q be two permutations. Then

(pq)(xi) = x(pq)(i)

while
p(q(xi)) = p(xq(i) = xp(q(i))

Since p(q(i)) = (pq)(i), each p ∈ Sn gives an automorphism of the ring of polynomials. (The endomorphisms
are invertible since the group has inverses, for example.)

Any permutation merely permutes the factors of D, up to sign. Since the group acts in the technical sense,

(pq)(D) = p(q(D))

That is, since the automorphisms given by elements of Sn are Z-linear,

σ(pq) ·D = p(σ(q) ·D) = σ(q)p(D) = σ(q) · σ(p) ·D

Thus,
σ(pq) = σ(p) · σ(q)

which is the homomorphism property of σ. ///

Exercises

13.[3.0.1] How many distinct k-cycles are there in the symmetric group Sn?

13.[3.0.2] How many elements of order 35 are there in the symmetric group S12?

13.[3.0.3] What is the largest order of an element of S12?

13.[3.0.4] How many elements of order 6 are there in the symmetric group S11?

13.[3.0.5] Show that the order of a permutation is the least common multiple of the lengths of the cycles
in a disjoint cycle decomposition of it.

13.[3.0.6] Let X be the set Z/31, and let f : X −→ X be the permutation f(x) = 2 · x. Decompose this
permutation into disjoint cycles.

13.[3.0.7] Let X be the set Z/29, and let f : X −→ X be the permutation f(x) = x3. Decompose this
permutation into disjoint cycles.

13.[3.0.8] Show that if a permutation is expressible as a product of an odd number of 2-cycles in one way,
then any expression of it as a product of 2-cycles expresses it as a product of an odd number of 2-cycles.

13.[3.0.9] Identify the lengths (expressed in terms of adjacent transpositions) of all the elements in S4.

13.[3.0.10] (*) Count the number of elements of Sn having at least one fixed point.


