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1. Another proof of cyclicness

Earlier, we gave a more complicated but more elementary proof of the following theorem, using cyclotomic
polynomials. There is a cleaner proof using the structure theorem for finite abelian groups, which we give
now. [1] Thus, this result is yet another corollary of the structure theory for finitely-generated free modules
over PIDs.

[1.0.1] Theorem: Let G be a finite subgroup of the multiplicative group k× of a field k. Then G is
cyclic.

Proof: By the structure theorem, applied to abelian groups as Z-modules,

G ≈ Z/d1 ⊕ . . .⊕ Z/dn

where the integers di have the property 1 < d1| . . . |dn and no elementary divisor di is 0 (since G is finite).
All elements of G satisfy the equation

xdt = 1

By unique factorization in k[x], this equation has at most dt roots in k. Thus, there can be only one direct
summand, and G is cyclic. ///

[1] The argument using cyclotomic polynomials is wholesome and educational, too, but is much grittier than the

present argument.
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244 Roots of unity

[1.0.2] Remark: Although we will not need to invoke this theorem for our discussion just below of
solutions of equations

xn = 1

one might take the viewpoint that the traditional pictures of these solutions as points on the unit circle in
the complex plane are not at all misleading about more general situations.

2. Roots of unity

An element ω in any field k with the property that ωn = 1 for some integer n is a root of unity. For
positive integer n, if ωn = 1 and ωt 6= 1 for positive integers [2] t < n, then ω is a primitive nth root of
unity. [3]

Note that
µn = {α ∈ k× : αn = 1}

is finite since there are at most n solutions to the degree n equation xn = 1 in any field. This group is known
to be cyclic, by at least two proofs.

[2.0.1] Proposition: Let k be a field and n a positive integer not divisible by the characteristic of the
field. An element ω ∈ k× is a primitive nth root of unity in k if and only if ω is an element of order n in the
group µn of all nth roots of unity in k. If so, then

{ω` : 1 ≤ ` ≤ n, and gcd(`, n) = 1}

is a complete (and irredundant) list of all the primitive nth roots of unity in k. A complete and irredundant
list of all nth roots of unity in k is

{ω` : 1 ≤ ` ≤ n} = {ω` : 0 ≤ ` ≤ n− 1}

Proof: To say that ω is a primitive nth root of unity is to say that its order in the group k× is n. Thus, it
generates a cyclic group of order n inside k×. Certainly any integer power ω` is in the group µn of nth roots
of unity, since

(ω`)n = (ωn)` = 1` = 1

Since the group generated by ω is inside µn and has at least as large cardinality, it is the whole. On the
other hand, a generator for µn has order n (or else would generate a strictly smaller group). This proves the
equivalence of the conditions describing primitive nth roots of unity.

As in the more general proofs of analogous results for finite cyclic groups, the set of all elements of a cyclic
group of order n is the collection of powers ω1, ω2, . . . , ωn−1, ωn of any generator ω of the group.

As in the more general proofs of analogous results for cyclic groups, the order of a power ω` of a generator
ω is exactly n/gcd(n, `), since (ω`)t = 1 if and only if n|`t. Thus, the set given in the statement of the
proposition is a set of primitive nth roots of unity. There are ϕ(n) of them in this set, where ϕ is Euler’s
totient-function. ///

[2] If ωn = 1 then in any case the smallest positive integer ` such that ω` = 1 is a divisor of n. Indeed, as we have

done many times already, write n = q`+ r with 0 ≤ r < |`|, and 1 = ωn = ωq`+r = ωr. Thus, since ` is least, r = 0,

and ` divides n.

[3] If the characteristic p of the field k divides n, then there are no primitive nth roots of unity in k. Generally, for

n = pem with p not dividing m, Φpem(x) = Φm(x)ϕ(pe) = Φm(x)(p−1)pe−1
. We’ll prove this later.
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3. Q with roots of unity adjoined

One of the general uses of Galois theory is to understand fields intermediate between a base field k and an
algebraic field extension K of k. In the case of finite fields we already have simple means to completely
understand intermediate fields. Any situation beyond from the finite field case is more complicated. But,
to provide further examples, it is possible to consider fields intermediate between Q and Q(ζ) where ζ is a
(primitive) nth root of unity.

There are obvious and boring inclusions, since if ζ is a primitive mnth root of unity, then ζm is a primitive
nth root of unity. That is, we have

Q(primitive nth root of unity) ⊂ Q(primitive mnth root of unity)

In any case, by the multiplicativity of field extension degrees in towers, for a primitive nth root of unity ζ,
given

Q ⊂ k ⊂ Q(ζ)

we have
[Q(ζ) : k] · [k : Q] = [Q(ζ) : Q]

In particular, for prime n = p, we have already seen that Eisenstein’s criterion proves that the pth cyclotomic
polynomial Φp(x) is irreducible of degree ϕ(p) = p− 1, so

[Q(ζ) : Q] = p− 1

We will discuss the irreducibility of other cyclotomic polynomials a bit later.

[3.0.1] Example: With
ζ5 = a primitive fifth root of unity

[Q(ζ5) : Q] = 5− 1 = 4

so any field k intermediate between Q(ζ5) and Q must be quadratic over Q. In particular, from

ζ4
5 + ζ3

5 + ζ2
5 + ζ5 + 1 = 0

by dividing through by ζ2
5 we obtain

ζ2
5 + ζ5 + 1 + ζ−1

5 + ζ−2
5 = 0

and this can be rearranged to (
ζ5 +

1
ζ5

)2

+
(
ζ5 +

1
ζ5

)
− 1 = 0

Letting

ξ = ξ5 = ζ5 +
1
ζ5

we have
ξ2 + ξ − 1 = 0

so

ξ =
−1±

√
1− 4(−1)
2

=
−1±

√
5

2

From the standard picture of 5th roots of unity in the complex plane, we have

ξ = ζ5 +
1
ζ5

= e2πi/5 + e−2πi/5 = 2 cos
2π
5

= 2 cos 72o
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Therefore,

cos
2π
5

=
−1 +

√
5

4

It should be a bit surprising that
Q(
√

5) ⊂ Q(ζ5)

To prove that there are no other intermediate fields will require more work.

[3.0.2] Example: With
ζ7 = a primitive seventh root of unity

[Q(ζ7) : Q] = 7− 1 = 6

so any field k intermediate between Q(ζ7) and Q must be quadratic or cubic over Q. We will find one of
each degree. We can use the same front-to-back symmetry of the cyclotomic polynomial that we exploited
for a fifth root of 1 in the previous example. In particular, from

ζ6
7 + ζ5

7 + ζ4
7 + ζ3

7 + ζ2
7 + ζ7 + 1 = 0

by dividing through by ζ3
7

ζ3
7 + ζ2

7 + ζ7 + 1 + ζ−1
7 + ζ−2

7 + ζ−3
7 = 0

and thus (
ζ7 +

1
ζ7

)3

+
(
ζ7 +

1
ζ7

)2

− 2
(
ζ7 +

1
ζ7

)
− 1 = 0

Again letting

ξ = ξ7 = ζ7 +
1
ζ7

we have
ξ3 + ξ2 − 2ξ − 1 = 0

and in the complex plane

ξ = ζ7 +
1
ζ7

= e2πi/7 + e−2πi/7 = 2 cos
2π
7

Thus,
[Q(ξ7) : Q] = 3

We will return to this number in a moment, after we find the intermediate field that is quadratic over Q.

