
17. Vandermonde determinants

17.1 Vandermonde determinants
17.2 Worked examples

1. Vandermonde determinants

A rigorous systematic evaluation of Vandermonde determinants (below) of the following identity uses the
fact that a polynomial ring over a UFD is again a UFD. A Vandermonde matrix is a square matrix of
the form in the theorem.

[1.0.1] Theorem:

det



1 1 . . . 1
x1 x2 . . . xn
x2

1 x2
2 . . . x2

n

x3
1 x3

2 . . . x3
n

...
...

...
xn−1

1 xn−1
2 . . . xn−1

n

 = (−1)n(n−1)/2 ·
∏
i<j

(xi − xj)

[1.0.2] Remark: The most universal version of the assertion uses indeterminates xi, and proves an
identity in

Z[x1, . . . , xn]

Proof: First, the idea of the proof. Whatever the determinant may be, it is a polynomial in x1, . . ., xn. The
most universal choice of interpretation of the coefficients is as in Z. If two columns of a matrix are the same,
then the determinant is 0. From this we would want to conclude that for i 6= j the determinant is divisible
by [1] xi − xj in the polynomial ring Z[x1, . . . , xn]. If we can conclude that, then, since these polynomials

[1] If one treats the xi merely as complex numbers, for example, then one cannot conclude that the product of the

expressions xi − xj with i < j divides the determinant. Attempting to evade this problem by declaring the xi as

somehow variable complex numbers is an impulse in the right direction, but is made legitimate only by treating

genuine indeterminates.
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224 Vandermonde determinants

are pairwise relatively prime, we can conclude that the determinant is divisible by∏
i<j

(xi − xj)

Considerations of degree will show that there is no room for further factors, so, up to a constant, this is the
determinant.

To make sense of this line of argument, first observe that a determinant is a polynomial function of its entries.
Indeed, the formula is

detM =
∑
p

σ(p)M1p(1)M2p(2) . . .Mnp(n)

where p runs over permutations of n things and σ(p) is the sign or parity of p, that is, σ(p) is +1 if p is a
product of an even number of 2-cycles and is −1 if p is the product of an odd number of 2-cycles. Thus, for
any Z-algebra homomorphism f to a commutative ring R with identity,

f : Z[x1, . . . , xn] −→ R

we have
f(detV ) = det f(V )

where by f(V ) we mean application of f entry-wise to the matrix V . Thus, if we can prove an identity in
Z[x1, . . . , xn], then we have a corresponding identity in any ring.

Rather than talking about setting xj equal to xi, it is safest to try to see divisibility property as directly as
possible. Therefore, we do not attempt to use the property that the determinant of a matrix with two equal
columns is 0. Rather, we use the property [2] that if an element r of a ring R divides every element of a
column (or row) of a square matrix, then it divides the determinant. And we are allowed to add any multiple
of one column to another without changing the value of the determinant. Subtracting the jth column from
the ith column of our Vandermonde matrix (with i < j), we have

detV = det



. . . 1− 1 . . . 1 . . .

. . . xi − xj . . . xj . . .

. . . x2
i − x2

j . . . x2
j . . .

. . . x3
i − x3

j . . . x3
j . . .

...
...

. . . xn−1
i − xn−1

j . . . xn−1
j . . .


From the identity

xm − ym = (x− y)(xm−1 + xm−2y + . . .+ ym−1)

it is clear that xi−xj divides all entries of the new ith column. Thus, xi−xj divides the determinant. This
holds for all i < j.

Since these polynomials are linear, they are irreducible in Z[x1, . . . , xn]. Generally, the units in a polynomial
ring R[x1, . . . , xn] are the units R× in R, so the units in Z[x1, . . . , xn] are just ±1. Visibly, the various
irreducible xi − xj are not associate, that is, do not merely differ by units. Therefore, their least common
multiple is their product. Since Z[x1, . . . , xn] is a UFD, this product divides the determinant of the
Vandermonde matrix.

To finish the computation, we want to argue that the determinant can have no further polynomial factors
than the ones we’ve already determined, so up to a constant (which we’ll determine) is equal to the latter

[2] This follows directly from the just-quoted formula for determinants, and also from other descriptions of

determinants, but from any viewpoint is still valid for matrices with entries in any commutative ring with identity.
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product. [3] To prove this, we need the notion of total degree: the total degree of a monomial xm1
1 . . . xmn

n

is m1 + . . .+mn, and the total degree of a polynomial is the maximum of the total degrees of the monomials
occurring in it. We grant for the moment the result of the proposition below, that the total degree of a
product is the sum of the total degrees of the factors. The total degree of the product is∑

1≤i<j≤n

1 =
∑

1≤i<n

n− i =
1
2
n(n− 1)

