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Dirichlet’s theorem is a strengthening of Euclid’s theorem that there are infinitely many primes p. Dirichlet’s
theorem allows us to add the condition that p = a mod N for fixed a invertible modulo fixed N , and still be
assured that there are infinitely-many primes meeting this condition.

The most intelligible proof of this result uses a bit of analysis, in addition to some interesting algebraic ideas.
The analytic idea already arose with Euler’s proof of the infinitude of primes, which we give below. New
algebraic ideas due to Dirichlet allowed him to isolate primes in different congruence classes modulo N .

In particular, this issue is an opportunity to introduce the dual group, or group of characters, of a finite
abelian group. This idea was one impetus to the development of a more abstract notion of group, and also
of group representations studied by Schur and Frobenious.

1. Euler’s theorem and the zeta function

To illustrate how to use special functions of the form

Z(s) =
∞∑
n=1

an
ns

called Dirichlet series to prove things about primes, we first give Euler’s proof of the infinitude of primes.
[1]

[1] Again, the 2000 year old elementary proof of the infinitude of primes, ascribed to Euclid perhaps because his

texts survived, proceeds as follows. Suppose there were only finitely many primes altogether, p1, . . . , pn. Then

N = 1 + p1 . . . pn cannot be divisible by any pi in the list, yet has some prime divisor, contradiction. This viewpoint
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292 Primes in arithmetic progressions

The simplest Dirichlet series is the Euler-Riemann zeta function [2]

ζ(s) =
∞∑
n=1

1
ns

This converges absolutely and (uniformly in compacta) for real s > 1. For real s > 1

1
s− 1

=
∫ ∞

1

dx

xs
≤ ζ(s) ≤ 1 +

∫ ∞
1

dx

xs
= 1 +

1
s− 1

This proves that
lim

s−→1+
ζ(s) = +∞

The relevance of this to a study of primes is the Euler product expansion [3]

ζ(s) =
∞∑
n=1

1
ns

=
∏

p prime

1
1− 1

ps

To prove that this holds, observe that

∞∑
n=1

1
ns

=
∏

p prime

(
1 +

1
ps

+
1
p2s

+
1
p3s

+ . . .

)

by unique factorization into primes. [4] Summing the indicated geometric series gives

ζ(s) =
∏

p prime

1
1− 1

ps

Since sums are more intuitive than products, take a logarithm

log ζ(s) =
∑
p

− log(1− 1
ps

) =
∑
p

(
1
ps

+
1

2p2s
+

1
3p3s

+ . . .

)

by the usual expansion (for |x| < 1)

− log(1− x) = x+
x2

2
+
x3

3
+ . . .

Taking a derivative in s gives

−ζ
′(s)
ζ(s)

=
∑

p prime, m≥1

log p
pms

Note that, for each fixed p > 1, ∑
m≥1

log p
pms

=
(log p) p−s

1− p−s

does not give much indication about how to make the argument more quantitative. Use of ζ(s) seems to be the way.

[2] Studied by many other people before and since.

[3] Valid only for s > 1.

[4] Manipulation of this infinite product of infinite sums is not completely trivial to justify.
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converges absolutely for real s > 0.

Euler’s argument for the infinitude of primes is that, if there were only finitely-many primes, then the
right-hand side of

−ζ
′(s)
ζ(s)

=
∑

p prime,m≥1

log p
pms

would converge for real s > 0. However, we saw that ζ(s) −→ +∞ as s approaches 1 from the right. Thus,
log ζ(s) −→ +∞, and d

ds (log ζ(s)) = ζ ′(s)/ζ(s) −→ −∞ as s −→ 1+. This contradicts the convergence of
the sum over (supposedly finitely-many) primes. Thus, there must be infinitely many primes. ///

2. Dirichlet’s theorem

In addition to Euler’s observation (above) that the analytic behavior[5] of ζ(s) at s = 1 implied the existence
of infinitely-many primes, Dirichlet found an algebraic device to focus attention on single congruence classes
modulo N .

[2.0.1] Theorem: (Dirichlet) Fix an integer N > 1 and an integer a such that gcd(a,N) = 1. Then
there are infinitely many primes p with

p = a mod N

[2.0.2] Remark: If gcd(a,N) > 1, then there is at most one prime p meeting the condition p = a mod n,
since any such p would be divisible by the gcd. Thus, the necessity of the gcd condition is obvious. It is
noteworthy that beyond this obvious condition there is nothing further needed.