Take n = p prime for simplicity. Let’s think about the front-to-back symmetry a bit more, to see whether
it can suggest something of broader applicability. Again, for any primitive pth root of unity ζ = ζp, and for
a relatively prime to p, ζa is another primitive pth root of unity. Of course, since ζp = 1. ζa only depends
upon a mod p. Recalling that 1, ζ.ζ2, . . . , ζp−3, ζp−2 is a Q-basis [4] for Q(ζ), we claim that the map

σa : c0 + c1ζ + c2ζ
2 + c3ζ

3 + . . .+ cp−2ζ
p−2 −→ c0 + c1ζ

a + c2ζ
2a + c3ζ

3a + . . .+ cp−2ζ
(p−2)a

is a Q-algebra automorphism of Q(ζ). That is, σa raises each ζj to the ath power. Since, again, ζj only
depends upon j mod p, all the indicated powers of ζ are primitive pth roots of 1. The Q-linearity of this
map is built into its definition, but the multiplicativity is not obvious. Abstracting just slightly, we have

[4] Yes, the highest index is p − 2, not p − 1, and not p. The pth cyclotomic polynomial is of degree p − 1, and in

effect gives a non-trivial linear dependence relation among 1, ζ, ζ2, . . . , ζp−2, ζp−1.
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[3.0.3] Proposition: Let k be a field, k(α) a finite algebraic extension, where f(x) is the minimal
polynomial of α over k. Let β ∈ k(α) be another root [5] of f(x) = 0. Then there is a unique field
automorphism [6] σ of k(α) over k sending α to β, given by the formula

σ

 ∑
0≤i<deg f

ciα
i

 =
∑

0≤i<deg f

ciβ
i

where ci ∈ Q.

Proof: Thinking of the universal mapping property of the polynomial ring k[x], let

qα : k[x] −→ k[α] = k(α)

be the unique k-algebra homomorphism sending x −→ α. By definition of the minimal polynomial f of α
over k, the kernel of aα is the principal ideal 〈f〉 in k[x] generated by f . Let

qβ : k[x] −→ k[α] = k(α)

be the unique k-algebra homomorphism [7] sending x −→ β. Since β satisfies the same monic equation
f(x) = 0 with f irreducible, the kernel of qβ is also the ideal 〈f〉. Thus, since

ker qβ ⊃ ker qα

the map qβ factors through qα in the sense that there is a unique k-algebra homomorphism

σ : k(α) −→ k(α)

such that
qβ = σ ◦ qα

That is, the obvious attempt at defining σ, by

σ

 ∑
0≤i<deg f

ciα
i

 =
∑

0≤i<deg f

ciβ
i

with ci ∈ Q gives a well-defined map. [8] Since

dimk σ(k(α)) = dimk qβ(k[x]) = deg f = dimk k[α] = dimk k(α)

the map σ is bijective, hence invertible. ///

[5] It is critical that the second root lie in the field generated by the first. This issue is a presagement of the idea

of normality of k(α) over k, meaning that all the other roots of the minimal polynomial of α lie in k(α) already. By

contrast, for example, the field Q(α) for any cube root α of 2 does not contain any other cube roots of 2. Indeed, the

ratio of two such would be a primitive cube root of unity lying in Q(α), which various arguments show is impossible.

[6] This use of the phrase automorphism over is standard terminology: a field automorphism τ : K −→ K of a field

K to itself, with τ fixing every element of a subfield k, is an automorphism of K over k.

[7] Such a homomorphism exists for any element β of any k-algebra k[α], whether or not β is related to α.

[8] Note that this approach makes the multiplicativity easy, packaging all the issues into the well-definedness, which

then itself is a straightforward consequence of the hypothesis that α and β are two roots of the same equation, and

that β ∈ k(α).
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[3.0.4] Corollary: Let p be prime and ζ a primitive pth root of unity. The automorphism group
Aut(Q(ζ)/Q) is isomorphic to

(Z/p)× ≈ Aut(Q(ζ)/Q)

by the map
a↔ σa

where
σa(ζ) = ζa

Proof: This uses the irreducibility of Φp(x) in Q[x]. Thus, for all a ∈ (Z/p)× the power ζa is another root
of Φp(x) = 0, and Φp(x) is the minimal polynomial of both ζ and ζa. This gives an injection

(Z/p)× −→ Aut(Q(ζ)/Q)

On the other hand, any automorphism σ of Q(ζ) over Q must send ζ to another root of its minimal
polynomial, so σ(ζ) = ζa for some a ∈ (Z/p)×, since all primitive pth roots of unity are so expressible. This
proves that the map is surjective. ///

Returning to roots of unity: for a primitive pth root of unity ζ, the map

ζ −→ ζ−1

maps ζ to another primitive pth root of unity lying in Q(ζ), so this map extends to an automorphism

σ−1 : Q(ζ) −→ Q(ζ)

of Q(ζ) over Q. And [9]

2 cos
2π
p

= ξ = ζ +
1
ζ

= ζ + σ−1(ζ)

Of course, the identity map on Q(ζ) is the automorphism σ1, and

σ2
−1 = σ1

That is,
{σ1, σ−1}

is a subgroup of the group of automorphisms of Q(ζ) over Q. Indeed, the map

a −→ σa

is a group homomorphism
(Z/p)× −→ Aut(Q(ζ)/Q)

since
σa (σb(ζ)) = σa(ζb) = (σaζ)b

since σa is a ring homomorphism. Thus, recapitulating a bit,

σa (σb(ζ)) = σa(ζb) = (σaζ)b = (ζa)b = σab(ζ)

[9] Writing an algebraic number in terms of cosine is not quite right, though it is appealing. The problem is that

unless we choose an imbedding of Q(ζ) into the complex numbers, we cannot really know which root of unity we

have chosen. Thus, we cannot know which angle’s cosine we have. Nevertheless, it is useful to think about this.
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That is, we can take the viewpoint that ξ is formed from ζ by a certain amount of averaging or
symmetrizing over the subgroup {σ1, σ−1} of automorphisms.

That this symmetrizing or averaging does help isolate elements in smaller subfields of cyclotomic fields Q(ζ)
is the content of

[3.0.5] Proposition: Let G be the group of automorphisms of Q(ζp) over Q given by σa for a ∈ (Z/p)×.
Let α ∈ Q(ζp).

α ∈ Q if and only if σ(α) = α for all σ ∈ G

Proof: Certainly elements of Q are invariant under all σa, by the definition. Let [10]

α =
∑

1≤i≤p−1

ciζ
i

with ci ∈ Q. The condition α = σa(α) is ∑
1≤i≤p−1

ciζ
i =

∑
1≤i≤p−1

ciζ
ai

Since ζp = 1, the powers ζai only depend upon ai mod p. The map

i −→ ai mod p

permutes {i : 1 ≤ i ≤ p− 1}. Thus, looking at the coefficient of ζa as a varies, the equation α = σa(α) gives

ca = c1

That is, the G-invariance of α requires that α be of the form

α = c · (ζ + ζ2 + . . .+ ζp−1) = c · (1 + ζ + ζ2 + . . .+ ζp−1)− c = −c

for c ∈ Q, using
0 = Φp(ζ) = 1 + ζ + ζ2 + . . .+ ζp−1

That is, G-invariance implies rationality. ///

[3.0.6] Corollary: Let H be a subgroup of G = (Z/p)×, identified with a group of automorphisms of
Q(ζ) over Q by a −→ σa. Let α ∈ Q(ζp) be fixed under H. Then

