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Around 1800, Ruffini sketched a proof, completed by Abel, that the general quintic equation is not solvable in
radicals, by contrast to cubics and quartics whose solutions by radicals were found in the Italian renaissance,
not to mention quadratic equations, understood in antiquity. Ruffini’s proof required classifying the possible
forms of radicals. By contrast, Galois’ systematic development of the idea of automorphism group replaced
the study of the expressions themselves with the study of their movements.

Galois theory solves some classical problems. Ruler-and-compass constructions, in coordinates, can only
express quantities in repeated quadratic extensions of the field generated by given points, but nothing else.
Thus, trisection of angles by ruler and compass is impossible for general-position angles, since the general
trisection requires a cube root.

The examples and exercises continue with other themes.

1. Galois’ criterion

We will not prove all the results in this section, for several reasons. First, solution of equations in radicals is
no longer a critical or useful issue, being mostly of historical interest. Second, in general it is non-trivial to
verify (or disprove) Galois’ condition for solvability in radicals. Finally, to understand that Galois’ condition
is intrinsic requires the Jordan-Hölder theorem on composition series of groups (stated below). While its
statement is clear, the proof of this result is technical, difficult to understand, and not re-used elsewhere
here.
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328 Solving equations by radicals

[1.0.1] Theorem: Let G be the Galois group of the splitting field K of an irreducible polynomial f over
k. If G has a sequence of subgroups

{1} ⊂ G1 ⊂ G2 ⊂ . . . ⊂ Gm = G

such that Gi is normal in Gi+1 and Gi+1/Gi is cyclic for every index i, then a root of f(x) = 0 can be
expressed in terms of radicals. Conversely, if roots of f can be expressed in terms of radicals, then the Galois
group G has such a chain of subgroups.

Proof: (Sketch) On one hand, adjunction of n roots is cyclic of degree n if the primitive nth roots of unity
are in the base field. If the nth roots of unity are not in the base field, we can adjoin them by taking a
field extension obtainable by successive root-taking of orders strictly less than n. Thus, root-taking amounts
to successive cyclic extensions, which altogether gives a solvable extension. On the other hand, a solvable
extension is given by successive cyclic extensions. After nth roots of unity are adjoined (which requires
successive cyclic extensions of degrees less than n), one can prove that any cyclic extension is obtained by
adjoining roots of xn − a for some a in the base. This fact is most usefully proven by looking at Lagrange
resolvents. ///

[1.0.2] Theorem: The general nth degree polynomial equation is not solvable in terms of radicals for
n > 4.

Proof: The meaning of general is that the Galois group is the largest possible, namely the symmetric group
Sn on n things. Then we invoke the theorem to see that we must prove that Sn is not solvable for n > 4. In
fact, the normal subgroup An of Sn is simple for n > 4 (see just below), in the sense that it has no proper
normal subgroups (and is not cyclic). In particular, An has no chain of subgroups normal in each other with
cyclic quotients. This almost finishes the proof. What is missing is verifying the plausible claim that the
simplicity of An means that no other possible chain of subgroups inside Sn can exist with cyclic quotients.
We address this just below. ///

A group is simple if it has not proper normal subgroups (and maybe is not a cyclic group of prime order,
and is not the trivial group). A group G with a chain of subgroups Gi, each normal in the next, with the
quotients cyclic, is a solvable group, because of the conclusion of this theorem.

[1.0.3] Proposition: For n ≥ 5 the alternating group An on n things is simple.

