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1. The theorem

Let Sn be the group of permutations of {1, . . . , n}, also called the symmetric group on n things.

For indeterminates xi, let p ∈ Sn act on Z[x1, . . . , xn] by

p(xi) = xp(i)

A polynomial f(x1, . . . , xn) ∈ Z[x1, . . . , xn] is invariant under Sn if for all p ∈ Sn

f(p(x1), . . . , p(xn)) = f(x1, . . . , xn)

The elementary symmetric polynomials in x1, . . . , xn are

s1 = s1(x1, . . . , xn) =
∑

i xi

s2 = s2(x1, . . . , xn) =
∑

i<j xixj

s3 = s3(x1, . . . , xn) =
∑

i<j<k xixjxk

s4 = s4(x1, . . . , xn) =
∑

i<j<k<` xixjxkx`

. . .
st = st(x1, . . . , xn) =

∑
i1<i2<...<it

xi1xi2 . . . xit

. . .
sn = sn(x1, . . . , xn) = x1x2x3 . . . xn

[1.0.1] Theorem: A polynomial f(x1, . . . , xn) ∈ Z[x1, . . . , xn] is invariant under Sn if and only if it is a
polynomial in the elementary symmetric functions s1, . . . , sn.

[1.0.2] Remark: In fact, the proof shows an algorithm which determines the expression for a given
Sn-invariant polynomial in terms of the elementary ones.

213



214 Symmetric polynomials

Proof: Let f(x1, . . . , xn) be Sn-invariant. Let

q : Z[x1, . . . , xn−1, xn] −→ Z[x1, . . . , xn−1]

be the map which kills off xn, that is

q(xi) =
{
xi (1 ≤ i < n)
0 (i = n)

If f(x1, . . . , xn) is Sn-invariant, then

q(f(x1, . . . , xn−1, xn)) = f(x1, . . . , xn−1, 0)

is Sn−1-invariant, where we take the copy of Sn−1 inside Sn that fixes n. And note that

q(si(x1, . . . , xn)) =
{
si(x1, . . . , xn−1) (1 ≤ i < n)

0 (i = n)

By induction on the number of variables, there is a polynomial P in n− 1 variables such that

q(f(x1, . . . , xn)) = P (s1(x1, . . . , xn−1), . . . , sn−1(x1, . . . , xn−1))

Now use the same polynomial P but with the elementary symmetric functions augmented by insertion of
xn, by

g(x1, . . . , xn) = P (s1(x1, . . . , xn), . . . , sn−1(x1, . . . , xn))

By the way P was chosen,
q(f(x1, . . . , xn)− g(x1, . . . , xn)) = 0

That is, mapping xn −→ 0 sends the difference f − g to 0. Using the unique factorization in Z[x1, . . . , xn],
this implies that xn divides f − g. The Sn-invariance of f − g implies that every xi divides f − g. That is,
by unique factorization, sn(x1, . . . , xn) divides f − g.

The total degree of a monomial c xe1
1 . . . xen

n is the sum of the exponents

total degree (c xe1
1 . . . xen

n ) = e1 + . . .+ en

The total degree of a polynomial is the maximum of the total degrees of its monomial summands.

Consider the polynomial
f − g
sn

=
f(x1, . . . , xn)− g(x1, . . . , xn)

sn(x1, . . . , xn)

It is of lower total degree than the original f . By induction on total degree (f −g)/sn is expressible in terms
of the elementary symmetric polynomials in x1, . . . , xn. ///

[1.0.3] Remark: The proof also shows that if the total degree of an Sn-invariant polynomial
f(x1, . . . , xn−1, xn) in n variables is less than or equal the number of variables, then the expression for
f(x1, . . . , xn−1, 0) in terms of si(x1, . . . , xn−1) gives the correct formula in terms of si(x1, . . . , xn−1, xn).