To determine the total degree of the determinant, invoke the usual formula for the determinant of a matrix
M with entries Mij , namely

detM =
∑
π

σ(π)
∏
i

Mi,π(i)

where π is summed over permutations of n things, and where σ(π) is the sign of the permutation π. In a
Vandermonde matrix all the top row entries have total degree 0, all the second row entries have total degree
1, and so on. Thus, in this permutation-wise sum for a Vandermonde determinant, each summand has total
degree

0 + 1 + 2 + . . .+ (n− 1) =
1
2
n(n− 1)

so the total degree of the determinant is the total degree of the product∑
1≤i<j≤n

1 =
∑

1≤i<n

n− i =
1
2
n(n− 1)

Thus,

det



1 1 . . . 1
x1 x2 . . . xn
x2

1 x2
2 . . . x2

n

x3
1 x3

2 . . . x3
n

...
...

...
xn−1

1 xn−1
2 . . . xn−1

n

 = constant ·
∏
i<j

(xi − xj)

Granting this, to determine the constant it suffices to compare a single monomial in both expressions. For
example, compare the coefficients of

xn−1
1 xn−2

2 xn−3
3 . . . x1

n−1x
0
n

In the product, the only way xn−1
1 appears is by choosing the x1s in the linear factors x1 − xj with 1 < j.

After this, the only way to get xn−2
2 is by choosing all the x2s in the linear factors x2−xj with 2 < j. Thus,

this monomial has coefficient +1 in the product.

In the determinant, the only way to obtain this monomial is as the product of entries from lower left to
upper right. The indices of these entries are (n, 1), (n − 1, 2), . . . , (2, n − 1), (1, n). Thus, the coefficient of
this monomial is (−1)` where ` is the number of 2-cycles necessary to obtain the permutation p such that

p(i) = n+ 1− i

Thus, for n even there are n/2 two-cycles, and for n odd (n − 1)/2 two-cycles. For a closed form, as these
expressions will appear only as exponents of −1, we only care about values modulo 2. Because of the division
by 2, we only care about n modulo 4. Thus, we have values

n/2 = 0 mod 2 (for n = 0 mod 4)
(n− 1)/2 = 0 mod 2 (for n = 1 mod 4)
n/2 = 1 mod 2 (for n = 3 mod 4)

(n− 1)/2 = 1 mod 2 (for n = 1 mod 4)

[3] This is more straightforward than setting up the right viewpoint for the first part of the argument.
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After some experimentation, we find a closed expression

n(n− 1)/2 mod 2

Thus, the leading constant is
(−1)n(n−1)/2

in the expression for the Vandermonde determinant. ///

Verify the property of total degree:

[1.0.3] Lemma: Let f(x1, . . . , xn) and g(x1, . . . , xn) be polynomials in k[x1, . . . , xn] where k is a field.
Then the total degree of the product is the sum of the total degrees.

Proof: It is clear that the total degree of the product is less than or equal the sum of the total degrees.

Let xe11 . . . xen
n and xf11 . . . xfn

n be two monomials of highest total degrees s = e1 + . . .+en and t = f1 + . . .+fn
occurring with non-zero coefficients in f and g, respectively. Assume without loss of generality that the
exponents e1 and f1 of x1 in the two expressions are the largest among all monomials of total degrees s, t in
f and g, respectively. Similarly, assume without loss of generality that the exponents e2 and f2 of x2 in the
two expressions are the largest among all monomials of total degrees s, t in f and g, respectively, of degrees
e1 and f1 in x1. Continuing similarly, we claim that the coefficient of the monomial

M = xe1+f1 . . . xen+fn
n

is simply the product of the coefficients of xe11 . . . xen
n and xf11 . . . xfn

n , so non-zero. Let xu1
1 . . . xun

n and
xv11 . . . xvn

n be two other monomials occurring in f and g such that for all indices i we have ui + vi = ei + fi.
By the maximality assumption on e1 and f1, we have e1 ≥ u1 and f1 ≥ v1, so the only way that the necessary
power of x1 can be achieved is that e1 = u1 and f1 = v1. Among exponents with these maximal exponents
of x1, e2 and f2 are maximal, so e2 ≥ u2 and f2 ≥ v2, and again it must be that e2 = u2 and f2 = v2 to
obtain the exponent of x2. Inductively, ui = ei and vi = fi for all indices. That is, the only terms in f and
g contributing to the coefficient of the monomial M in f · g are monomials xe11 . . . xen

n and xf11 . . . xfn
n . Thus,

the coefficient of M is non-zero, and the total degree is as claimed. ///

2. Worked examples

[17.1] Show that a finite integral domain is necessarily a field.