[2.0.3] Remark: For a = 1, there is a simple purely algebraic argument using cyclotomic polynomials.
For general a the most intelligible argument involves a little analysis.

Proof: A Dirichlet character modulo N is a group homomorphism

χ : (Z/N)× −→ C
×

extended by 0 to all of Z/n, that is, by defining χ(a) = 0 if a is not invertible modulo N . This extension-
by-zero then allows us to compose χ with the reduction-mod-N map Z −→ Z/N and also consider χ as a
function on Z. Even when extended by 0 the function χ is still multiplicative in the sense that

χ(mn) = χ(m) · χ(n)

where or not one of the values is 0. The trivial character χo modulo N is the character which takes only
the value 1 (and 0).

The standard cancellation trick is that∑
a mod N

χ(a) =
{
ϕ(N) (for χ = χo)

0 (otherwise)

where ϕ is Euler’s totient function. The proof of this is easy, by changing variables, as follows. For χ = χo,
all the values for a invertible mod N are 1, and the others are 0, yielding the indicated sum. For χ 6= χo,

[5] Euler’s proof uses only very crude properties of ζ(s), and only of ζ(s) as a function of a real, rather than complex,

variable. Given the status of complex number and complex analysis in Euler’s time, this is not surprising. It is

slightly more surprising that Dirichlet’s original argument also was a real-variable argument, since by that time, a

hundred years later, complex analysis was well-established. Still, until Riemann’s memoir of 1858 there was little

reason to believe that the behavior of ζ(s) off the real line was of any interest.
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there is an invertible b mod N such that χ(b) 6= 1 (and is not 0, either, since b is invertible). Then the map
a −→ a · b is a bijection of Z/N to itself, so∑

a mod N

χ(a) =
∑

a mod N

χ(a · b) =
∑

a mod N

χ(a) · χ(b) = χ(b) ·
∑

a mod N

χ(a)

That is,
(1− χ(b)) ·

∑
a mod N

χ(a) = 0

Since χ(b) 6= 1, it must be that 1− χ(b) 6= 0, so the sum is 0, as claimed.

Dirichlet’s dual trick is to sum over characters χ mod N evaluated at fixed a in (Z/N)×. We claim that

∑
χ

χ(a) =
{
ϕ(N) (for a = 1 mod N)

0 (otherwise)

We will prove this in the next section.

Granting that, we have also, for b invertible modulo N ,

∑
χ

χ(a)χ(b)−1 =
∑
χ

χ(ab−1) =
{
ϕ(N) (for a = b mod N)

0 (otherwise)

Given a Dirichlet character χ modulo N , the corresponding Dirichlet L-function is

L(s, χ) =
∑
n≥1

χ(n)
ns

Since we have the multiplicative property χ(mn) = χ(m)χ(n), each such L-function has an Euler product
expansion

L(s, χ) =
∏

p prime, p 6 |N

1
1− χ(p) p−s

This follows as it did for ζ(s), by

L(s, χ) =
∑

n with gcd(n,N)=1

χ(n)
ns

=
∏

p prime, p 6 |N

(
1 + χ(p)p−s + χ(p)2 p−2s + . . .

)
=

∏
p prime, p 6 |N

1
1− χ(p) p−s

by summing geometric series. Taking a logarithmic derivative (as with zeta) gives

−L
′(s, χ)
L(s, χ)

=
∑

p 6 |N prime,m≥1

log p
χ(p)m pms

=
∑

p6 |N prime

log p
χ(p) ps

+
∑

p 6 |N prime,m≥2

log p
χ(p)m pms

The second sum on the right will turn out to be subordinate to the first, so we aim our attention at the first
sum, where m = 1.