2. First examples

[2.0.1] Example: Consider
f(x1, . . . , xn) = x2

1 + . . .+ x2
n
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The induction on n and the previous remark indicate that the general formula will be found if we find the
formula for n = 2, since the total degree is 2. Let q : Z[x, y] −→ Z[x] be the Z-algebra map sending x −→ x
and y −→ 0. Then

q(x2 + y2) = x2 = s1(x)2

Then, following the procedure of the proof of the theorem,

(x2 + y2)− s1(x, y)2 = (x2 + y2)− (x+ y)2 = −2xy

Dividing by s2(x, y) = xy we obtain −2. (This is visible, anyway.) Thus,

x2 + y2 = s1(x, y)2 − 2s2(x, y)

The induction on the number of variables gives

x2
1 + . . .+ x2

n = s1(x1, . . . , xn)2 − s2(x1, . . . , xn)

[2.0.2] Example: Consider
f(x1, . . . , xn) =

∑
i

x4
i

Since the total degree is 4, as in the remark just above it suffices to determine the pattern with just 4
variables x1, x2, x3, x4. Indeed, we start with just 2 variables. Following the procedure indicated in the
theorem, letting q be the Z-algebra homomorphism which sends y to 0,

q(x4 + y4) = x4 = s1(x)4

so consider

(x4 + y4)− s1(x, y)4 = −4x3y − 6x2y2 − 4xy3 = −s1(x, y) · (4x2 + 6xy + 4y2)

The latter factor of lower total degree is analyzed in the same fashion:

q(4x2 + 6xy + 4y2) = 4x2 = 4s1(x)2

so consider
(4x2 + 6xy + 4y2)− 4s1(x, y)2 = −2xy

Going backward,
x4 + y4 = s1(x, y)4 − s1(x, y) · (4s1(x, y)2 − 2s2(x, y))

Passing to three variables,

q(x4 + y4 + z4) = x4 + y4 = s1(x, y)4 − s1(x, y) · (4s1(x, y)2 − 2s2(x, y))

so consider
(x4 + y4 + z4)−

(
s1(x, y, z)4 − s1(x, y, z) · (4s1(x, y, z)2 − 2s2(x, y, z))

)
Before expanding this, dreading the 15 terms from the (x+ y + z)4, for example, recall that the only terms
which will not be cancelled are those which involve all of x, y, z. Thus, this is

−12x2yz − 12y2xz − 12z2xy + (xy + yz + zx) · (4(x+ y + z)2 − 2(xy + yz + zx)) + (irrelevant)

= −12x2yz − 12y2xz − 12z2xy + (xy + yz + zx) · (4x2 + 4y2 + 4z2 + 6xy + 6yz + 6zx) + (irrelevant)

= −12x2yz − 12y2xz − 12z2xy + 4xyz2 + 4yzx2 + 4zxy2 + 6xy2z

+ 6x2yz + 6x2yz + 6xyz2 + 6xy2z + 6xyz2
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= 4xyz(x+ y + z) = 4s3(x, y, z) · s1(x, y, z)

Thus, with 3 variables,
x4 + y4 + z4

= s1(x, y, z)4 − s2(x, y, z) · (4s1(x, y, z)2 − 2s2(x, y, z)) + 4s3(x, y, z) · s1(x, y, z)

Abbreviating si = si(x, y, z, w), we anticipate that

x4 + y4 + z4 + w4 −
(
s41 − 4s21s2 + 2s22 + 4s1s3

)
= constant · xyzw

We can save a little time by evaluating the constant by taking x = y = z = w = 1. In that case

s1(1, 1, 1, 1) = 4
s2(1, 1, 1, 1) = 6
s3(1, 1, 1, 1) = 4

and
1 + 1 + 1 + 1−

(
44 − 4 · 42 · 6 + 2 · 62 + 4 · 4 · 4

)
= constant

or
constant = 4− (256− 384 + 72 + 64) = −4

Thus,
x4 + y4 + z4 + w4 = s41 − 4s21s2 + 2s22 + 4s1s3 − 4s4

By the remark above, since the total degree is just 4, this shows that for arbitrary n

x4
1 + . . .+ x4

n = s41 − 4s21s2 + 2s22 + 4s1s3 − 4s4
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3. A variant: discriminants

Let x1, . . . , xn be indeterminates. Their discriminant is

D = D(x1, . . . , xn) =
∏
i<j

(xi − xj)

Certainly the sign of D depends on the ordering of the indeterminates. But

D2 =
∏
i 6=j

(xi − xj)2

is symmetric, that is, is invariant under all permutations of the xi. Therefore, D2 has an expression in terms
of the elementary symmetric functions of the xi.

[3.0.1] Remark: By contrast to the previous low-degree examples, the discriminant (squared) has as
high a degree as possible.

