16. Eisenstein's criterion

16.1 Eisenstein's irreducibility criterion
16.2 Examples

1. Eisenstein's irreducibility criterion

Let R be a commutative ring with 1 , and suppose that R is a unique factorization domain. Let k be the field of fractions of R, and consider R as imbedded in k.

[1.0.1] Theorem: Let

$$
f(x)=x^{N}+a_{N-1} x^{N-1}+a_{N-2} x^{N-2}+\ldots+a_{2} x^{2}+a_{1} x+a_{0}
$$

be a polynomial in $R[x]$. If p is a prime in R such that p divides every coefficient a_{i} but p^{2} does not divide a_{0}, then $f(x)$ is irreducible in $R[x]$, and is irreducible in $k[x]$.

Proof: Since f has coefficients in R, its content (in the sense of Gauss' lemma) is in R. Since it is monic, its content is 1 . Thus, by Gauss' lemma, if $f(x)=g(x) \cdot h(x)$ in $k[x]$ we can adjust constants so that the content of both g and h is 1 . In particular, we can suppose that both g and h have coefficients in R, and are monic.

Let

$$
\begin{aligned}
& g(x)=x^{m}+b_{m-1} x^{m-1}+b_{1} x+b_{0} \\
& h(x)=x^{n}+c_{m-1} x^{m-1}+c_{1} x+c_{0}
\end{aligned}
$$

Not both b_{0} and c_{0} can be divisible by p, since a_{0} is not divisible by p^{2}. Without loss of generality, suppose that $p \mid b_{0}$. Suppose that $p \mid b_{i}$ for i in the range $0 \leq i \leq i_{1}$, and p does not divide $b_{i_{1}}$. There is such an index i_{1}, since g is monic. Then

$$
a_{i_{1}}=b_{i_{1}} c_{0}+b_{i_{1}-1} c_{1}+\ldots
$$

On the right-hand side, since p divides $b_{0}, \ldots, b_{i_{1}-1}$, necessarily p divides all summands but possible the first. Since p divides neither $b_{i_{1}}$ nor c_{0}, and since R is a UFD, p cannot divide $b_{i_{1}} c_{0}$, so cannot divide $a_{i_{1}}$, contradiction. Thus, after all, f does not factor.

2. Examples

[2.0.1] Example: For a rational prime p, and for any integer $n>1$, not only does

$$
x^{n}-p=0
$$

not have a root in \mathbb{Q}, but, in fact, the polynomial $x^{n}-p$ is irreducible in $\mathbb{Q}[x]$.
[2.0.2] Example: Let p be a prime number. Consider the $p^{\text {th }}$ cyclotomic polynomial

$$
\Phi_{p}(x)=x^{p-1}+x^{p-2}=\ldots+x^{2}+x+1=\frac{x^{p}-1}{x-1}
$$

We claim that $\Phi_{p}(x)$ is irreducible in $\mathbb{Q}[x]$. Although $\Phi_{p}(x)$ itself does not directly admit application of Eisenstein's criterion, a minor variant of it does. That is, consider

$$
\begin{gathered}
f(x)=\Phi_{p}(x+1)=\frac{(x+1)^{p}-1}{(x+1)-1}=\frac{x^{p}+\binom{p}{1} x^{p-1}+\binom{p}{2} x^{p-2}+\ldots+\binom{p}{p-2} x^{2}+\binom{p}{p-1} x}{x} \\
=x^{p-1}+\binom{p}{1} x^{p-2}+\binom{p}{2} x^{p-3}+\ldots+\binom{p}{p-2} x+\binom{p}{p-1}
\end{gathered}
$$

