17. Vandermonde determinants

17.1 Vandermonde determinants
17.2 Worked examples

1. Vandermonde determinants

A rigorous systematic evaluation of Vandermonde determinants (below) of the following identity uses the fact that a polynomial ring over a UFD is again a UFD. A Vandermonde matrix is a square matrix of the form in the theorem.

[1.0.1] Theorem:

$$
\operatorname{det}\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
x_{1} & x_{2} & \ldots & x_{n} \\
x_{1}^{2} & x_{2}^{2} & \ldots & x_{n}^{2} \\
x_{1}^{3} & x_{2}^{3} & \ldots & x_{n}^{3} \\
\vdots & \vdots & & \vdots \\
x_{1}^{n-1} & x_{2}^{n-1} & \ldots & x_{n}^{n-1}
\end{array}\right)=(-1)^{n(n-1) / 2} \cdot \prod_{i<j}\left(x_{i}-x_{j}\right)
$$

[1.0.2] Remark: The most universal version of the assertion uses indeterminates x_{i}, and proves an identity in

$$
\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]
$$

Proof: First, the idea of the proof. Whatever the determinant may be, it is a polynomial in x_{1}, \ldots, x_{n}. The most universal choice of interpretation of the coefficients is as in \mathbb{Z}. If two columns of a matrix are the same, then the determinant is 0 . From this we would want to conclude that for $i \neq j$ the determinant is divisible by ${ }^{[1]} x_{i}-x_{j}$ in the polynomial ring $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$. If we can conclude that, then, since these polynomials

[^0]are pairwise relatively prime, we can conclude that the determinant is divisible by
$$
\prod_{i<j}\left(x_{i}-x_{j}\right)
$$

Considerations of degree will show that there is no room for further factors, so, up to a constant, this is the determinant.

To make sense of this line of argument, first observe that a determinant is a polynomial function of its entries. Indeed, the formula is

$$
\operatorname{det} M=\sum_{p} \sigma(p) M_{1 p(1)} M_{2 p(2)} \ldots M_{n p(n)}
$$

where p runs over permutations of n things and $\sigma(p)$ is the sign or parity of p, that is, $\sigma(p)$ is +1 if p is a product of an even number of 2 -cycles and is -1 if p is the product of an odd number of 2 -cycles. Thus, for any \mathbb{Z}-algebra homomorphism f to a commutative ring R with identity,

$$
f: \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right] \longrightarrow R
$$

we have

$$
f(\operatorname{det} V)=\operatorname{det} f(V)
$$

where by $f(V)$ we mean application of f entry-wise to the matrix V. Thus, if we can prove an identity in $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$, then we have a corresponding identity in any ring.
Rather than talking about setting x_{j} equal to x_{i}, it is safest to try to see divisibility property as directly as possible. Therefore, we do not attempt to use the property that the determinant of a matrix with two equal columns is 0 . Rather, we use the property ${ }^{[2]}$ that if an element r of a ring R divides every element of a column (or row) of a square matrix, then it divides the determinant. And we are allowed to add any multiple of one column to another without changing the value of the determinant. Subtracting the $j^{\text {th }}$ column from the $i^{\text {th }}$ column of our Vandermonde matrix (with $i<j$), we have

$$
\operatorname{det} V=\operatorname{det}\left(\begin{array}{ccccc}
\ldots & 1-1 & \ldots & 1 & \ldots \\
\ldots & x_{i}-x_{j} & \ldots & x_{j} & \ldots \\
\ldots & x_{i}^{2}-x_{j}^{2} & \ldots & x_{j}^{2} & \ldots \\
\ldots & x_{i}^{3}-x_{j}^{3} & \ldots & x_{j}^{3} & \ldots \\
& \vdots & & \vdots & \\
\ldots & x_{i}^{n-1}-x_{j}^{n-1} & \ldots & x_{j}^{n-1} & \ldots
\end{array}\right)
$$

From the identity

$$
x^{m}-y^{m}=(x-y)\left(x^{m-1}+x^{m-2} y+\ldots+y^{m-1}\right)
$$

it is clear that $x_{i}-x_{j}$ divides all entries of the new $i^{\text {th }}$ column. Thus, $x_{i}-x_{j}$ divides the determinant. This holds for all $i<j$.
Since these polynomials are linear, they are irreducible in $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$. Generally, the units in a polynomial ring $R\left[x_{1}, \ldots, x_{n}\right]$ are the units R^{\times}in R, so the units in $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ are just ± 1. Visibly, the various irreducible $x_{i}-x_{j}$ are not associate, that is, do not merely differ by units. Therefore, their least common multiple is their product. Since $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ is a UFD, this product divides the determinant of the Vandermonde matrix.