To pick out the primes p with p = a mod N , use the sum-over-χ trick to obtain

∑
χ mod N

χ(a) · log p
χ(p) ps

=

ϕ(N) · (log p) p−s (for p = a mod N)

0 (otherwise)
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Thus,

−
∑

χ mod N

χ(a)
L′(s, χ)
L(s, χ)

=
∑

χ mod N

χ(a)
∑

p 6 |N prime,m≥1

log p
χ(p)m pms

=
∑

p=a mod N

ϕ(N) log p
ps

+
∑

χ mod N

χ(a)
∑

p 6 |N prime,m≥2

log p
χ(p)m pms

We do not care about whether cancellation does or does not occur in the second sum. All that we care is
that it is absolutely convergent for Re(s) > 1

2 . To see this we do not need any subtle information about
primes, but, rather, dominate the sum over primes by the corresponding sum over integers ≥ 2. Namely,∣∣∣∣∣∣

∑
p 6 |N prime,m≥2

log p
χ(p)m pms

∣∣∣∣∣∣ ≤
∑

n≥2,m≥2

log n
nmσ

=
∑
n≥2

(log n)/n2σ

1− n−σ
≤ 1

1− 2−σ
∑
n≥2

log n
n2σ

where σ = Re(s). This converges for Re(s) > 1
2 .

That is, for s −→ 1+,

−
∑

χ mod N

χ(a)
L′(s, χ)
L(s, χ)

= ϕ(N)
∑

p=a mod N

log p
ps

+ (something continuous at s = 1)

We have isolated primes p = a mod N . Thus, as Dirichlet saw, to prove the infinitude of primes p = a mod N
it would suffice to show that the left-hand side of the last inequality blows up at s = 1. In particular, for
the trivial character χo mod N , with values

χ(b) =
{

1 (for gcd(b,N) = 1)
0 (for gcd(b,N) > 1)

the associated L-function is barely different from the zeta function, namely

L(s, χo) = ζ(s) ·
∏
p|N

(
1− 1

ps

)

Since none of those finitely-many factors for primes dividing N is 0 at s = 1, L(s, χo) still blows up at s = 1.

By contrast, we will show below that for non-trivial character χ mod N , lims−→1+ L(s, χ) is finite, and

lim
s−→1+

L(s, χ) 6= 0

Thus, for non-trivial character, the logarithmic derivative is finite and non-zero at s = 1. Putting this all
together, we will have

lim
s−→1+

−
∑

χ mod N

χ(a)
L′(s, χ)
L(s, χ)

= +∞

Then necessarily

lim
s−→1+

ϕ(N)
∑

p=a mod N

log p
ps

= +∞

and there must be infinitely many primes p = a mod N . ///

[2.0.4] Remark: The non-vanishing of the non-trivial L-functions at 1, which we prove a bit further
belo, is a crucial technical point.
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3. Dual groups of abelian groups

Before worrying about the non-vanishing of L-functions at s = 1 for non-trivial characters χ, we explain
Dirichlet’s innovation, the use of group characters to isolate primes in a specified congruence class modulo
N .

These ideas were the predecessors of the group theory work of Frobenious and Schur 50 years later, and one
of the ancestors of representation theory of groups.

The dual group or group of characters Ĝ of a finite abelian group G is by definition

Ĝ = {group homomorphisms χ : G −→ C
×}

This Ĝ is itself an abelian group under the operation on characters defined for g ∈ G by

(χ1 · χ2)(g) = χ1(g) · χ2(g)

[3.0.1] Proposition: Let G be a cyclic group of order n with specified generator g1. Then Ĝ is isomorphic
to the group of complex nth roots of unity, by

(g1 −→ ζ)←− ζ

That is, an nth root of unity ζ gives the character χ such that

χ(g`1) = ζ`

In particular, Ĝ is cyclic of order n.

Proof: First, the value of a character χ on g1 determines all values of χ, since g1 is a generator for G. And
since gn1 = e,

χ(g1)n = χ(gn1 ) = χ(e) = 1

it follows that the only possible values of χ(g1) are nth roots of unity. At the same time, for an nth root of
unity ζ the formula

χ(g`1) = ζ`

does give a well-defined function on G, since the ambiguity on the right-hand side is by changing ` by
multiples of n, but g`1 does only depend upon ` mod n. Since the formula gives a well-defined function, it
gives a homomorphism, hence, a character. ///

[3.0.2] Proposition: Let G = A ⊕ B be a direct sum of finite abelian groups. Then there is a natural
isomorphism of the dual groups

