15. Symmetric polynomials

15.1 The theorem
15.2 First examples
15.3 A variant: discriminants

1. The theorem

Let S_{n} be the group of permutations of $\{1, \ldots, n\}$, also called the symmetric group on n things.
For indeterminates x_{i}, let $p \in S_{n}$ act on $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ by

$$
p\left(x_{i}\right)=x_{p(i)}
$$

A polynomial $f\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ is invariant under S_{n} if for all $p \in S_{n}$

$$
f\left(p\left(x_{1}\right), \ldots, p\left(x_{n}\right)\right)=f\left(x_{1}, \ldots, x_{n}\right)
$$

The elementary symmetric polynomials in x_{1}, \ldots, x_{n} are

$$
\begin{aligned}
& s_{1}=s_{1}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i} x_{i} \\
& s_{2}=s_{2}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i<j} x_{i} x_{j} \\
& s_{3}=s_{3}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i<j<k} x_{i} x_{j} x_{k} \\
& s_{4}=s_{4}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i<j<k<\ell} x_{i} x_{j} x_{k} x_{\ell} \\
& \ldots \\
& s_{t}=s_{t}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i_{1}<i_{2}<\ldots<i_{t}} x_{i_{1}} x_{i_{2}} \ldots x_{i_{t}} \\
& \ldots \\
& s_{n}=s_{n}\left(x_{1}, \ldots, x_{n}\right)=x_{1} x_{2} x_{3} \ldots x_{n}
\end{aligned}
$$

[1.0.1] Theorem: A polynomial $f\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ is invariant under S_{n} if and only if it is a polynomial in the elementary symmetric functions s_{1}, \ldots, s_{n}.
[1.0.2] Remark: In fact, the proof shows an algorithm which determines the expression for a given S_{n}-invariant polynomial in terms of the elementary ones.

Proof: Let $f\left(x_{1}, \ldots, x_{n}\right)$ be S_{n}-invariant. Let

$$
q: \mathbb{Z}\left[x_{1}, \ldots, x_{n-1}, x_{n}\right] \longrightarrow \mathbb{Z}\left[x_{1}, \ldots, x_{n-1}\right]
$$

be the map which kills off x_{n}, that is

$$
q\left(x_{i}\right)=\left\{\begin{array}{cc}
x_{i} & (1 \leq i<n) \\
0 & (i=n)
\end{array}\right.
$$

If $f\left(x_{1}, \ldots, x_{n}\right)$ is S_{n}-invariant, then

$$
q\left(f\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)\right)=f\left(x_{1}, \ldots, x_{n-1}, 0\right)
$$

is S_{n-1}-invariant, where we take the copy of S_{n-1} inside S_{n} that fixes n. And note that

$$
q\left(s_{i}\left(x_{1}, \ldots, x_{n}\right)\right)=\left\{\begin{array}{cc}
s_{i}\left(x_{1}, \ldots, x_{n-1}\right) & (1 \leq i<n) \\
0 & (i=n)
\end{array}\right.
$$

By induction on the number of variables, there is a polynomial P in $n-1$ variables such that

$$
q\left(f\left(x_{1}, \ldots, x_{n}\right)\right)=P\left(s_{1}\left(x_{1}, \ldots, x_{n-1}\right), \ldots, s_{n-1}\left(x_{1}, \ldots, x_{n-1}\right)\right)
$$

Now use the same polynomial P but with the elementary symmetric functions augmented by insertion of x_{n}, by

$$
g\left(x_{1}, \ldots, x_{n}\right)=P\left(s_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, s_{n-1}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

By the way P was chosen,

$$
q\left(f\left(x_{1}, \ldots, x_{n}\right)-g\left(x_{1}, \ldots, x_{n}\right)\right)=0
$$

That is, mapping $x_{n} \longrightarrow 0$ sends the difference $f-g$ to 0 . Using the unique factorization in $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$, this implies that x_{n} divides $f-g$. The S_{n}-invariance of $f-g$ implies that every x_{i} divides $f-g$. That is, by unique factorization, $s_{n}\left(x_{1}, \ldots, x_{n}\right)$ divides $f-g$.