To finish the computation, we want to argue that the determinant can have no further polynomial factors than the ones we've already determined, so up to a constant (which we'll determine) is equal to the latter

[^1] determinants, but from any viewpoint is still valid for matrices with entries in any commutative ring with identity.
product. ${ }^{[3]}$ To prove this, we need the notion of total degree: the total degree of a monomial $x_{1}^{m_{1}} \ldots x_{n}^{m_{n}}$ is $m_{1}+\ldots+m_{n}$, and the total degree of a polynomial is the maximum of the total degrees of the monomials occurring in it. We grant for the moment the result of the proposition below, that the total degree of a product is the sum of the total degrees of the factors. The total degree of the product is
$$
\sum_{1 \leq i<j \leq n} 1=\sum_{1 \leq i<n} n-i=\frac{1}{2} n(n-1)
$$

To determine the total degree of the determinant, invoke the usual formula for the determinant of a matrix M with entries $M_{i j}$, namely

$$
\operatorname{det} M=\sum_{\pi} \sigma(\pi) \prod_{i} M_{i, \pi(i)}
$$

where π is summed over permutations of n things, and where $\sigma(\pi)$ is the sign of the permutation π. In a Vandermonde matrix all the top row entries have total degree 0 , all the second row entries have total degree 1 , and so on. Thus, in this permutation-wise sum for a Vandermonde determinant, each summand has total degree

$$
0+1+2+\ldots+(n-1)=\frac{1}{2} n(n-1)
$$

so the total degree of the determinant is the total degree of the product

$$
\sum_{1 \leq i<j \leq n} 1=\sum_{1 \leq i<n} n-i=\frac{1}{2} n(n-1)
$$

Thus,

$$
\operatorname{det}\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
x_{1} & x_{2} & \ldots & x_{n} \\
x_{1}^{2} & x_{2}^{2} & \ldots & x_{n}^{2} \\
x_{1}^{3} & x_{2}^{3} & \ldots & x_{n}^{3} \\
\vdots & \vdots & & \vdots \\
x_{1}^{n-1} & x_{2}^{n-1} & \ldots & x_{n}^{n-1}
\end{array}\right)=\text { constant } \cdot \prod_{i<j}\left(x_{i}-x_{j}\right)
$$

Granting this, to determine the constant it suffices to compare a single monomial in both expressions. For example, compare the coefficients of

$$
x_{1}^{n-1} x_{2}^{n-2} x_{3}^{n-3} \ldots x_{n-1}^{1} x_{n}^{0}
$$

In the product, the only way x_{1}^{n-1} appears is by choosing the x_{1} s in the linear factors $x_{1}-x_{j}$ with $1<j$. After this, the only way to get x_{2}^{n-2} is by choosing all the x_{2} s in the linear factors $x_{2}-x_{j}$ with $2<j$. Thus, this monomial has coefficient +1 in the product.

In the determinant, the only way to obtain this monomial is as the product of entries from lower left to upper right. The indices of these entries are $(n, 1),(n-1,2), \ldots,(2, n-1),(1, n)$. Thus, the coefficient of this monomial is $(-1)^{\ell}$ where ℓ is the number of 2 -cycles necessary to obtain the permutation p such that

$$
p(i)=n+1-i
$$

Thus, for n even there are $n / 2$ two-cycles, and for n odd $(n-1) / 2$ two-cycles. For a closed form, as these expressions will appear only as exponents of -1 , we only care about values modulo 2 . Because of the division by 2 , we only care about n modulo 4 . Thus, we have values

$$
\left\{\begin{array}{clc}
n / 2 & =0 \bmod 2 & (\text { for } n=0 \bmod 4) \\
(n-1) / 2 & =0 \bmod 2 & (\text { for } n=1 \bmod 4) \\
n / 2 & =1 \bmod 2 & (\text { for } n=3 \bmod 4) \\
(n-1) / 2 & =1 \bmod 2 \quad & (\text { for } n=1 \bmod 4)
\end{array}\right.
$$

[^2]After some experimentation, we find a closed expression

$$
n(n-1) / 2 \bmod 2
$$

Thus, the leading constant is

$$
(-1)^{n(n-1) / 2}
$$

in the expression for the Vandermonde determinant.
Verify the property of total degree:
[1.0.3] Lemma: Let $f\left(x_{1}, \ldots, x_{n}\right)$ and $g\left(x_{1}, \ldots, x_{n}\right)$ be polynomials in $k\left[x_{1}, \ldots, x_{n}\right]$ where k is a field. Then the total degree of the product is the sum of the total degrees.