Proof: (Sketch) The trick is that for n ≥ 5 the group An is generated by 3-cycles. Keeping track of 3-cycles,
one can prove that the commutator subgroup of An, generated by expressions xyx−1y−1, for x, y ∈ An, is
An itself. This yields the simplicity of An. ///

[1.0.4] Remark: A similar discussion addresses the question of constructibility by ruler and
compass. One can prove that a point is constructible by ruler and compass if and only if its coordinates
lie in a field extension of Q obtained by successive quadratic field extensions. Thus, for example, a regular
n-gon can be constructed by ruler and compass exactly when (Z/n)× is a two-group. This happens exactly
when n is of the form

n = 2m · p1 . . . p`

where each pi is a Fermat prime, that is, is a prime of the form p = 22t

+ 1. Gauss constructed a regular
17-gon. The next Fermat prime is 257. Sometime in the early 19th century someone did literally construct
a regular 65537-gon, too.
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2. Composition series, Jordan-Hölder theorem

Now we should check that the simplicity of An really does prevent there being any other chain of subgroups
with cyclic quotients that might secretly permit a solution in radicals.

A composition series for a finite group G is a chain of subgroups

{1} ⊂ G1 ⊂ . . . ⊂ Gm = G

where each Gi is normal in Gi+1 and the quotient Gi+1/Gi is either cyclic of prime order or simple. [1]

[2.0.1] Theorem: Let
{1} = G0 ⊂ G1 ⊂ . . . ⊂ Gm = G

{1} = H0 ⊂ H1 ⊂ . . . ⊂ Hn = G

be two composition series for G. Then m = n and the sets of quotients {Gi+1/Gi} and {Hj+1/Gj} (counting
multiplicities) are identical.

Proof: (Comments) This theorem is quite non-trivial, and we will not prove it. The key ingredient is the
Jordan-Zassenhaus butterfly lemma, which itself is technical and non-trivial. The proof of the analogue for
modules over a ring is more intuitive, and is a worthwhile result in itself, which we leave to the reader.
///

3. Solving cubics by radicals

We follow J.-L. Lagrange to recover the renaissance Italian formulas of Cardan and Tartaglia in terms of
radicals for the zeros of the general cubic

x3 + ax2 + bx+ c

with a, b, c in a field k of characteristic neither 3 nor 2. [2] Lagrange’s method creates an expression, the
resolvent, having more accessible symmetries. [3]

Let ω be a primitive cube root of unity. Let α, β, γ be the three zeros of the cubic above. The Lagrange
resolvent is

λ = α+ ω · β + ω2γ

The point is that any cyclic permutation of the roots alters λ by a cube root of unity. Thus, λ3 is invariant
under cyclic permutations of the roots, so we anticipate that λ3 lies in a smaller field than do the roots. This
is intended to reduce the problem to a simpler one.

Compute
λ3 =

(
α+ ωβ + ω2γ

)3
[1] Again, it is often convenient that the notion of simple group makes an exception for cyclic groups of prime order.

[2] In characteristic 3, there are no primitive cube roots of 1, and the whole setup fails. In characteristic 2, unless we

are somehow assured that the discriminant is a square in the ground field, the auxiliary quadratic which arises does

not behave the way we want.

[3] The complication that cube roots of unity are involved was disturbing, historically, since complex number were

viewed with suspicion until well into the 19th century.
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= α3 + β3 + γ3 + 3ωα2β + 3ω2αβ2 + 3ω2α2γ + 3ωαγ2 + 3ωβ2γ + 3ω2βγ2 + 6αβγ

= α3 + β3 + γ3 + 3ω(α2β + β2γ + γ2α) + 3ω2(αβ2 + βγ2 + α2γ) + 6αβγ

Since ω2 = −1− ω this is

α3 + β3 + γ3 + 6αβγ + 3ω(α2β + β2γ + γ2α)− 3ω(αβ2 + βγ2 + α2γ)− 3(αβ2 + βγ2 + α2γ)

In terms of the elementary symmetric polynomials

s1 = α+ βγ s2 = αβ + βγ + γα s3 = αβγ

we have
α3 + β3 + γ3 = s31 − 3s1s2 + 3s3

Thus,

λ3 = s31 − 3s1s2 + 9s3 + 3ω(α2β + β2γ + γ2α)− 3ω(αβ2 + βγ2 + α2γ)− 3(αβ2 + βγ2 + α2γ)