[Q(α) : Q] ≤ [G : H] =
|G|
|H|

Proof: Since α is H-invariant, the value
σa(α)

depends only upon the image of a in G/H, that is, upon the coset aH ∈ G/H. Thus, in

f(x) =
∏

a∈G/H

(x− σa(α)) ∈ Q(ζ)[x]

[10] It is a minor cleverness to use the Q-basis ζi with 1 ≤ i ≤ p− 1 rather than the Q-basis with 0 ≤ i ≤ p− 2. The

point is that the latter is stable under the automorphisms σa, while the former is not.
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everything is well-defined. Since it is a ring homomorphism, σb ∈ G may be applied to this polynomial
factor-wise (acting trivially upon x, of course) merely permuting the σa(α) among themselves. That is,
G fixes this polynomial. On the other hand, multiplying the factors out, this invariance implies that the
coefficients of f are G-invariant. By the proposition, the coefficients of f are in Q. Thus, the degree of α
over Q is at most the index [G : H]. ///

[3.0.7] Remark: We know that (Z/p)× is cyclic of order p − 1, so we have many explicit subgroups
available in any specific numerical example.

[3.0.8] Example: Returning to p = 7, with ζ = ζ7 a primitive 7th root of unity, we want an element of
Q(ζ7) of degree 2 over Q. Thus, by the previous two results, we want an element invariant under the (unique
[11] ) subgroup H of G = (Z/7)× of order 3. Since 23 = 1 mod 7, (and 2 6= 1 mod 7) the automorphism

σ2 : ζ −→ ζ2

generates the subgroup H of order 3. Thus, consider

α = ζ + σ2(ζ) + σ2
2(ζ) = ζ + ζ2 + ζ4

Note that this α is not invariant under σ3, since

σ3(ζ + ζ2 + ζ4) = ζ3 + ζ6 + ζ12 = ζ3 + ζ5 + ζ6

That is, α 6∈ Q. Of course, this is clear from its expression as a linear combination of powers of ζ. Thus, we
have not overshot the mark in our attempt to make a field element inside a smaller subfield. The corollary
assures that

[Q(α) : Q] ≤ [G : H] =
6
3

= 2

Since α 6∈ Q, we must have equality. The corollary assures us that

f(x) = (x− α)(x− σ3(α))

has rational coefficients. Indeed, the linear coefficient is

−
(
(ζ + ζ2 + ζ4) + (ζ3 + ζ6 + ζ12)

)
= −

(
1 + ζ + ζ2 + . . .+ ζ5 + ζ6)

)
− 1 = −1

since 1 + ζ + . . .+ ζ6 = 0. The constant coefficient is

(ζ + ζ2 + ζ4) · (ζ3 + ζ6 + ζ12)

= ζ(1+3) + ζ(1+6) + ζ(1+12)ζ(2+3) + ζ(2+6) + ζ(2+12)ζ(4+3) + ζ(4+6) + ζ(4+12)

= ζ4 + 1 + ζ6 + ζ5 + ζ + 1 + 1 + ζ3 + ζ2 = 2

Thus, α = ζ + ζ2 + ζ4 satisfies the quadratic equation

x2 + x+ 2 = 0

On the other hand, by the quadratic formula we have the roots

α =
−1±

√
(−1)2 − 4 · 2

2
=
−1±

√
−7

2

[11] The group (Z/7)× is cyclic, since 7 is prime.
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That is,
Q(
√
−7) ⊂ Q(ζ7)

This is not obvious. [12]

4. Solution in radicals, Lagrange resolvents

As an example, we follow a method of J.-L. Lagrange to obtain an expression for

ξ = ξ7 = ζ7 +
1
ζ7

in terms of radicals, that is, in terms of roots. Recall from above that ξ satisfies the cubic equation [13]

x3 + x2 − 2x− 1 = 0

Lagrange’s method was to create an expression in terms of the roots of an equation designed to have more
accessible symmetries than the original. In this case, let ω be a cube root of unity, not necessarily primitive.
For brevity, let τ = σ2. The Lagrange resolvent associated to ξ and ω is

λ = ξ + ωτ(ξ) + ω2τ2(ξ)

Since σ−1(ξ) = ξ, the effect on ξ of σa for a ∈ G = (Z/7)× depends only upon the coset aH ∈ G/H where
H = {±1}. Convenient representatives for this quotient are {1, 2, 4}, which themselves form a subgroup. [14]

Grant for the moment that we can extend σa to an automorphism on Q(ξ, ω) over Q(ω), which we’ll still
denote by σa. [15] Then the simpler behavior of the Lagrange resolvent λ under the automorphism τ = σ2

is
τ(λ) = τ(ξ + ωτ(ξ) + ω2τ2(ξ)) = τ(ξ) + ωτ2(ξ) + ω2τ3(ξ) = τ(ξ) + ωτ2(ξ) + ω2ξ = ω−1 · λ

since τ3(ξ) = ξ. Similarly, τ2(λ) = ω−2 · λ. Consider

f(x) = (x− λ)(x− τ(λ))(x− τ2(λ)) = (x− λ)(x− ω−1λ)(x− ωλ)

Multiplying this out, since 1 + ω + ω2 = 0,

f(x) = x3 − λ3

And note that, because τ is a ring homomorphism,

τ(λ3) = (τ(λ))3 = (ω−1λ)3 = λ3

[12] Not only is this assertion not obvious, but, also, there is the mystery of why it is
√
−7, not

√
7.

[13] After some experimentation, one may notice that, upon replacing x by x + 2, the polynomial x3 + x2 − 2x − 1

becomes

x3 + (3 · 2 + 1)x2 + (3 · 22 + 2 · 2− 2)x+ (23 + 22 − 2 · 2− 1) = x3 + 7x2 − 14x+ 7

which by Eisenstein’s criterion is irreducible in Q[x]. Thus, [Q(ξ) : Q] = 3. This irreducibility is part of a larger

pattern involving roots of unity and Eisenstein’s criterion.

[14] That there is a set of representatives forming a subgroup ought not be surprising, since a cyclic group of order 6

is isomorphic to Z/2⊕ Z/3, by either the structure theorem, or, more simply, by Sun-Ze’s theorem.

[15] All of ω, ζ = ζ7, and ξ are contained in Q(ζ21), for a primitive 21th root of unity ζ21. Thus, the compositum field

Q(ξ, ω) can be taken inside Q(ζ21).
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Therefore, [16] λ3 ∈ Q(ω). What is it? Let α, β, γ be the three roots of x3 + x2 − 2x− 1 = 0.

λ3 =
(
ξ + ωτ(ξ) + ω2τ2(ξ)

)3
=
(
α+ ωβ + ω2γ

)3
= α3 + β3 + γ3 + 3ωα2β + 3ω2αβ2 + 3ω2α2γ + 3ωαγ2 + 3ωβ2γ + 3ω2βγ2 + 6αβγ

= α3 + β3 + γ3 + 3ω(α2β + β2γ + γ2α) + 3ω2(αβ2 + βγ2 + α2γ) + 6αβγ

Since ω2 = −1− ω this is

α3 + β3 + γ3 + 6αβγ + 3ω(α2β + β2γ + γ2α)− 3ω(αβ2 + βγ2 + α2γ)− 3(αβ2 + βγ2 + α2γ)

In terms of elementary symmetric polynomials,

α3 + β3 + γ3 = s31 − 3s1s2 + 3s3

Thus,

λ3 = s31 − 3s1s2 + 9s3 + 3ω(α2β + β2γ + γ2α)− 3ω(αβ2 + βγ2 + α2γ)− 3(αβ2 + βγ2 + α2γ)

Note that neither of the two expressions

α2β + β2γ + γ2α αβ2 + βγ2 + α2γ

is invariant under all permutations of α, β, γ, but only under powers of the cycle

α −→ β −→ γ −→ α

Thus, we cannot expect to use the symmetric polynomial algorithm to express the two parenthesized items
in terms of elementary symmetric polynomials. A more specific technique is necessary.