Proof: It is clear that the total degree of the product is less than or equal the sum of the total degrees.
Let $x_{1}^{e_{1}} \ldots x_{n}^{e_{n}}$ and $x_{1}^{f_{1}} \ldots x_{n}^{f_{n}}$ be two monomials of highest total degrees $s=e_{1}+\ldots+e_{n}$ and $t=f_{1}+\ldots+f_{n}$ occurring with non-zero coefficients in f and g, respectively. Assume without loss of generality that the exponents e_{1} and f_{1} of x_{1} in the two expressions are the largest among all monomials of total degrees s, t in f and g, respectively. Similarly, assume without loss of generality that the exponents e_{2} and f_{2} of x_{2} in the two expressions are the largest among all monomials of total degrees s, t in f and g, respectively, of degrees e_{1} and f_{1} in x_{1}. Continuing similarly, we claim that the coefficient of the monomial

$$
M=x^{e_{1}+f_{1}} \ldots x_{n}^{e_{n}+f_{n}}
$$

is simply the product of the coefficients of $x_{1}^{e_{1}} \ldots x_{n}^{e_{n}}$ and $x_{1}^{f_{1}} \ldots x_{n}^{f_{n}}$, so non-zero. Let $x_{1}^{u_{1}} \ldots x_{n}^{u_{n}}$ and $x_{1}^{v_{1}} \ldots x_{n}^{v_{n}}$ be two other monomials occurring in f and g such that for all indices i we have $u_{i}+v_{i}=e_{i}+f_{i}$. By the maximality assumption on e_{1} and f_{1}, we have $e_{1} \geq u_{1}$ and $f_{1} \geq v_{1}$, so the only way that the necessary power of x_{1} can be achieved is that $e_{1}=u_{1}$ and $f_{1}=v_{1}$. Among exponents with these maximal exponents of x_{1}, e_{2} and f_{2} are maximal, so $e_{2} \geq u_{2}$ and $f_{2} \geq v_{2}$, and again it must be that $e_{2}=u_{2}$ and $f_{2}=v_{2}$ to obtain the exponent of x_{2}. Inductively, $u_{i}=e_{i}$ and $v_{i}=f_{i}$ for all indices. That is, the only terms in f and g contributing to the coefficient of the monomial M in $f \cdot g$ are monomials $x_{1}^{e_{1}} \ldots x_{n}^{e_{n}}$ and $x_{1}^{f_{1}} \ldots x_{n}^{f_{n}}$. Thus, the coefficient of M is non-zero, and the total degree is as claimed.

2. Worked examples

[17.1] Show that a finite integral domain is necessarily a field.
Let R be the integral domain. The integral domain property can be immediately paraphrased as that for $0 \neq x \in R$ the map $y \longrightarrow x y$ has trivial kernel (as R-module map of R to itself, for example). Thus, it is injective. Since R is a finite set, an injective map of it to itself is a bijection. Thus, there is $y \in R$ such that $x y=1$, proving that x is invertible.
[17.2] Let $P(x)=x^{3}+a x+b \in k[x]$. Suppose that $P(x)$ factors into linear polynomials $P(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right)$. Give a polynomial condition on a, b for the α_{i} to be distinct.
(One might try to do this as a symmetric function computation, but it's a bit tedious.)
If $P(x)=x^{3}+a x+b$ has a repeated factor, then it has a common factor with its derivative $P^{\prime}(x)=3 x^{2}+a$.
If the characteristic of the field is 3 , then the derivative is the constant a. Thus, if $a \neq 0, \operatorname{gcd}\left(P, P^{\prime}\right)=a \in k^{\times}$ is never 0 . If $a=0$, then the derivative is 0 , and all the α_{i} are the same.