[3.0.2] Example: With just 2 indeterminates x, y, we have the familiar

D2 = (x− y)2 = x2 − 2xy + y2 = (x+ y)2 − 4xy = s21 − 4s2

Rather than compute the general version in higher-degree cases, let’s consider a more accessible variation on
the question. Suppose that α1, . . . , αn are roots of an equation

Xn + aX + b = 0

in a field k, with a, b ∈ k. For simplicity suppose a 6= 0 and b 6= 0, since otherwise we have even simpler
methods to study this equation. Let f(X) = xn + aX + b. The discriminant

D(α1, . . . , αn) =
∏
i<j

(αi − αj)

vanishes if and only if any two of the αi coincide. On the other hand, f(X) has a repeated factor in k[X]
if and only if gcd(f, f ′) 6= 1. Because of the sparseness of this polynomial, we can in effect execute the
Euclidean algorithm explicitly. Assume that the characteristic of k does not divide n(n− 1). Then

(Xn + aX + b)− X

n
· (nXn−1 + a) = a(1− 1

n
)X + b

That is, any repeated factor of f(X) divides X + bn
(n−1)a , and the latter linear factor divides f ′(X).

Continuing, the remainder upon dividing nXn−1 + a by the linear factor X + bn
(n−1)a is simply the value of

nXn−1 + a obtained by evaluating at −bn
(n−1)a , namely

n

(
−bn

(n− 1)a

)n−1

+ a =
(
nn(−1)n−1bn−1 + (n− 1)n−1an

)
· ((n− 1)a)1−n

Thus, (constraining a to be non-zero)

nn(−1)n−1bn−1 + (n− 1)n−1an = 0

if and only if some αi − αj = 0.
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We obviously want to say that with the constraint that all the symmetric functions of the αi being 0 except
the last two, we have computed the discriminant (up to a less interesting constant factor).

A relatively graceful approach would be to show that R = Z[x1, . . . , xn] admits a universal Z-algebra
homomorphism ϕ : R −→ Ω for some ring Ω that sends the first n− 2 elementary symmetric functions

s1 = s1(x1, . . . , xn) =
∑

i xi

s2 = s2(x1, . . . , xn) =
∑

i<j xi xj

s3 = s3(x1, . . . , xn) =
∑

i<j<k xi xj xk

. . .
s` = s`(x1, . . . , xn) =

∑
i1<...<i`

xi1 . . . xi`

. . .
sn−2 = sn−2(x1, . . . , xn) =

∑
i1<...<in−2

xi1 . . . xin−2

to 0, but imposes no unnecessary further relations on the images

a = (−1)n−1ϕ(sn−1) b = (−1)nϕ(sn)

We do not have sufficient apparatus to do this nicely at this moment. [1] Nevertheless, the computation
above does tell us something.

Exercises

15.[3.0.1] Express x3
1 + x3

2 + . . .+ x3
n in terms of the elementary symmetric polynomials.

15.[3.0.2] Express
∑

i 6=j xi x
2
j in terms of the elementary symmetric polynomials.

15.[3.0.3] Let α, β be the roots of a quadratic equation ax2 + bx + c = 0, Show that the discriminant,
defined to be (α− β)2, is b2 − 4ac.

15.[3.0.4] Consider f(x) = x3 +ax+ b as a polynomial with coefficients in k(a, b) where k is a field not of
characteristic 2 or 3. By computing the greatest common divisor of f and f ′, give a condition for the roots
of f(x) = 0 to be distinct.

15.[3.0.5] Express
∑

i,j,k distinct xi xj x
2
k in terms of elementary symmetric polynomials.

[1] The key point is that Z[x1, . . . , xn] is integral over Z[s1, s2, . . . , sn] in the sense that each xi is a root of the monic

equation Xn − s1Xn−2 + s2Xn−2 − . . . + (−1)n−1sn−1X + (−1)nsn = 0 It is true that for R an integral extension

of a ring S, any homomorphism ϕo : S −→ Ω to an algebraically closed field Ω extends (probably in more than one

way) to a homomorphism ϕ : R −→ Ω. This would give us a justification for our hope that, given a, b ∈ Ω we can

require that ϕo(s1) = ϕo(s2) = . . . = ϕo(sn−2) = 0 while ϕo(sn−1) = (−1)n−1a ϕo(sn) = (−1)nb.