Writing α, β, γ in terms of the 7th root of unity ζ gives

αβ2 + βγ2 + γα2 = (ζ + ζ6)(ζ2 + ζ5)2 + (ζ2 + ζ5)(ζ4 + ζ3)2 + (ζ4 + ζ3)(ζ + ζ6)2

= (ζ + ζ6)(ζ4 + 2 + ζ3) + (ζ2 + ζ5)(ζ + 2 + ζ6) + (ζ4 + ζ3)(ζ2 + 2ζ5)

= (ζ + ζ6)(ζ4 + 2 + ζ3) + (ζ2 + ζ5)(ζ + 2 + ζ6) + (ζ4 + ζ3)(ζ2 + 2 + ζ5)

= 4(ζ + ζ2 + ζ3 + ζ4 + ζ5 + ζ6)

= −4

since [17] Φ7(ζ) = 0. This is one part of the second parenthesized expression. The other is superficially very
similar, but in fact has different details:

α2β + β2γ + γ2α = (ζ + ζ6)2(ζ2 + ζ5) + (ζ2 + ζ5)2(ζ4 + ζ3) + (ζ4 + ζ3)2(ζ + ζ6)

= (ζ2 + 2 + ζ5)(ζ2 + ζ5) + (ζ4 + 2 + ζ3)(ζ4 + ζ3) + (ζ + 2 + ζ6)(ζ + ζ6)

= 6 + 3(ζ + ζ2 + ζ3 + ζ4 + ζ5 + ζ6) = 3

[16] We will return to address this variant of our earlier proposition and corollary about invariant expressions lying

in subfields.

[17] Anticipating that ζ must not appear in the final outcome, we could have managed some slightly clever economies

in this computation. However, the element of redundancy here is a useful check on the accuracy of the computation.
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From the equation x3 + x2 − 2x− 1 = 0 we have

s1 = −1 s2 = −2 s3 = 1

Putting this together, we have

λ3 = s31 − 3s1s2 + 9s3 + 3ω · 3− 3ω · (−4)− 3(−4)

= (−1)3 − 3(−1)(−2) + 9(1) + 3ω · 3− 3ω · (−4)− 3(−4)

= −1− 6 + 9 + +9ω + 12ω + 12 = 14 + 21ω

That is,
λ = 3
√

14 + 21ω

or, in terms of ξ
ξ + ωτ(ξ) + ω2τ2(ξ) = 3

√
14 + 21ω

Now we will obtain a system of three linear equations which we can solve for ξ.

The same computation works for ω2 in place of ω, since ω2 is another primitive cube root of 1. The
computation is much easier when ω is replaced by 1, since

(α+ 1 · β + 12 · γ)3

is already s31 = −1 Thus, fixing a primitive cube root ω of 1, we have ξ + τ(ξ) + τ2(ξ) = −1
ξ + ωτ(ξ) + ω2τ2(ξ) = 3

√
14 + 21ω

ξ + ω2τ(ξ) + ωτ2(ξ) = 3
√

14 + 21ω2

Solving for ξ gives

ξ =
−1 + 3

√
14 + 21ω + 3

√
14 + 21ω2

3
Despite appearances, we know that ξ can in some sense be expressed without reference to the cube root of
unity ω, since

ξ3 + ξ2 − 2ξ − 1 = 0

and this equations has rational coefficients. The apparent entanglement of a cube root of unity is an artifact
of our demand to express ξ in terms of root-taking.

[4.0.1] Remark: There still remains the issue of being sure that the automorphisms σa of Q(ζ) over Q
(with ζ a primitive 7th root of unity) can be extended to automorphisms of Q(ζ7, ω) over Q(ω). As noted
above, for a primitive 21th root of unity η, we have

ζ = η3 ω = η7

so all the discussion above can take place inside Q(η).

We can take advantage of the fact discussed earlier that Z[ω] is Euclidean, hence a PID. [18] Note that 7 is
no longer prime in Z[ω], since

7 = (2− ω)(2− ω2) = (2− ω)(3 + ω)

Let
N(a+ bω) = (a+ bω)(a+ bω2)

[18] We will eventually give a systematic proof that all cyclotomic polynomials are irreducible in Q[x].
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be the norm discussed earlier. It is a multiplicative map Z[ω] −→ Z, N(a + bω) = 0 only for a + bω = 0,
and N(a+ bω) = 1 if and only if a+ bω is a unit in Z[ω]. One computes directly

N(a+ bω) = a2 − ab+ b2

Then both 2−ω and 3+ω are prime in Z[ω], since their norms are 7. They are not associate, however, since
the hypothesis 3 + ω = µ · (2− ω) gives

5 = (3 + ω) + (2− ω) = (1 + µ)(2− ω)

and then taking norms gives
25 = 7 ·N(1 + µ)

which is impossible. Thus, 7 is not a unit, and is square-free in Z[ω].

In particular, we can still apply Eisenstein’s criterion and Gauss’ lemma to see that Φ7(x) is irreducible in
Q(ω)[x]. In particular,

[Q(ζ7, ω) : Q(ω)] = 6

And this allows an argument parallel to the earlier one for Aut(Q(ζ7)/Q) to show that

(Z/7)× ≈ Aut(Q(ζ7, ω)/Q(ω))

by
a −→ τa

where
τa(ζ7) = ζa7

Then the automorphisms σa of Q(ζ) over Q) are simply the restrictions of τa to Q(ζ).

[4.0.2] Remark: If we look for zeros of the cubic f(x) = x3 + x2 − 2x − 1 in the real numbers R, then
we find three real roots. Indeed, 

f(2) = 7
f(1) = −1
f(−1) = 1
f(−2) = −1

Thus, by the intermediate value theorem there is a root in the interval [1, 2], a second root in the interval
[−1, 1], and a third root in the interval [−2,−1]. All the roots are real. Nevertheless, the expression for the
roots in terms of radicals involves primitive cube roots of unity, none of which is real. [19]

[19] Beginning in the Italian renaissance, it was observed that the formula for real roots to cubic equations involved

complex numbers. This was troubling, both because complex numbers were certainly not widely accepted at that

time, and because it seemed jarring that natural expressions for real numbers should necessitate complex numbers.
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5. Quadratic fields, quadratic reciprocity

This discussion will do two things: show that all field extensions Q(
√
D) lie inside fields Q(ζn) obtained by

adjoining primitive nth roots of unity [20] to Q, and prove quadratic reciprocity. [21]

Let p be an odd prime and x an integer. The quadratic symbol is defined to be

(
a

p

)
2

=

 0 (for a = 0 mod p)
1 (for a a non-zero square mod p)
−1 (for a a non-square mod p)

One part of quadratic reciprocity is an easy consequence of the cyclicness of (Z/p)× for p prime, and amounts
to a restatement of earlier results:

[5.0.1] Proposition: For p an odd prime(
−1
p

)
2

= (−1)(p−1)/2 =
{

1 (for p = 1 mod 4)
−1 (for p = 3 mod 4)

Proof: If −1 is a square mod p, then a square root of it has order 4 in (Zp)×, which is of order p− 1. Thus,
by Lagrange, 4|(p− 1). This half of the argument does not need the cyclicness. On the other hand, suppose
4|(p− 1). Since (Z/p)× is cyclic, there are exactly two elements α, β of order 4 in (Z/p)×, and exactly one
element −1 of order 2. Thus, the squares of α and β must be −1, and −1 has two square roots. ///

Refining the previous proposition, as a corollary of the cyclicness of (Z/p)×, we have Euler’s criterion:

[5.0.2] Proposition: (Euler) Let p be an odd prime. For an integer a(
a

p

)
2

= a(p−1)/2 mod p

Proof: If p|a, this equality certainly holds. For a 6= 0 mod p certainly a(p−1)/2 = ±1 mod p, since(
a(p−1)/2

)2

= ap−1 = 1 mod p

and the only square roots of 1 in Z/p are ±1. If a = b2 mod p is a non-zero square mod p, then

a(p−1)/2 = (b2)(p−1)/2 = bp−1 = 1 mod p

This was the easy half. For the harder half we need the cyclicness. Let g be a generator for (Z/p)×. Let
a ∈ (Z/p)×, and write a = gt. If a is not a square mod p, then t must be odd, say t = 2s+ 1. Then

a(p−1)/2 = gt(p−1)/2 = g(2s+1)(p−1)/2 = gs(p−1) · g(p−1)/2 = g(p−1)/2 = −1

[20] The fact that every quadratic extension of Q is contained in a field generated by roots of unity is a very special

case of the Kronecker-Weber theorem, which asserts that any galois extension of Q with abelian galois group lies

inside a field generated over Q by roots of unity.

[21] Though Gauss was the first to give a proof of quadratic reciprocity, it had been conjectured by Lagrange some

time before, and much empirical evidence supported the conclusion.
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since g is of order p− 1, and since −1 is the unique element of order 2. ///

[5.0.3] Corollary: The quadratic symbol has the multiplicative property(
ab

p

)
2

=
(
a

p

)
2

·
(
b

p

)
2

Proof: This follows from the expression for the quadratic symbol in the previous proposition. ///

A more interesting special case [22] is

[5.0.4] Theorem: For p an odd prime, we have the formula [23]

(
2
p

)
2

= (−1)(p
2−1)/8 =


1 (for p = 1 mod 8)
−1 (for p = 3 mod 8)
−1 (for p = 5 mod 8)

1 (for p = 7 mod 8)

Proof: Let i denote a square root of −1, and we work in the ring Z[i]. Since the binomial coefficients
(
p
k

)
are divisible by p for 0 < k < p, in Z[i]

(1 + i)p = 1p + ip = 1 + ip

Also, 1 + i is roughly a square root of 2, or at least of 2 times a unit in Z[i], namely

(1 + i)2 = 1 + 2i− 1 = 2i

Then, using Euler’s criterion, in Z[i] modulo the ideal generated by p(
2
p

)
2

= 2(p−1)/2 = (2i)(p−1)/2 · i−(p−1)/2

=
(
(1 + i)2

)(p−1)/2 · i−(p−1)/2 = (1 + i)p−1 · i−(p−1)/2 mod p

Multiply both sides by 1 + i to obtain, modulo p,

(1 + i) ·
(

2
p

)
2

= (1 + i)p · i−(p−1)/2 = (1 + ip) · i−(p−1)/2 mod p

The right-hand side depends only on p modulo 8, and the four cases given in the statement of the theorem
can be computed directly. ///

The main part of quadratic reciprocity needs somewhat more preparation. Let p and q be distinct odd
primes. Let ζ = ζq be a primitive qth root of unity. The quadratic Gauss sum mod q is

g =
∑

b mod q

ζbq ·
(
b

q

)
2

[22] Sometimes called a supplementary law of quadratic reciprocity.

[23] The expression of the value of the quadratic symbol as a power of −1 is just an interpolation of the values. That

is, the expression (p2 − 1)/8 does not present itself naturally in the argument.
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[5.0.5] Proposition: Let q be an odd prime, ζq a primitive qth root of unity. Then

g2 =

 ∑
b mod q

ζbq ·
(
b

q

)
2

2

=
(
−1
q

)
2

· q

That is, either
√
q or

√
−q is in Q(ζq), depending upon whether q is 1 or 3 modulo 4.

Proof: Compute

g2 =
∑

a,b mod q

ζa+bq ·
(
ab

q

)
2

from the multiplicativity of the quadratic symbol. And we may restrict the sum to a, b not 0 mod q. Then

g2 =
∑

a,b mod q

ζa+abq ·
(
a2b

q

)
2

by replacing b by ab mod q. Since a 6= 0 mod q this is a bijection of Z/q to itself. Then

g2 =
∑

a 6=0, b 6=0

ζa+abq ·
(
a2

q

)
2

(
b

q

)
2

=
∑

a 6=0, b 6=0

ζa(1+b)q ·
(
b

q

)
2

For fixed b, if 1 + b 6= 0 mod q then we can replace a(1 + b) by a, since 1 + b is invertible mod q. With
1 + b 6= 0 mod q, the inner sum over a is

∑
a6=0 mod q

ζaq =

 ∑
a mod q

ζaq

− 1 = 0− 1 = −1

When 1 + b = 0 mod q, the sum over a is q − 1. Thus, the whole is

g2 =
∑

b=−1 mod q

(q − 1) ·
(
b

q

)
2

−
∑

b 6=0,−1 mod q

(
b

q

)
2

= (q − 1) ·
(
−1
q

)
2

−
∑

b mod q

(
b

q

)
2

+
(
−1
q

)
2

Let c be a non-square mod q. Then b −→ bc is a bijection of Z/q to itself, and so

∑
b mod q

(
b

q

)
2

=
∑

b mod q

(
bc

q

)
2

=
(
c

q

)
2

·
∑

b mod q

(
b

q

)
2

= −
∑

b mod q

(
b

q

)
2

Since A = −A implies A = 0 for integers A, we have

∑
b mod q

(
b

q

)
2

= 0

Then we have

g2 = (q − 1) ·
(
−1
q

)
2

−
∑

b mod q

(
b

q

)
2

+
(
−1
q

)
2

= q ·
(
−1
q

)
2

as claimed. ///

Now we can prove
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[5.0.6] Theorem: (Quadratic Reciprocity) Let p and q be distinct odd primes. Then(
p

q

)
2

= (−1)(p−1)(q−1)/4 ·
(
q

p

)
2

Proof: Using Euler’s criterion and the previous proposition, modulo p in the ring Z[ζq],(
q

p

)
2

= q(p−1)/2 =
(
g2

(
−1
q

)
2

)(p−1)/2

= gp−1

(
−1
q

)(p−1)/2

2

= gp−1
(

(−1)(q−1)/2
)(p−1)/2

Multiply through by the Gauss sum g, to obtain

g ·
(
q

p

)
2

= gp · (−1)(p−1)(q−1)/4 mod p

Since p divides the middle binomial coefficients, and since p is odd (so (b/q)p2 = (b/q)2 for all b),