Now suppose the characteristic is not 3. In effect applying the Euclidean algorithm to P and P^{\prime},

$$
\left(x^{3}+a x+b\right)-\frac{x}{3} \cdot\left(3 x^{2}+a\right)=a x+b-\frac{x}{3} \cdot a=\frac{2}{3} a x+b
$$

If $a=0$ then the Euclidean algorithm has already terminated, and the condition for distinct roots or factors is $b \neq 0$. Also, possibly surprisingly, at this point we need to consider the possibility that the characteristic is 2 . If so, then the remainder is b, so if $b \neq 0$ the roots are always distinct, and if $b=0$
Now suppose that $a \neq 0$, and that the characteristic is not 2 . Then we can divide by $2 a$. Continue the algorithm

$$
\left(3 x^{2}+a\right)-\frac{9 x}{2 a} \cdot\left(\frac{2}{3} a x+b\right)=a+\frac{27 b^{2}}{4 a^{2}}
$$

Since $4 a^{2} \neq 0$, the condition that P have no repeated factor is

$$
4 a^{3}+27 b^{2} \neq 0
$$

[17.3] The first three elementary symmetric functions in indeterminates x_{1}, \ldots, x_{n} are

$$
\begin{gathered}
\sigma_{1}=\sigma_{1}\left(x_{1}, \ldots, x_{n}\right)=x_{1}+x_{2}+\ldots+x_{n}=\sum_{i} x_{i} \\
\sigma_{2}=\sigma_{2}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i<j} x_{i} x_{j} \\
\sigma_{3}=\sigma_{3}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i<j<\ell} x_{i} x_{j} x_{\ell}
\end{gathered}
$$

Express $x_{1}^{3}+x_{2}^{3}+\ldots+x_{n}^{3}$ in terms of $\sigma_{1}, \sigma_{2}, \sigma_{3}$.
Execute the algorithm given in the proof of the theorem. Thus, since the degree is 3 , if we can derive the right formula for just 3 indeterminates, the same expression in terms of elementary symmetric polynomials will hold generally. Thus, consider $x^{3}+y^{3}+z^{3}$. To approach this we first take $y=0$ and $z=0$, and consider x^{3}. This is $s_{1}(x)^{3}=x^{3}$. Thus, we next consider

$$
\left(x^{3}+y^{3}\right)-s_{1}(x, y)^{3}=3 x^{2} y+3 x y^{2}
$$

As the algorithm assures, this is divisible by $s_{2}(x, y)=x y$. Indeed,

$$
\left(x^{3}+y^{3}\right)-s_{1}(x, y)^{3}=(3 x+3 y) s_{2}(x, y)=3 s_{1}(x, y) s_{2}(x, y)
$$

Then consider

$$
\left(x^{3}+y^{3}+z^{3}\right)-\left(s_{1}(x, y, z)^{3}-3 s_{2}(x, y, z) s_{1}(x, y, z)\right)=3 x y z=3 s_{3}(x, y, z)
$$

Thus, again, since the degree is 3 , this formula for 3 variables gives the general one:

$$
x_{1}^{3}+\ldots+x_{n}^{3}=s_{1}^{3}-3 s_{1} s_{2}+3 s_{3}
$$

where $s_{i}=s_{i}\left(x_{1}, \ldots, x_{n}\right)$.
[17.4] Express $\sum_{i \neq j} x_{i}^{2} x_{j}$ as a polynomial in the elementary symmetric functions of x_{1}, \ldots, x_{n}.
We could (as in the previous problem) execute the algorithm that proves the theorem asserting that every symmetric (that is, S_{n}-invariant) polynomial in x_{1}, \ldots, x_{n} is a polynomial in the elementary symmetric functions.

But, also, sometimes ad hoc manipulations can yield shortcuts, depending on the context. Here,

$$
\sum_{i \neq j} x_{i}^{2} x_{j}=\sum_{i, j} x_{i}^{2} x_{j}-\sum_{i=j} x_{i}^{2} x_{j}=\left(\sum_{i} x_{i}^{2}\right)\left(\sum_{j} x_{j}\right)-\sum_{i} x_{i}^{3}
$$