The total degree of a monomial $c x_{1}^{e_{1}} \ldots x_{n}^{e_{n}}$ is the sum of the exponents

$$
\text { total degree }\left(c x_{1}^{e_{1}} \ldots x_{n}^{e_{n}}\right)=e_{1}+\ldots+e_{n}
$$

The total degree of a polynomial is the maximum of the total degrees of its monomial summands.
Consider the polynomial

$$
\frac{f-g}{s_{n}}=\frac{f\left(x_{1}, \ldots, x_{n}\right)-g\left(x_{1}, \ldots, x_{n}\right)}{s_{n}\left(x_{1}, \ldots, x_{n}\right)}
$$

It is of lower total degree than the original f. By induction on total degree $(f-g) / s_{n}$ is expressible in terms of the elementary symmetric polynomials in x_{1}, \ldots, x_{n}.
[1.0.3] Remark: The proof also shows that if the total degree of an S_{n}-invariant polynomial $f\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)$ in n variables is less than or equal the number of variables, then the expression for $f\left(x_{1}, \ldots, x_{n-1}, 0\right)$ in terms of $s_{i}\left(x_{1}, \ldots, x_{n-1}\right)$ gives the correct formula in terms of $s_{i}\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)$.

2. First examples

[2.0.1] Example: Consider

$$
f\left(x_{1}, \ldots, x_{n}\right)=x_{1}^{2}+\ldots+x_{n}^{2}
$$

The induction on n and the previous remark indicate that the general formula will be found if we find the formula for $n=2$, since the total degree is 2 . Let $q: \mathbb{Z}[x, y] \longrightarrow \mathbb{Z}[x]$ be the \mathbb{Z}-algebra map sending $x \longrightarrow x$ and $y \longrightarrow 0$. Then

$$
q\left(x^{2}+y^{2}\right)=x^{2}=s_{1}(x)^{2}
$$

Then, following the procedure of the proof of the theorem,

$$
\left(x^{2}+y^{2}\right)-s_{1}(x, y)^{2}=\left(x^{2}+y^{2}\right)-(x+y)^{2}=-2 x y
$$

Dividing by $s_{2}(x, y)=x y$ we obtain -2 . (This is visible, anyway.) Thus,

$$
x^{2}+y^{2}=s_{1}(x, y)^{2}-2 s_{2}(x, y)
$$

The induction on the number of variables gives

$$
x_{1}^{2}+\ldots+x_{n}^{2}=s_{1}\left(x_{1}, \ldots, x_{n}\right)^{2}-s_{2}\left(x_{1}, \ldots, x_{n}\right)
$$

[2.0.2] Example: Consider

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i} x_{i}^{4}
$$

Since the total degree is 4 , as in the remark just above it suffices to determine the pattern with just 4 variables $x_{1}, x_{2}, x_{3}, x_{4}$. Indeed, we start with just 2 variables. Following the procedure indicated in the theorem, letting q be the \mathbb{Z}-algebra homomorphism which sends y to 0 ,

$$
q\left(x^{4}+y^{4}\right)=x^{4}=s_{1}(x)^{4}
$$

so consider

$$
\left(x^{4}+y^{4}\right)-s_{1}(x, y)^{4}=-4 x^{3} y-6 x^{2} y^{2}-4 x y^{3}=-s_{1}(x, y) \cdot\left(4 x^{2}+6 x y+4 y^{2}\right)
$$

The latter factor of lower total degree is analyzed in the same fashion:

$$
q\left(4 x^{2}+6 x y+4 y^{2}\right)=4 x^{2}=4 s_{1}(x)^{2}
$$

so consider

$$
\left(4 x^{2}+6 x y+4 y^{2}\right)-4 s_{1}(x, y)^{2}=-2 x y
$$

Going backward,

$$
x^{4}+y^{4}=s_{1}(x, y)^{4}-s_{1}(x, y) \cdot\left(4 s_{1}(x, y)^{2}-2 s_{2}(x, y)\right)
$$

Passing to three variables,

$$
q\left(x^{4}+y^{4}+z^{4}\right)=x^{4}+y^{4}=s_{1}(x, y)^{4}-s_{1}(x, y) \cdot\left(4 s_{1}(x, y)^{2}-2 s_{2}(x, y)\right)
$$

so consider

$$
\left(x^{4}+y^{4}+z^{4}\right)-\left(s_{1}(x, y, z)^{4}-s_{1}(x, y, z) \cdot\left(4 s_{1}(x, y, z)^{2}-2 s_{2}(x, y, z)\right)\right)
$$