gp =

 ∑
b mod q

ζbq ·
(
b

q

)
2

p

=
∑

b mod q

ζbpq ·
(
b

q

)
2

mod p

Since p is invertible modulo q, we can replace b by bp−1 mod q to obtain

gp =
∑

b mod q

ζbq ·
(
bp−1

q

)
2

=
(
p−1

q

)
2

·
∑

b mod q

ζbq ·
(
b

q

)
2

=
(
p

q

)
2

· g mod p

Putting this together,

g ·
(
q

p

)
2

=
(
p

q

)
2

· g · (−1)(p−1)(q−1)/4 mod p

We obviously want to cancel the factor of g, but we must be sure that it is invertible in Z[ζq] modulo p.
Indeed, since

g2 = q ·
(
−1
q

)
2

we could multiply both sides by g to obtain

q

(
−1
q

)
2

·
(
q

p

)
2

· q
(
−1
q

)
2

=
(
p

q

)
2

· q
(
−1
q

)
2

· (−1)(p−1)(q−1)/4 mod p

Since ±q is invertible mod p, we cancel the q(−1/q)2 to obtain(
q

p

)
2

=
(
p

q

)
2

· (−1)(p−1)(q−1)/4 mod p

Both sides are ±1 and p > 2, so we have an equality of integers(
q

p

)
2

=
(
p

q

)
2

· (−1)(p−1)(q−1)/4

which is the assertion of quadratic reciprocity. ///
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6. Worked examples

[19.1] Let ζ be a primitive nth root of unity in a field of characteristic 0. Let M be the n-by-n matrix with
ijth entry ζij . Find the multiplicative inverse of M .

Some experimentation (and an exercise from the previous week) might eventually suggest consideration of
the matrix A having ijth entry 1

n ζ
−ij . Then the ijth entry of MA is

(MA)ij =
1
n

∑
k

ζik−kj =
1
n

∑
k

ζ(i−j)k

As an example of a cancellation principle we claim that

∑
k

ζ(i−j)k =
{

0 (for i− j 6= 0)
n (for i− j = 0)

The second assertion is clear, since we’d be summing n 1’s in that case. For i − j 6= 0, we can change
variables in the indexing, replacing k by k + 1 mod n, since ζa is well-defined for a ∈ Z/n. Thus,∑

k

ζ(i−j)k =
∑
k

ζ(i−j)(k+1) = ζi−j
∑
k

ζ(i−j)k

Subtracting,
(1− ζi−j)

∑
k

ζ(i−j)k = 0

For i− j 6= 0, the leading factor is non-zero, so the sum must be zero, as claimed. ///

[19.2] Let µ = αβ2 +βγ2 +γα2 and ν = α2β+β2γ+γ2α. Show that these are the two roots of a quadratic
equation with coefficients in Z[s1, s2, s3] where the si are the elementary symmetric polynomials in α, β, γ.

Consider the quadratic polynomial

(x− µ)(x− ν) = x2 − (µ+ ν)x+ µν

We will be done if we can show that µ+ ν and µν are symmetric polynomials as indicated. The sum is

µ+ ν = αβ2 + βγ2 + γα2 + α2β + β2γ + γ2α

= (α+ β + γ)(αβ + βγ + γα)− 3αβγ = s1s2 − 3s3

This expression is plausibly obtainable by a few trial-and-error guesses, and examples nearly identical to this
were done earlier. The product, being of higher degree, is more daunting.

µν = (αβ2 + βγ2 + γα2)(α2β + β2γ + γ2α)

= α3 + αβ4 + α2β2γ2 + α2β2γ2 + β3γ3 + αβγ4 + α4βγ + α2β2γ2 + α3γ3

Following the symmetric polynomial algorithm, at γ = 0 this is α3β3 = s2(α, β)3, so we consider

µν − s32
s3

= α3 + β3 + γ3 − 3s3 − 3(µ+ ν)
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where we are lucky that the last 6 terms were µ + ν. We have earlier found the expression for the sum of
cubes, and we have expressed µ+ ν, so

µν − s32
s3

= (s31 − 3s1s2 + 3s3)− 3s3 − 3(s1s2 − 3s3) = s31 − 6s1s2 + 9s3

and, thus,
µν = s32 + s31s3 − 6s1s2s3 + 9s23

Putting this together, µ and ν are the two roots of

x2 − (s1s2 − 3s3)x+ (s32 + s31s3 − 6s1s2s3 + 9s23) = 0

(One might also speculate on the relationship of µ and ν to solution of the general cubic equation.) ///

[19.3] The 5th cyclotomic polynomial Φ5(x) factors into two irreducible quadratic factors over Q(
√

5). Find
the two irreducible factors.

We have shown that
√

5 occurs inside Q(ζ), where ζ is a primitive fifth root of unity. Indeed, the discussion
of Gauss sums in the proof of quadratic reciprocity gives us the convenient

ζ − ζ2 − ζ3 + ζ4 =
√

5

We also know that [Q(
√

5) : Q] = 2, since x2 − 5 is irreducible in Q[x] (Eisenstein and Gauss). And
[Q(ζ) : Q] = 4 since Φ5(x) is irreducible in Q[x] of degree 5− 1 = 4 (again by Eisenstein and Gauss). Thus,
by multiplicativity of degrees in towers of fields, [Q(ζ) : Q(

√
5)] = 2.

Thus, since none of the 4 primitive fifth roots of 1 lies in Q(
√

5), each is necessarily quadratic over Q(
√

5),
so has minimal polynomial over Q(

√
5) which is quadratic, in contrast to the minimal polynomial Φ5(x) over

Q. Thus, the 4 primitive fifth roots break up into two (disjoint) bunches of 2, grouped by being the 2 roots
of the same quadratic over Q(

√
5). That is, the fifth cyclotomic polynomial factors as the product of those

two minimal polynomials (which are necessarily irreducible over Q(
√

5)).

In fact, we have a trick to determine the two quadratic polynomials. Since

ζ4 + ζ3 + ζ2 + ζ + 1 = 0

divide through by ζ2 to obtain
ζ2 + ζ + 1 + ζ−1 + ζ−2 = 0

Thus, regrouping, (
ζ +

1
ζ

)2

+
(
ζ +

1
ζ

)2

− 1 = 0

Thus, ξ = ζ + ζ−1 satisfies the equation
x2 + x− 1 = 0

and ξ = (−1±
√

5)/2. Then, from

ζ +
1
ζ

= (−1±
√

5)/2

multiply through by ζ and rearrange to

ζ2 − −1±
√

5
2

ζ + 1 = 0

Thus,

x4 + x3 + x2 + x+ 1 =

(
x2 − −1 +

√
5

2
x+ 1

)(
x2 − −1−

√
5

2
x+ 1

)
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Alternatively, to see what can be done similarly in more general situations, we recall that Q(
√

5) is the
subfield of Q(ζ) fixed pointwise by the automorphism ζ −→ ζ−1. Thus, the 4 primitive fifth roots of unity
should be paired up into the orbits of this automorphism. Thus, the two (irreducible inQ(

√
5)[x]) quadratics

are
(x− ζ)(x− ζ−1) = x2 − (ζ + ζ−1)x+ 1

(x− ζ2)(x− ζ−2) = x2 − (ζ2 + ζ−2)x+ 1

Again, without imbedding things into the complex numbers, etc., there is no canonical one of the two square
roots of 5, so the ±

√
5 just means that whichever one we pick first the other one is its negative. Similarly,

there is no distinguished one among the 4 primitive fifth roots unless we imbed them into the complex
numbers. There is no need to do this. Rather, specify one ζ, and specify a

√
5 by

ζ + ζ−1 =
−1 +

√
5

2

Then necessarily

ζ2 + ζ−2 =
−1−

√
5

2
And we find the same two quadratic equations again. Since they are necessarily the minimal polynomials of
ζ and of ζ2 over Q(

√
5) (by the degree considerations) they are irreducible in Q(

√
5)[x]. ///

[19.4] The 7th cyclotomic polynomial Φ7(x) factors into two irreducible cubic factors over Q(
√
−7. Find

the two irreducible factors.