An easier version of the previous exercise gives

$$
\sum_{i} x_{i}^{2}=s_{1}^{2}-2 s_{2}
$$

and the previous exercise itself gave

$$
\sum_{i} x_{i}^{3}=s_{1}^{3}-3 s_{1} s_{2}+3 s_{3}
$$

Thus,

$$
\sum_{i \neq j} x_{i}^{2} x_{j}=\left(s_{1}^{2}-2 s_{2}\right) s_{1}-\left(s_{1}^{3}-3 s_{1} s_{2}+3 s_{3}\right)=s_{1}^{3}-2 s_{1} s_{2}-s_{1}^{3}+3 s_{1} s_{2}-3 s_{3}=s_{1} s_{2}-3 s_{3}
$$

[17.5] Suppose the characteristic of the field k does not divide n. Let $\ell>2$. Show that

$$
P\left(x_{1}, \ldots, x_{n}\right)=x_{1}^{n}+\ldots+x_{\ell}^{n}
$$

is irreducible in $k\left[x_{1}, \ldots, x_{\ell}\right]$.
First, treating the case $\ell=2$, we claim that $x^{n}+y^{n}$ is not a unit and has no repeated factors in $k(y)[x]$. (We take the field of rational functions in y so that the resulting polynomial ring in a single variable is Euclidean, and, thus, so that we understand the behavior of its irreducibles.) Indeed, if we start executing the Euclidean algorithm on $x^{n}+y^{n}$ and its derivative $n x^{n-1}$ in x, we have

$$
\left(x^{n}+y^{n}\right)-\frac{x}{n}\left(n x^{n-1}\right)=y^{n}
$$

Note that n is invertible in k by the characteristic hypothesis. Since y is invertible (being non-zero) in $k(y)$, this says that the gcd of the polynomial in x and its derivative is 1 , so there is no repeated factor. And the degree in x is positive, so $x^{n}+y^{n}$ has some irreducible factor (due to the unique factorization in $k(y)[x]$, or, really, due indirectly to its Noetherian-ness).
Thus, our induction (on n) hypothesis is that $x_{2}^{n}+x_{3}^{n}+\ldots+x_{\ell}^{n}$ is a non-unit in $k\left[x_{2}, x_{3}, \ldots, x_{n}\right]$ and has no repeated factors. That is, it is divisible by some irreducible p in $k\left[x_{2}, x_{3}, \ldots, x_{n}\right]$. Then in

$$
k\left[x_{2}, x_{3}, \ldots, x_{n}\right]\left[x_{1}\right] \approx k\left[x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right]
$$

Eisenstein's criterion applied to $x_{1}^{n}+\ldots$ as a polynomial in x_{1} with coefficients in $k\left[x_{2}, x_{3}, \ldots, x_{n}\right]$ and using the irreducible p yields the irreducibility.
[17.6] Find the determinant of the circulant matrix

$$
\left(\begin{array}{cccccc}
x_{1} & x_{2} & \ldots & x_{n-2} & x_{n-1} & x_{n} \\
x_{n} & x_{1} & x_{2} & \ldots & x_{n-2} & x_{n-1} \\
x_{n-1} & x_{n} & x_{1} & x_{2} & \ldots & x_{n-2} \\
\vdots & & & \ddots & & \vdots \\
x_{3} & & & & x_{1} & x_{2} \\
x_{2} & x_{3} & \ldots & & x_{n} & x_{1}
\end{array}\right)
$$

(Hint: Let ζ be an $n^{\text {th }}$ root of 1. If $x_{i+1}=\zeta \cdot x_{i}$ for all indices $i<n$, then the $(j+1)^{t h}$ row is ζ times the $j^{t h}$, and the determinant is 0 .)
Let $C_{i j}$ be the $i j^{t h}$ entry of the circulant matrix C. The expression for the determinant

$$
\operatorname{det} C=\sum_{p \in S_{n}} \sigma(p) C_{1, p(1)} \ldots C_{n, p(n)}
$$

where $\sigma(p)$ is the sign of p shows that the determinant is a polynomial in the entries $C_{i j}$ with integer coefficients. This is the most universal viewpoint that could be taken. However, with some hindsight, some intermediate manipulations suggest or require enlarging the 'constants' to include $n^{\text {th }}$ roots of unity ω. Since we do not know that $\mathbb{Z}[\omega]$ is a UFD (and, indeed, it is not, in general), we must adapt. A reasonable adaptation is to work over $\mathbb{Q}(\omega)$. Thus, we will prove an identity in $\mathbb{Q}(\omega)\left[x_{1}, \ldots, x_{n}\right]$.
Add ω^{i-1} times the $i^{t h}$ row to the first row, for $i \geq 2$. The new first row has entries, from left to right,