Before expanding this, dreading the 15 terms from the $(x+y+z)^{4}$, for example, recall that the only terms which will not be cancelled are those which involve all of x, y, z. Thus, this is

$$
\begin{gathered}
-12 x^{2} y z-12 y^{2} x z-12 z^{2} x y+(x y+y z+z x) \cdot\left(4(x+y+z)^{2}-2(x y+y z+z x)\right)+\text { (irrelevant) } \\
=-12 x^{2} y z-12 y^{2} x z-12 z^{2} x y+(x y+y z+z x) \cdot\left(4 x^{2}+4 y^{2}+4 z^{2}+6 x y+6 y z+6 z x\right)+\text { (irrelevant) } \\
=-12 x^{2} y z-12 y^{2} x z-12 z^{2} x y+4 x y z^{2}+4 y z x^{2}+4 z x y^{2}+6 x y^{2} z \\
+6 x^{2} y z+6 x^{2} y z+6 x y z^{2}+6 x y^{2} z+6 x y z^{2}
\end{gathered}
$$

$$
=4 x y z(x+y+z)=4 s_{3}(x, y, z) \cdot s_{1}(x, y, z)
$$

Thus, with 3 variables,

$$
\begin{gathered}
x^{4}+y^{4}+z^{4} \\
=s_{1}(x, y, z)^{4}-s_{2}(x, y, z) \cdot\left(4 s_{1}(x, y, z)^{2}-2 s_{2}(x, y, z)\right)+4 s_{3}(x, y, z) \cdot s_{1}(x, y, z)
\end{gathered}
$$

Abbreviating $s_{i}=s_{i}(x, y, z, w)$, we anticipate that

$$
x^{4}+y^{4}+z^{4}+w^{4}-\left(s_{1}^{4}-4 s_{1}^{2} s_{2}+2 s_{2}^{2}+4 s_{1} s_{3}\right)=\mathrm{constant} \cdot x y z w
$$

We can save a little time by evaluating the constant by taking $x=y=z=w=1$. In that case

$$
\begin{aligned}
& s_{1}(1,1,1,1)=4 \\
& s_{2}(1,1,1,1)=6 \\
& s_{3}(1,1,1,1)=4
\end{aligned}
$$

and

$$
1+1+1+1-\left(4^{4}-4 \cdot 4^{2} \cdot 6+2 \cdot 6^{2}+4 \cdot 4 \cdot 4\right)=\text { constant }
$$

or

$$
\text { constant }=4-(256-384+72+64)=-4
$$

Thus,

$$
x^{4}+y^{4}+z^{4}+w^{4}=s_{1}^{4}-4 s_{1}^{2} s_{2}+2 s_{2}^{2}+4 s_{1} s_{3}-4 s_{4}
$$

By the remark above, since the total degree is just 4, this shows that for arbitrary n

$$
x_{1}^{4}+\ldots+x_{n}^{4}=s_{1}^{4}-4 s_{1}^{2} s_{2}+2 s_{2}^{2}+4 s_{1} s_{3}-4 s_{4}
$$

3. A variant: discriminants

Let x_{1}, \ldots, x_{n} be indeterminates. Their discriminant is

$$
D=D\left(x_{1}, \ldots, x_{n}\right)=\prod_{i<j}\left(x_{i}-x_{j}\right)
$$

Certainly the sign of D depends on the ordering of the indeterminates. But

$$
D^{2}=\prod_{i \neq j}\left(x_{i}-x_{j}\right)^{2}
$$

is symmetric, that is, is invariant under all permutations of the x_{i}. Therefore, D^{2} has an expression in terms of the elementary symmetric functions of the x_{i}.
[3.0.1] Remark: By contrast to the previous low-degree examples, the discriminant (squared) has as high a degree as possible.
[3.0.2] Example: With just 2 indeterminates x, y, we have the familiar

$$
D^{2}=(x-y)^{2}=x^{2}-2 x y+y^{2}=(x+y)^{2}-4 x y=s_{1}^{2}-4 s_{2}
$$

Rather than compute the general version in higher-degree cases, let's consider a more accessible variation on the question. Suppose that $\alpha_{1}, \ldots, \alpha_{n}$ are roots of an equation

$$
X^{n}+a X+b=0
$$

in a field k, with $a, b \in k$. For simplicity suppose $a \neq 0$ and $b \neq 0$, since otherwise we have even simpler methods to study this equation. Let $f(X)=x^{n}+a X+b$. The discriminant

$$
D\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)
$$

vanishes if and only if any two of the α_{i} coincide. On the other hand, $f(X)$ has a repeated factor in $k[X]$ if and only if $\operatorname{gcd}\left(f, f^{\prime}\right) \neq 1$. Because of the sparseness of this polynomial, we can in effect execute the Euclidean algorithm explicitly. Assume that the characteristic of k does not divide $n(n-1)$. Then

$$
\left(X^{n}+a X+b\right)-\frac{X}{n} \cdot\left(n X^{n-1}+a\right)=a\left(1-\frac{1}{n}\right) X+b
$$