Let ζ be a primitive 7th root of unity. Let H = 〈τ〉 be the order 3 subgroup of the automorphism group
G ≈ (Z/7)× of Q(ζ) over Q, where τ = σ2 is the automorphism τ(ζ) = ζ2, which has order 3. We have
seen that Q(

√
−7) is the subfield fixed pointwise by H. In particular, α = ζ + ζ2 + ζ4 should be at most

quadratic over Q. Recapitulating the earlier discussion, α is a zero of the quadratic polynomial

(x− (ζ + ζ2 + ζ4))(x− (ζ3 + ζ6 + ζ5))

which will have coefficients in Q, since we have arranged that the coefficients are G-invariant. Multiplying
out and simplifying, this is

x2 + x+ 2

with zeros (−1±
√
−7)/2.

The coefficients of the polynomial

(x− ζ)(x− τ(ζ))(x− τ2(ζ)) = (x− ζ)(x− ζ2)(x− ζ4)

will be H-invariant and therefore will lie in Q(
√
−7). In parallel, taking the primitive 7th root of unity ζ3

which is not in the H-orbit of ζ, the cubic

(x− ζ3)(x− τ(ζ3))(x− τ2(ζ3)) = (x− ζ3)(x− ζ6)(x− ζ5)

will also have coefficients in Q(
√
−7). It is no coincidence that the exponents of ζ occuring in the two cubics

are disjoint and exhaust the list 1, 2, 3, 4, 5, 6.

Multiplying out the first cubic, it is

(x− ζ)(x− ζ2)(x− ζ4) = x3 − (ζ + ζ2 + ζ4)x2 + (ζ3 + ζ5 + ζ6)x− 1

= x3 −
(
−1 +

√
−7

2

)
x2 +

(
−1−

√
−7

2

)
x− 1
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for a choice of ordering of the square roots. (Necessarily!) the other cubic has the roles of the two square
roots reversed, so is

(x− ζ3)(x− ζ6)(x− ζ2) = x3 − (ζ3 + ζ5 + ζ6)x+ (ζ + ζ2 + ζ4)x− 1

= x3 −
(
−1−

√
−7

2

)
x2 +

(
−1 +

√
−7

2

)
x− 1

Since the minimal polynomials of primitive 7th roots of unity are of degree 3 overQ(
√
−7) (by multiplicativity

of degrees in towers), these cubics are irreducible over Q(
√
−7). Their product is Φ7(x), since the set of all

6 roots is all the primitive 7th roots of unity, and there is no overlap between the two sets of roots. ///

[19.5] Let ζ be a primitive 13th root of unity in an algebraic closure of Q. Find an element α in Q(ζ)
which satisfies an irreducible cubic with rational coefficients. Find an element β in Q(ζ) which satisfies an
irreducible quartic with rational coefficients. Determine the cubic and the quartic explicitly.

Again use the fact that the automorphism group G of Q(ζ) over Q is isomorphic to (Z/13)× by a −→ σa
where σa(ζ) = ζa. The unique subgroup A of order 4 is generated by µ = σ5. From above, an element
α ∈ Q(ζ) fixed by A is of degree at most |G|/|A| = 12/4 = 3 over Q. Thus, try symmetrizing/averaging ζ
itself over the subgroup A by

α = ζ + µ(ζ) + µ2(ζ) + µ3(ζ) = ζ + ζ5 + ζ12 + ζ8

The unique subgroup B of order 3 in G is generated by ν = σ3. Thus, necessarily the coefficients of

(x− α)(x− ν(α))(x− ν2(α))

are in Q. Also, one can see directly (because the ζi with 1 ≤ i ≤ 12 are linearly independent over Q) that
the images α, ν(α), ν2(α) are distinct, assuring that the cubic is irreducible over Q.

To multiply out the cubic and determine the coefficients as rational numbers it is wise to be as economical
as possible in the computation. Since we know a priori that the coefficients are rational, we need not drag
along all the powers of ζ which appear, since there will necessarily be cancellation. Precisely, we compute
in terms of the Q-basis

1, ζ, ζ2, . . . , ζ10, ζ11

Given ζn appearing in a sum, reduce the exponent n modulo 13. If the result is 0, add 1 to the sum. If the
result is 12, add −1 to the sum, since

ζ12 = −(1 + ζ + ζ2 + . . .+ ζ11)

expresses ζ12 in terms of our basis. If the reduction mod 13 is anything else, drop that term (since we know it
will cancel). And we can go through the monomial summand in lexicographic order. Using this bookkeeping
strategy, the cubic is(

x− (ζ + ζ5 + ζ12 + ζ8)
) (
x− (ζ3 + ζ2 + ζ10 + ζ11)

) (
x− (ζ9 + ζ6 + ζ4 + ζ7)

)
= x3 − (−1)x2 + (−4)x− (−1) = x3 + x2 − 4x+ 1

Yes, there are 3·42 terms to sum for the coefficient of x, and 43 for the constant term. Most give a contribution
of 0 in our bookkeeping system, so the workload is not completely unreasonable. (A numerical computation
offers a different sort of check.) Note that Eisenstein’s criterion (and Gauss’ lemma) gives another proof of
the irreducibility, by replacing x by x+ 4 to obtain

x3 + 13x2 + 52x+ 65
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and noting that the prime 13 fits into the Eisenstein criterion here. This is yet another check on the
computation.

For the quartic, reverse the roles of µ and ν above, so put

β = ζ + ν(ζ) + ν2(ζ) = ζ + ζ3 + ζ9

and compute the coefficients of the quartic polynomial

(x− β)(x− µ(β))(x− µ2(β))(x− µ3(β))

=
(
x− (ζ + ζ3 + ζ9)

) (
x− (ζ5 + ζ2 + ζ6)

) (
x− (ζ12 + ζ10 + ζ4)

) (
x− (ζ8 + ζ11 + ζ7)

)
Use the same bookkeeping approach as earlier, to allow a running tally for each coefficient. The sum of the 4
triples is −1. For the other terms some writing-out seems necessary. For example, to compute the constant
coefficient, we have the product

(ζ + ζ3 + ζ9)(ζ5 + ζ2 + ζ6)(ζ12 + ζ10 + ζ4)(ζ8 + ζ11 + ζ7)

which would seem to involve 81 summands. We can lighten the burden by writing only the exponents which
appear, rather than recopying zetas. Further, multiply the first two factors and the third and fourth, leaving
a multiplication of two 9-term factors (again, retaining only the exponents)

( 6 3 7 8 5 9 1 11 2 ) ( 7 10 6 5 8 4 12 2 11 )

As remarked above, a combination of an exponent from the first list of nine with an exponent from the second
list will give a non-zero contribution only if the sum (reduced modulo 13) is either 0 or 12, contributing 1 or
−1 respectively. For each element of the first list, we can keep a running tally of the contributions from each
of the 9 elements from the second list. Thus, grouping by the elements of the first list, the contributions are,
respectively,