All the lower coefficients are divisible by p, and the constant coefficient is exactly p, so is not divisible by p^{2}. Thus, Eisenstein's criterion applies, and f is irreducible. Certainly if $\Phi_{p}(x)=g(x) h(x)$ then $f(x)=\Phi_{p}(x+1)=g(x+1) h(x+1)$ gives a factorization of f. Thus, Φ_{p} has no proper factorization.
[2.0.3] Example: Let $f(x)=x^{2}+y^{2}+z^{2}$ in $k[x, y, z]$ where k is not of characteristic 2. We make identifications like

$$
k[x, y, z]=k[y, z][x]
$$

via the natural isomorphisms. We want to show that $y^{2}+z^{2}$ is divisible by some prime p in $k[y, z]$, and not by p^{2}. It suffices to show that $y^{2}+z^{2}$ is divisible by some prime p in $k(z)[y]$, and not by p^{2}. Thus, it suffices to show that $y^{2}+z^{2}$ is not a unit, and has no repeated factor, in $k(z)[y]$. Since it is of degree 2 , it is certainly not a unit, so has some irreducible factor. To test for repeated factors, compute the gcd of this polynomial and its derivative, viewed as having coefficients in the field $k(z):{ }^{[1]}$

$$
\left(y^{2}+z^{2}\right)-\frac{y}{2}(2 y)=z^{2}=\text { non-zero constant }
$$

Thus, $y^{2}+z^{2}$ is a square-free non-unit in $k(z)[y]$, so is divisible by some irreducible p in $k[y, z]$ (Gauss' lemma), so Eisenstein's criterion applies to $x^{2}+y^{2}+z^{2}$ and p.
[2.0.4] Example: Let $f(x)=x^{2}+y^{3}+z^{5}$ in $k[x, y, z]$ where k is not of characteristic dividing 30. We want to show that $y^{3}+z^{5}$ is divisible by some prime p in $k[y, z]$, and not by p^{2}. It suffices to show that $y^{3}+z^{5}$ is divisible by some prime p in $k(z)[y]$, and not by p^{2}. Thus, it suffices to show that $y^{2}+z^{2}$ is not a unit, and has no repeated factor, in $k(z)[y]$. Since it is of degree 2 , it is certainly not a unit, so has some irreducible factor. To test for repeated factors, compute the gcd of this polynomial and its derivative, viewed as having coefficients in the field $k(z):{ }^{[2]}$

$$
\left(y^{2}+z^{2}\right)-\frac{y}{2}(2 y)=z^{2}=\text { non-zero constant }
$$

[^0]${ }^{\text {[2] }}$ It is here that the requirement that the characteristic not be 2 is visible.

Thus, $y^{2}+z^{2}$ is a square-free non-unit in $k(z)[y]$, so is divisible by some irreducible p in $k[y, z]$ (Gauss' lemma), so Eisenstein's criterion applies to $x^{2}+y^{2}+z^{2}$ and p.

Exercises

16.[2.0.1] Prove that $x^{7}+48 x-24$ is irreducible in $\mathbb{Q}[x]$.
16. [2.0.2] Not only does Eisenstein's criterion (with Gauss' lemma) fail to prove that $x^{4}+4$ is irreducible in $\mathbb{Q}[x]$, but, also, this polynomial does factor into two irreducible quadratics in $\mathbb{Q}[x]$. Find them.
16. [2.0.3] Prove that $x^{3}+y^{3}+z^{3}$ is irreducible in $k[x, y, z]$ when k is a field not of characteristic 3 .
16.[2.0.4] Prove that $x^{2}+y^{3}+z^{5}$ is irreducible in $k[x, y, z]$ even when the underlying field k is of characteristic 2,3 , or 5 .
16.[2.0.5] Prove that $x^{3}+y+y^{5}$ is irreducible in $\mathbb{C}[x, y]$.
16.[2.0.6] Prove that $x^{n}+y^{n}+1$ is irreducible in $k[x, y]$ when the characteristic of k does not divide n.
16.[2.0.7] Let k be a field with characteristic not dividing n. Show that any polynomial $x^{n}-P(y)$ where $P(y)$ has no repeated factors is irreducible in $k[x, y]$.

[^0]: ${ }^{[1]}$ It is here that the requirement that the characteristic not be 2 is visible.