Ĝ ≈ Â⊕ B̂

by
((a⊕ b) −→ χ1(a) · χ2(b)) ←− χ1 ⊕ χ2

Proof: The indicated map is certainly an injective homomorphism of abelian groups. To prove surjectivity,
let χ be an arbitrary element of Ĝ. Then for a ∈ A and b ∈ B

χ1(a) = χ(a⊕ 0) χ2(a) = χ(0⊕ b)

gives a pair of characters χ1 and χ2 in Â and B̂. Unsurprisingly, χ1 ⊕ χ2 maps to the given χ, proving
surjectivity. ///
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[3.0.3] Corollary: Invoking the Structure Theorem for finite abelian groups, write a finite abelian group
G as

G ≈ Z/d1 ⊕ . . .Z/dt

for some elementary divisors di. [6] Then

Ĝ ≈ Ẑ/d1 ⊕ . . . Ẑ/dt ≈ Z/d1 ⊕ . . .Z/dt ≈ G

In particular,
|Ĝ| = |G|

Proof: The leftmost of the three isomorphisms is the assertion of the previous proposition. The middle
isomorphism is the sum of isomorphisms of the form (for d 6= 0 and integer)

Ẑ/d ≈ Z/d

proven just above in the guise of cyclic groups. ///

[3.0.4] Proposition: Let G be a finite abelian group. For g 6= e in G, there is a character χ ∈ Ĝ such
that χ(g) 6= 1. [7]

Proof: Again expressing G as a sum of cyclic groups

G ≈ Z/d1 ⊕ . . .Z/dt

given g 6= e in G, there is some index i such that the projection gi of g to the ith summand Z/di is non-zero.
If we can find a character on Z/di which gives value 6= 1 on gi, then we are done. And, indeed, sending a
generator of Z/di to a primitive dthi root of unity sends every non-zero element of Z/di to a complex number
other than 1. ///

[3.0.5] Corollary: (Dual version of cancellation trick) For g in a finite abelian group,

∑
χ∈ bG

χ(g) =
{
|G| (for g = e)
0 (otherwise)

Proof: If g = e, then the sum counts the characters in Ĝ. From just above,

|Ĝ| = |G|

On the other hand, given g 6= e in G, by the previous proposition let χ1 be in Ĝ such that χ1(g) 6= 1. The
map on Ĝ

χ −→ χ1 · χ

is a bijection of Ĝ to itself, so ∑
χ∈ bG

χ(g) =
∑
χ∈ bG

(χ · χ1)(g) = χ1(g) ·
∑
χ∈ bG

χ(g)

[6] We do not need to know that d1| . . . |dt for present purposes.

[7] This idea that characters can distinguish group elements from each other is just the tip of an iceberg.
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which gives
(1− χ1(g)) ·

∑
χ∈ bG

χ(g) = 0

Since 1− χ1(g) 6= 0, it must be that the sum is 0. ///

4. Non-vanishing on Re(s) = 1

Dirichlet’s argument for the infinitude of primes p = a mod N (for gcd(a,N) = 1) requires that L(1, χ) 6= 0
for all χ mod N . We prove this now, granting that these functions have meromorphic extensions to some
neighborhood of s = 1. We also need to know that for the trivial character χo mod N the L-function L(s, χo)
has a simple pole at s = 1. These analytical facts are proven in the next section.

[4.0.1] Theorem: For a Dirichlet character χ mod N other than the trivial character χo mod N ,

L(1, χ) 6= 0

Proof: To prove that the L-functions L(s, χ) do not vanish at s = 1, and in fact do not vanish on the whole
line [8] Re(s) = 1, any direct argument involves a trick similar to what we do here. [9]

For χ whose square is not the trivial character χo modulo N , the standard trick is to consider

λ(s) = L(s, χo)3 · L(s, χ)4 · L(s, χ2)

Then, letting σ = Re(s), from the Euler product expressions for the L-functions noted earlier, in the region
of convergence,

|λ(s)| = | exp

(∑
m,p

3 + 4χ(pm) + χ2(pm)
mpms

)
| = exp

∣∣∣∣∣∑
m,p

3 + 4 cos θm,p + cos 2θm,p
mpmσ

∣∣∣∣∣
where for each m and p we let

θm,p = (the argument of χ(pm)) ∈ R

The trick [10] is that for any real θ

3 + 4 cos θ + cos 2θ = 3 + 4 cos θ + 2 cos2 θ − 1 = 2 + 4 cos θ + 2 cos2 θ = 2(1 + cos θ)2 ≥ 0