$$
\begin{gathered}
x_{1}+\omega x_{2}+\omega^{2} x_{3}+\ldots+\omega^{n-1} x_{n} \\
x_{2}+\omega x_{3}+\omega^{2} x_{4}+\ldots+\omega^{n-1} x_{n-1} \\
x_{3}+\omega x_{4}+\omega^{2} x_{5}+\ldots+\omega^{n-1} x_{n-2} \\
x_{4}+\omega x_{5}+\omega^{2} x_{6}+\ldots+\omega^{n-1} x_{n-3} \\
\ldots \\
x_{2}+\omega x_{3}+\omega^{2} x_{4}+\ldots+\omega^{n-1} x_{1}
\end{gathered}
$$

The $t^{t h}$ of these is

$$
\omega^{-t} \cdot\left(x_{1}+\omega x_{2}+\omega^{2} x_{3}+\ldots+\omega^{n-1} x_{n}\right)
$$

since $\omega^{n}=1$. Thus, in the ring $\mathbb{Q}(\omega)\left[x_{1}, \ldots, x_{n}\right]$,

$$
\left.x_{1}+\omega x_{2}+\omega^{2} x_{3}+\ldots+\omega^{n-1} x_{n}\right)
$$

divides this new top row. Therefore, from the explicit formula, for example, this quantity divides the determinant.

Since the characteristic is 0 , the n roots of $x^{n}-1=0$ are distinct (for example, by the usual computation of $g c d$ of $x^{n}-1$ with its derivative). Thus, there are n superficially-different linear expressions which divide $\operatorname{det} C$. Since the expressions are linear, they are irreducible elements. If we prove that they are non-associate (do not differ merely by units), then their product must divide $\operatorname{det} C$. Indeed, viewing these linear expressions in the larger ring

$$
\mathbb{Q}(\omega)\left(x_{2}, \ldots, x_{n}\right)\left[x_{1}\right]
$$

we see that they are distinct linear monic polynomials in x_{1}, so are non-associate.
Thus, for some $c \in \mathbb{Q}(\omega)$,

$$
\operatorname{det} C=c \cdot \prod_{1 \leq \ell \leq n}\left(x_{1}+\omega^{\ell} x_{2}+\omega^{2 \ell} x_{3}+\omega^{3 \ell} x_{4}+\ldots+\omega^{(n-1) \ell} x_{n}\right)
$$

Looking at the coefficient of x_{1}^{n} on both sides, we see that $c=1$.
(One might also observe that the product, when expanded, will have coefficients in \mathbb{Z}.)

Exercises

17.[2.0.1] A k-linear derivation D on a commutative k-algebra A, where k is a field, is a k-linear map $D: A \longrightarrow A$ satisfying Leibniz' identity

$$
D(a b)=(D a) \cdot b+a \cdot(D b)
$$

Given a polynomial $P(x)$, show that there is a unique k-linear derivation D on the polynomial ring $k[x]$ sending x to $P(x)$.
17.[2.0.2] Let A be a commutative k-algebra which is an integral domain, with field of fractions K. Let D be a k-linear derivation on A. Show that there is a unique extension of D to a k-linear derivation on K, and that this extension necessarily satisfies the quotient rule.
17.[2.0.3] Let $f\left(x_{1}, \ldots, x_{n}\right)$ be a homogeneous polynomial of total degree n, with coefficients in a field k. Let $\partial / \partial x_{i}$ be partial differentiation with respect to x_{i}. Prove Euler's identity, that

$$
\sum_{i=1}^{n} x_{i} \frac{\partial f}{\partial x_{i}}=n \cdot f
$$

17.[2.0.4] Let α be algebraic over a field k. Show that any k-linear derivation D on $k(\alpha)$ necessarily gives $D \alpha=0$.

[^0]: ${ }^{[1]}$ If one treats the x_{i} merely as complex numbers, for example, then one cannot conclude that the product of the expressions $x_{i}-x_{j}$ with $i<j$ divides the determinant. Attempting to evade this problem by declaring the x_{i} as somehow variable complex numbers is an impulse in the right direction, but is made legitimate only by treating genuine indeterminates.

[^1]: [2] This follows directly from the just-quoted formula for determinants, and also from other descriptions of

[^2]: [3] This is more straightforward than setting up the right viewpoint for the first part of the argument.