Let R be the integral domain. The integral domain property can be immediately paraphrased as that for
0 6= x ∈ R the map y −→ xy has trivial kernel (as R-module map of R to itself, for example). Thus, it is
injective. Since R is a finite set, an injective map of it to itself is a bijection. Thus, there is y ∈ R such that
xy = 1, proving that x is invertible. ///

[17.2] Let P (x) = x3 + ax + b ∈ k[x]. Suppose that P (x) factors into linear polynomials
P (x) = (x− α1)(x− α2)(x− α3). Give a polynomial condition on a, b for the αi to be distinct.

(One might try to do this as a symmetric function computation, but it’s a bit tedious.)

If P (x) = x3 +ax+ b has a repeated factor, then it has a common factor with its derivative P ′(x) = 3x2 +a.

If the characteristic of the field is 3, then the derivative is the constant a. Thus, if a 6= 0, gcd(P, P ′) = a ∈ k×
is never 0. If a = 0, then the derivative is 0, and all the αi are the same.

Now suppose the characteristic is not 3. In effect applying the Euclidean algorithm to P and P ′,(
x3 + ax+ b

)
− x

3
·
(
3x2 + a

)
= ax+ b− x

3
· a =

2
3
ax+ b
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If a = 0 then the Euclidean algorithm has already terminated, and the condition for distinct roots or factors
is b 6= 0. Also, possibly surprisingly, at this point we need to consider the possibility that the characteristic
is 2. If so, then the remainder is b, so if b 6= 0 the roots are always distinct, and if b = 0

Now suppose that a 6= 0, and that the characteristic is not 2. Then we can divide by 2a. Continue the
algorithm (

3x2 + a
)
− 9x

2a
·
(

2
3
ax+ b

)
= a+

27b2

4a2

Since 4a2 6= 0, the condition that P have no repeated factor is

4a3 + 27b2 6= 0

[17.3] The first three elementary symmetric functions in indeterminates x1, . . . , xn are

σ1 = σ1(x1, . . . , xn) = x1 + x2 + . . .+ xn =
∑
i

xi

σ2 = σ2(x1, . . . , xn) =
∑
i<j

xixj

σ3 = σ3(x1, . . . , xn) =
∑
i<j<`

xixjx`

Express x3
1 + x3

2 + . . .+ x3
n in terms of σ1, σ2, σ3.

Execute the algorithm given in the proof of the theorem. Thus, since the degree is 3, if we can derive the
right formula for just 3 indeterminates, the same expression in terms of elementary symmetric polynomials
will hold generally. Thus, consider x3 +y3 +z3. To approach this we first take y = 0 and z = 0, and consider
x3. This is s1(x)3 = x3. Thus, we next consider(

x3 + y3
)
− s1(x, y)3 = 3x2y + 3xy2

As the algorithm assures, this is divisible by s2(x, y) = xy. Indeed,(
x3 + y3

)
− s1(x, y)3 = (3x+ 3y)s2(x, y) = 3s1(x, y) s2(x, y)

Then consider (
x3 + y3 + z3

)
−
(
s1(x, y, z)3 − 3 s2(x, y, z) s1(x, y, z)

)
= 3xyz = 3s3(x, y, z)

Thus, again, since the degree is 3, this formula for 3 variables gives the general one:

x3
1 + . . .+ x3

n = s31 − 3s1s2 + 3s3

where si = si(x1, . . . , xn).

[17.4] Express
∑
i 6=j x

2
ixj as a polynomial in the elementary symmetric functions of x1, . . . , xn.

We could (as in the previous problem) execute the algorithm that proves the theorem asserting that every
symmetric (that is, Sn-invariant) polynomial in x1, . . . , xn is a polynomial in the elementary symmetric
functions.

But, also, sometimes ad hoc manipulations can yield shortcuts, depending on the context. Here,∑
i 6=j

x2
ixj =

∑
i,j

x2
ixj −

∑
i=j

x2
ixj =

(∑
i

x2
i

)(∑
j

xj

)
−
∑
i

x3
i
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An easier version of the previous exercise gives∑
i

x2
i = s21 − 2s2

and the previous exercise itself gave ∑
i

x3
i = s31 − 3s1s2 + 3s3

Thus, ∑
i6=j

x2
ixj = (s21 − 2s2) s1 −

(
s31 − 3s1s2 + 3s3

)
= s31 − 2s1s2 − s31 + 3s1s2 − 3s3 = s1s2 − 3s3

[17.5] Suppose the characteristic of the field k does not divide n. Let ` > 2. Show that

P (x1, . . . , xn) = xn1 + . . .+ xn`

is irreducible in k[x1, . . . , x`].

First, treating the case ` = 2, we claim that xn + yn is not a unit and has no repeated factors in k(y)[x].
(We take the field of rational functions in y so that the resulting polynomial ring in a single variable is
Euclidean, and, thus, so that we understand the behavior of its irreducibles.) Indeed, if we start executing
the Euclidean algorithm on xn + yn and its derivative nxn−1 in x, we have

(xn + yn)− x

n
(nxn−1) = yn

Note that n is invertible in k by the characteristic hypothesis. Since y is invertible (being non-zero) in k(y),
this says that the gcd of the polynomial in x and its derivative is 1, so there is no repeated factor. And the
degree in x is positive, so xn + yn has some irreducible factor (due to the unique factorization in k(y)[x], or,
really, due indirectly to its Noetherian-ness).