Therefore, all the terms inside the large sum being exponentiated are non-negative, and, [11]

|λ(s)| ≥ e0 = 1

[8] Non-vanishing of ζ(s) on the whole line Re(s) = 1 yields the Prime Number Theorem: let π(x) be the number

of primes less than x. Then π(x) ∼ x/ lnx, meaning that the limit of the ratio of the two sides as x −→ ∞ is 1.

This was first proven in 1896, separately, by Hadamard and de la Vallée Poussin. The same sort of argument

also gives an analogous asymptotic statement about primes in each congruence class modulo N , namely that

πa,N (x) ∼ x/[ϕ(N) · lnx], where gcd(a,N) = 1 and ϕ is Euler’s totient function.

[9] A more natural (and dignified) but considerably more demanding argument for non-vanishing would entail

following the Maaß-Selberg discussion of the spectral decomposition of SL(2,Z)\SL(2,R).

[10] Presumably found after considerable fooling around.

[11] Miraculously...
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In particular, if L(1, χ) = 0 were to be 0, then, since L(s, χo) has a simple pole at s = 1 and since L(s, χ2)
does not have a pole (since χ2 6= χo), the multiplicity ≥ 4 of the 0 in the product of L-functions would
overwhelm the three-fold pole, and λ(1) = 0. This would contradict the inequality just obtained.

For χ2 = χo, instead consider

λ(s) = L(s, χ) · L(s, χo) = exp

(∑
p,m

1 + χ(pm)
mpms

)

If L(1, χ) = 0, then this would cancel the simple pole of L(s, χo) at 1, giving a non-zero finite value at s = 1.
The series inside the exponentiation is a Dirichlet series with non-negative coefficients, and for real s

∑
p,m

1 + χ(pm)
mpms

≥
∑

p,m even

1 + 1
mpms

=
∑
p,m

1 + 1
2mp2ms

=
∑
p,m

1
mp2ms

= log ζ(2s)

Since ζ(2s) has a simple pole at s = 1
2 the series

log (L(s, χ) · L(s, χo)) =
∑
p,m

1 + χ(pm)
mpms

≥ log ζ(2s)

necessarily blows up as s −→ 1
2

+. But by Landau’s Lemma (in the next section), a Dirichlet series with
non-negative coefficients cannot blow up as s −→ so along the real line unless the function represented by
the series fails to be holomorphic at so. Since the function given by λ(s) is holomorphic at s = 1/2, this
gives a contradiction to the supposition that λ(s) is holomorphic at s = 1 (which had allowed this discussion
at s = 1/2). That is, L(1, χ) 6= 0. ///

5. Analytic continuations

Dirichlet’s original argument did not emphasize holomorphic functions, but by now we know that discussion
of vanishing and blowing-up of functions is most clearly and simply accomplished if the functions are
meromorphic when viewed as functions of a complex variable.

For the purposes of Dirichlet’s theorem, it suffices to meromorphically continue [12] the L-functions to
Re(s) > 0. [13]

[5.0.1] Theorem: The Dirichlet L-functions

L(s, χ) =
∑
n

χ(n)
ns

=
∏
p

1
1− χ(p) p−s

[12] An extension of a holomorphic function to a larger region, on which it may have some poles, is called a

meromorphic continuation. There is no general methodology for proving that functions have meromorphic

continuations, due in part to the fact that, generically, functions do not have continuations beyond some natural region

where they’re defined by a convergent series or integral. Indeed, to be able to prove a meromorphic continuation

result for a given function is tantamount to proving that it has some deeper significance.

[13] Already prior to Riemann’s 1858 paper, it was known that the Euler-Riemann zeta function and all the L-

functions we need here did indeed have meromorphic continuations to the whole complex plane, have no poles unless

the character χ is trivial, and have functional equations similar to that of zeta, namely that π−s/2Γ(s/2)ζ(s) is

invariant under s −→ 1− s.
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have meromorphic continuations to Re(s) > 0. For χ non-trivial, L(s, χ) is holomorphic on that half-plane.
For χ trivial, L(s, χo) has a simple pole at s = 1 and is holomorphic otherwise.