(1− 1) + (1) + (1− 1) + (1− 1) + (−1 + 1) + (1) + (1− 1) + (1)(−1 + 1) = 3

The third symmetric function is a sum of 4 terms, which we group into two, writing in the same style

( 1 3 9 5 2 6 ) ( 7 10 6 5 8 4 12 2 11 )

+ ( 6 3 7 8 5 9 1 11 2 ) ( 12 10 4 8 11 7 )

In each of these two products, for each item in the lists of 9, we tally the contributions of the 6 items in the
other list, obtaining,

(0 + 0− 1 + 0 + 1 + 1 + 1 + 0 + 0) + (1 + 1 + 0− 1 + 0 + 1 + 0 + 0 + 0) = 4

The computation of the second elementary symmetric function is, similarly, the sum

( 1 3 9 ) ( 5 2 6 12 10 4 8 11 7 )

+ ( 5 2 6 ) ( 12 10 4 8 11 7 ) + ( 12 10 4 ) ( 8 11 7 )

Grouping the contributions for each element in the lists 1, 3, 9 and 5, 2, 6 and 12, 10, 4, this gives

[(1− 1) + (1) + (1)] + [(1− 1) + (−1 + 1) + (1)] + [0 + 0 + (−1)] = 2

Thus, in summary, we have
x4 + x3 + 2x2 − 4x+ 3
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Again, replacing x by x+ 3 gives
x4 + 13x3 + 65x2 + 143x+ 117

All the lower coefficients are divisible by 13, but not by 132, so Eisenstein proves irreducibility. This again
gives a sort of verification of the correctness of the numerical computation. ///

[19.6] Let f(x) = x8 + x6 + x4 + x2 + 1. Show that f factors into two irreducible quartics in Q[x]. Show
that

x8 + 5x6 + 25x4 + 125x2 + 625

also factors into two irreducible quartics in Q[x].

The first assertion can be verified by an elementary trick, namely

x8 + x6 + x4 + x2 + 1 =
x10 − 1
x2 − 1

=
Φ1(x)Φ2(x)Φ5(x)Φ10(x)

Φ1(x)Φ2(x)

= Φ5(x)Φ10(x) = (x4 + x3 + x2 + x+ 1)(x4 − x3 + x2 − x+ 1)

But we do learn something from this, namely that the factorization of the first octic into linear factors
naturally has the eight linear factors occurring in two bunches of four, namely the primitive 5th roots of
unity and the primitive 10th roots of unity. Let ζ be a primitive 5th root of unity. Then −ζ is a primitive
10th. Thus, the 8 zeros of the second polynomial will be

√
5 times primitive 5th and 10th roots of unity. The

question is how to group them together in two bunches of four so as to obtain rational coefficients of the
resulting two quartics.

The automorphism group G of Q(ζ) over Q is isomorphic to (Z/10)×, which is generated by τ(ζ) = ζ3.
That is, taking a product of linear factors whose zeros range over an orbit of ζ under the automorphism
group G,

x4 + x3 + x2 + x+ 1 = (x− ζ)(x− ζ3)(x− ζ9)(x− ζ7)

has coefficients in Q and is the minimal polynomial for ζ over Q. Similarly looking at the orbit of −ζ under
the automorphism group G, we see that

x4 − x3 + x2 − x+ 1 = (x+ ζ)(x+ ζ3)(x+ ζ9)(x+ ζ7)

has coefficients in Q and is the minimal polynomial for −ζ over Q.

The discussion of Gauss sums in the proof of quadratic reciprocity gives us the convenient

ζ − ζ2 − ζ3 + ζ4 =
√

5

Note that this expression allows us to see what effect the automorphism σa(ζ) = ζa has on
√

5

σa(
√

5) = σa(ζ − ζ2 − ζ3 + ζ4) =
{ √

5 (for a = 1, 9)
−
√

5 (for a = 3, 7)

Thus, the orbit of
√

5ζ under G is
√

5ζ, τ(
√

5ζ) = −
√

5ζ3, τ2(
√

5ζ) =
√

5ζ4, τ3(
√

5ζ) = −
√

5ζ2

giving quartic polynomial
(x−

√
5ζ)(x+

√
5ζ3)(x−

√
5ζ4)(x+

√
5ζ2)

= x4 −
√

5(ζ − ζ2 − ζ3 + ζ4)x3 + 5(−ζ4 + 1− ζ3 − ζ2 + 1− ζ)x2 − 5
√

5(ζ4 − ζ2 + ζ − ζ3)x+ 25

= x4 − 5x3 + 15x2 − 25x+ 25
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We might anticipate what happens with the other bunch of four zeros, but we can also compute directly
(confirming the suspicion). The orbit of −

√
5ζ under G is

−
√

5ζ, τ(−
√

5ζ) =
√

5ζ3, τ2(−
√

5ζ) = −
√

5ζ4, τ3(−
√

5ζ) =
√

5ζ2

giving quartic polynomial
(x+

√
5ζ)(x−

√
5ζ3)(x+

√
5ζ4)(x−

√
5ζ2)

= x4 +
√

5(ζ − ζ2 − ζ3 + ζ4)x3 + 5(−ζ4 + 1− ζ3 − ζ2 + 1− ζ)x2 + 5
√

5(ζ4 − ζ2 + ζ − ζ3)x+ 25

= x4 + 5x3 + 15x2 + 25x+ 25

Thus, we expect that

x8 + 5x6 + 25x4 + 125x2 + 625 = (x4 − 5x3 + 15x2 − 25x+ 25) · (x4 + 5x3 + 15x2 + 25x+ 25)

Because of the sign flips in the odd-degree terms in the quartics, the octic is also

x8 + 5x6 + 25x4 + 125x2 + 625 = (x4 + 15x2 + 25)2 − 25(x3 + 5x)2

(This factorization of an altered product of two cyclotomic polynomials is an Aurifeuille-LeLasseur
factorization, after two amateur mathematicians who studied them, brought to wider attention by E. Lucas
in the late 19th century.)

[19.7] Let p be a prime not dividing m. Show that in Fp[x]

Φmp(x) = Φm(x)p−1

From the recursive definition,

Φpm(x) =
xpm − 1∏

d|m Φpεd(x) ·
∏
d|m, d<m Φpd(x)

In characteristic p, the numerator is (xm−1)p. The first product factor in the denominator is xm−1. Thus,
the whole is

Φpm(x) =
(xm − 1)p

(xm − 1) ·
∏
d|m, d<m Φpd(x)

By induction on d < m, in the last product in the denominator has factors

Φpd(x) = Φd(x)p−1

Cancelling,

Φpm(x) =
(xm − 1)p

(xm − 1) ·
∏
d|m, d<m Φd(x)p−1

=
(xm − 1)p−1∏

d|m, d<m Φd(x)p−1

=

(
xm − 1∏

d|m, d<m Φd(x)

)p−1

which gives Φm(x)p−1 as claimed, by the recursive definition. ///

Exercises

19.[6.0.1] Find two fields intermediate between Q and Q(ζ11), where ζ11 is a primitive 11th root of unity.

19.[6.0.2] The 5th cyclotomic polynomial factors into two irreducibles in F19[x]. Find these two
irreducibles.

19.[6.0.3] The 8th cyclotomic polynomial factors into two irreducibles in F7[x]. Find these two
irreducibles.

19.[6.0.4] The 8th cyclotomic polynomial factors into two irreducible quadratics in Q(
√

2)[x]. Find these
two irreducibles.