That is, any repeated factor of $f(X)$ divides $X+\frac{b n}{(n-1) a}$, and the latter linear factor divides $f^{\prime}(X)$. Continuing, the remainder upon dividing $n X^{n-1}+a$ by the linear factor $X+\frac{b n}{(n-1) a}$ is simply the value of $n X^{n-1}+a$ obtained by evaluating at $\frac{-b n}{(n-1) a}$, namely

$$
n\left(\frac{-b n}{(n-1) a}\right)^{n-1}+a=\left(n^{n}(-1)^{n-1} b^{n-1}+(n-1)^{n-1} a^{n}\right) \cdot((n-1) a)^{1-n}
$$

Thus, (constraining a to be non-zero)

$$
n^{n}(-1)^{n-1} b^{n-1}+(n-1)^{n-1} a^{n}=0
$$

if and only if some $\alpha_{i}-\alpha_{j}=0$.

We obviously want to say that with the constraint that all the symmetric functions of the α_{i} being 0 except the last two, we have computed the discriminant (up to a less interesting constant factor).

A relatively graceful approach would be to show that $R=\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ admits a universal \mathbb{Z}-algebra homomorphism $\varphi: R \longrightarrow \Omega$ for some ring Ω that sends the first $n-2$ elementary symmetric functions

$$
\begin{array}{ccccc}
s_{1} & = & s_{1}\left(x_{1}, \ldots, x_{n}\right) & = & \sum_{i} x_{i} \\
s_{2} & = & s_{2}\left(x_{1}, \ldots, x_{n}\right) & = & \sum_{i<j} x_{i} x_{j} \\
s_{3} & = & s_{3}\left(x_{1}, \ldots, x_{n}\right) & = & \sum_{i<j<k} x_{i} x_{j} x_{k} \\
\ldots & & & & \\
s_{\ell} & = & s_{\ell}\left(x_{1}, \ldots, x_{n}\right) & = & \sum_{i_{1}<\ldots<i_{\ell}} x_{i_{1}} \ldots x_{i_{\ell}} \\
\ldots & & & \\
s_{n-2} & = & s_{n-2}\left(x_{1}, \ldots, x_{n}\right) & = & \sum_{i_{1}<\ldots<i_{n-2}} x_{i_{1}} \ldots x_{i_{n-2}}
\end{array}
$$

to 0 , but imposes no unnecessary further relations on the images

$$
a=(-1)^{n-1} \varphi\left(s_{n-1}\right) \quad b=(-1)^{n} \varphi\left(s_{n}\right)
$$

We do not have sufficient apparatus to do this nicely at this moment. ${ }^{[1]}$ Nevertheless, the computation above does tell us something.

Exercises

15.[3.0.1] Express $x_{1}^{3}+x_{2}^{3}+\ldots+x_{n}^{3}$ in terms of the elementary symmetric polynomials.
15.[3.0.2] Express $\sum_{i \neq j} x_{i} x_{j}^{2}$ in terms of the elementary symmetric polynomials.
15.[3.0.3] Let α, β be the roots of a quadratic equation $a x^{2}+b x+c=0$, Show that the discriminant, defined to be $(\alpha-\beta)^{2}$, is $b^{2}-4 a c$.
15.[3.0.4] Consider $f(x)=x^{3}+a x+b$ as a polynomial with coefficients in $k(a, b)$ where k is a field not of characteristic 2 or 3 . By computing the greatest common divisor of f and f^{\prime}, give a condition for the roots of $f(x)=0$ to be distinct.
15.[3.0.5] Express $\sum_{i, j, k}$ distinct $x_{i} x_{j} x_{k}^{2}$ in terms of elementary symmetric polynomials.

[^0]
[^0]: [1] The key point is that $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ is integral over $\mathbb{Z}\left[s_{1}, s_{2}, \ldots, s_{n}\right]$ in the sense that each x_{i} is a root of the monic equation $X^{n}-s_{1} X^{n-2}+s_{2} X^{n-2}-\ldots+(-1)^{n-1} s_{n-1} X+(-1)^{n} s_{n}=0$ It is true that for R an integral extension of a ring S, any homomorphism $\varphi_{o}: S \longrightarrow \Omega$ to an algebraically closed field Ω extends (probably in more than one way) to a homomorphism $\varphi: R \longrightarrow \Omega$. This would give us a justification for our hope that, given $a, b \in \Omega$ we can require that $\varphi_{o}\left(s_{1}\right)=\varphi_{o}\left(s_{2}\right)=\ldots=\varphi_{o}\left(s_{n-2}\right)=0$ while $\varphi_{o}\left(s_{n-1}\right)=(-1)^{n-1} a \quad \varphi_{o}\left(s_{n}\right)=(-1)^{n} b$.