Proof: First, to treat the trivial character χo mod N , recall, as already observed, that the corresponding
L-function differs in an elementary way from ζ(s), namely

L(s, χo) = ζ(s) ·
∏
p|N

(
1− 1

ps

)

Thus, we analytically continue ζ(s) instead of L(s, χo). To analytically continue ζ(s) to Re(s) > 0 observe
that the sum for ζ(s) is fairly well approximated by a more elementary function

ζ(s)− 1
s− 1

=
∞∑
n=1

1
ns
−
∫ ∞

1

dx

xs
=
∞∑
n=1

 1
ns
−

(
1

ns−1 − 1
(n+1)s−1

)
1− s


Since (

1
ns−1 − 1

(n+1)s−1

)
1− s

=
1
ns

+O(
1

ns+1
)

with a uniform O-term, we obtain

ζ(s)− 1
s− 1

=
∑
n

O(
1

ns+1
) = holomorphic for Re(s) > 0

The obvious analytic continuation of 1/(s− 1) allows analytic continuation of ζ(s).

A relatively elementary analytic continuation argument for non-trivial characters uses partial summation.
That is, let {an} and {bn} be sequences of complex numbers such that the partial sums An =

∑n
i=1 ai are

bounded, and bn −→ 0. Then it is useful to rearrange (taking A0 = 0 for notational convenience)

∞∑
n=1

anbn =
∞∑
n=1

(An −An−1)bn =
∞∑
n=0

Anbn −
∞∑
n=0

Anbn+1 =
∞∑
n=0

An(bn − bn+1)

Taking an = χ(n) and bn = 1/ns gives

L(s, χ) =
∞∑
n=0

(
n∑
i=1

χ(n)

)
(

1
ns
− 1

(n+ 1)s
)

The difference 1/ns − 1/(n+ 1)s is s/ns+1 up to higher-order terms, so this expression gives a holomorphic
function for Re(s) > 0. ///

6. Dirichlet series with positive coefficients

Now we prove Landau’s result on Dirichlet series with positive coefficients. (More precisely, the coefficients
are non-negative.)

[6.0.1] Theorem: (Landau) Let

f(s) =
∞∑
n=1

an
ns

be a Dirichlet series with real coefficients an ≥ 0. Suppose that the series defining f(s) converges for
Re(s) > σo. Suppose further that the function f extends to a function holomorphic in a neighborhood of
s = σo. Then, in fact, the series defining f(s) converges for Re(s) > σo − ε for some ε > 0.
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Proof: First, by replacing s by s − σo we lighten the notation by reducing to the case that σo = 0. Since
the function f(s) given by the series is holomorphic on Re(s) > 0 and on a neighborhood of 0, there is ε > 0
such that f(s) is holomorphic on |s− 1| < 1 + 2ε, and the power series for the function converges nicely on
this open disk. Differentiating the original series termwise, we evaluate the derivatives of f(s) at s = 1 as

f (i)(1) =
∑
n

(− log n)i an
n

= (−1)i
∑
n

(log n)i an
n

and Cauchy’s formulas yield, for |s− 1| < 1 + 2ε,

f(s) =
∑
i≥0

f (i)(1)
i!

(s− 1)i

In particular, for s = −ε, we are assured of the convergence to f(−ε) of

f(−ε) =
∑
i≥0

f (i)(1)
i!

(−ε− 1)i

Note that (−1)if (i)(1) is a positive Dirichlet series, so we move the powers of −1 a little to obtain

f(−ε) =
∑
i≥0

(−1)if (i)(1)
i!

(ε+ 1)i

The series
(−1)if (i)(1) =

∑
n

(log n)i
an
n

has positive terms, so the double series (convergent, with positive terms)

f(−ε) =
∑
n,i

an (log n)i

i!
(1 + ε)i

1
n

can be rearranged to

f(−ε) =
∑
n

an
n

(∑
i

(log n)i(1 + ε)i

i!

)
=
∑
n

an
n
n(1+ε) =

∑
n

an
n−ε

That is, the latter series converges (absolutely). ///