Thus, our induction (on n) hypothesis is that xn2 + xn3 + . . . + xn` is a non-unit in k[x2, x3, . . . , xn] and has
no repeated factors. That is, it is divisible by some irreducible p in k[x2, x3, . . . , xn]. Then in

k[x2, x3, . . . , xn][x1] ≈ k[x1, x2, x3, . . . , xn]

Eisenstein’s criterion applied to xn1 + . . . as a polynomial in x1 with coefficients in k[x2, x3, . . . , xn] and using
the irreducible p yields the irreducibility.

[17.6] Find the determinant of the circulant matrix

x1 x2 . . . xn−2 xn−1 xn
xn x1 x2 . . . xn−2 xn−1

xn−1 xn x1 x2 . . . xn−2

...
. . .

...
x3 x1 x2

x2 x3 . . . xn x1


(Hint: Let ζ be an nth root of 1. If xi+1 = ζ · xi for all indices i < n, then the (j + 1)th row is ζ times the
jth, and the determinant is 0. )

Let Cij be the ijth entry of the circulant matrix C. The expression for the determinant

detC =
∑
p∈Sn

σ(p)C1,p(1) . . . Cn,p(n)
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where σ(p) is the sign of p shows that the determinant is a polynomial in the entries Cij with integer
coefficients. This is the most universal viewpoint that could be taken. However, with some hindsight, some
intermediate manipulations suggest or require enlarging the ‘constants’ to include nth roots of unity ω.
Since we do not know that Z[ω] is a UFD (and, indeed, it is not, in general), we must adapt. A reasonable
adaptation is to work over Q(ω). Thus, we will prove an identity in Q(ω)[x1, . . . , xn].

Add ωi−1 times the ith row to the first row, for i ≥ 2. The new first row has entries, from left to right,

x1 + ωx2 + ω2x3 + . . .+ ωn−1xn

x2 + ωx3 + ω2x4 + . . .+ ωn−1xn−1

x3 + ωx4 + ω2x5 + . . .+ ωn−1xn−2

x4 + ωx5 + ω2x6 + . . .+ ωn−1xn−3

. . .

x2 + ωx3 + ω2x4 + . . .+ ωn−1x1

The tth of these is
ω−t · (x1 + ωx2 + ω2x3 + . . .+ ωn−1xn)

since ωn = 1. Thus, in the ring Q(ω)[x1, . . . , xn],

x1 + ωx2 + ω2x3 + . . .+ ωn−1xn)

divides this new top row. Therefore, from the explicit formula, for example, this quantity divides the
determinant.

Since the characteristic is 0, the n roots of xn − 1 = 0 are distinct (for example, by the usual computation
of gcd of xn − 1 with its derivative). Thus, there are n superficially-different linear expressions which divide
detC. Since the expressions are linear, they are irreducible elements. If we prove that they are non-associate
(do not differ merely by units), then their product must divide detC. Indeed, viewing these linear expressions
in the larger ring

Q(ω)(x2, . . . , xn)[x1]

we see that they are distinct linear monic polynomials in x1, so are non-associate.

Thus, for some c ∈ Q(ω),

detC = c ·
∏

1≤`≤n

(
x1 + ω`x2 + ω2`x3 + ω3`x4 + . . .+ ω(n−1)`xn

)
Looking at the coefficient of xn1 on both sides, we see that c = 1.

(One might also observe that the product, when expanded, will have coefficients in Z.)

Exercises

17.[2.0.1] A k-linear derivation D on a commutative k-algebra A, where k is a field, is a k-linear map
D : A −→ A satisfying Leibniz’ identity

D(ab) = (Da) · b+ a · (Db)

Given a polynomial P (x), show that there is a unique k-linear derivation D on the polynomial ring k[x]
sending x to P (x).
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17.[2.0.2] Let A be a commutative k-algebra which is an integral domain, with field of fractions K. Let
D be a k-linear derivation on A. Show that there is a unique extension of D to a k-linear derivation on K,
and that this extension necessarily satisfies the quotient rule.

17.[2.0.3] Let f(x1, . . . , xn) be a homogeneous polynomial of total degree n, with coefficients in a field k.
Let ∂/∂xi be partial differentiation with respect to xi. Prove Euler’s identity, that

n∑
i=1

xi
∂f

∂xi
= n · f

17.[2.0.4] Let α be algebraic over a field k. Show that any k-linear derivation D on k(α) necessarily gives
Dα = 0.