Neither of the two trinomials

A = α2β + β2γ + γ2α B = αβ2 + βγ2 + γα2

is invariant under all permutations of α, β, γ, but only under the subgroup generated by 3-cycles, so we cannot
use symmetric polynomial algorithm to express these two trinomials polynomially in terms of elementary
symmetric polynomials. [4]

But all is not lost, since A+B and AB are invariant under all permutations of the roots, since any 2-cycle
permutes A and B. So both A+B and AB are expressible in terms of elementary symmetric polynomials,
and then the two trinomials are the roots of

x2 − (A+B)x+AB = 0

which is solvable by radicals in characteristic not 2.

We obtain the expression for A+B in terms of elementary symmetric polynomials. Without even embarking
upon the algorithm, a reasonable guess finishes the problem:

s1s2 − 3s3 = (α+ β + γ)(αβ + βγ + γα)− 3αβγ = α2β + β2γ + γ2α+ αβ2 + βγ2 + γα2 = A+B

Determining the expression for AB is more work, but not so bad.

AB = (α2β + β2γ + γ2α) · (αβ2 + βγ2 + α2γ) = α3β3 + β3γ3 + γ3α3 + α4βγ + αβ4γ + αβγ4 + 3s23

We can observe that already (using an earlier calculation)

α4βγ + αβ4γ + αβγ4 = s3 · (α3 + β3 + γ3) = s3(s31 − 3s1s2 + 3s3)

For α3β3 + β3γ3 + γ3α3 follow the algorithm: its value at γ = 0 is α3β3 = s32 (with the s2 for α, β alone).
Thus, we consider

α3β3 + β3γ3 + γ3α3 − (αβ + βγ + γα)3

= −6s23 − 3
(
α2β3γ + α3β2γ + αβ3γ2 + αβ2γ3 + α2βγ3 + α3βγ2

)
[4] In an earlier computation regarding the special cubic x3 + x2 − 2x − 1, we could make use of the connection to

the 7th root of unity to obtain explicit expressions for α2β + β2γ + γ2α and αβ2 + βγ2 + α2γ, but for the general

cubic there are no such tricks available.
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= −6s23 − 3s3
(
αβ2 + α2β + β2γ + βγ2 + αγ2 + α2γ

)
= −6s23 − 3s3(s1s2 − 3s3)

by our computation of A+B. Together, the three parts of AB give

AB = s3(s31 − 3s1s2 + 3s3) +
(
s32 − 6s23 − 3s3(s1s2 − 3s3)

)
+ 3s23

= s31s3 − 3s1s2s3 + 3s23 + s32 − 6s23 − 3s1s2s3 + 9s23 + 3s23 = s31s3 − 6s1s2s3 + 9s23 + s32

That is, A and B are the two zeros of the quadratic

x2 − (s1s2 − 3s3)x+ (s31s3 − 6s1s2s3 + 9s23 + s32) = x2 − (−ab+ 3c)x+ (a3c− 6abc+ 9c2 + b3)

The discriminant of this monic quadratic is [5]

∆ = (linear coef)2 − 4(constant coef) = (−ab+ 3c)2 − 4(a3c− 6abc+ 9c2 + b3)

= a2b2 − 6abc+ 9c2 − 4a3c+ 24abc− 36c2 − 4b3 = a2b2 − 27c2 − 4a3c+ 18abc− 4b3

In particular, the quadratic formula [6] gives

A,B =
(ab− 3c)±

√
∆

2

Then

λ3 = s31 − 3s1s2 + 9s3 + 3ω(α2β + β2γ + γ2α)− 3ω(αβ2 + βγ2 + α2γ)− 3(αβ2 + βγ2 + α2γ)

= −a3 + 3bc− 9c+ 3(ω − 1)A− 3ωB

= −a3 + 3bc− 9c+ 3(ω − 1) · (ab− 3c) +
√

∆
2

− 3ω · (ab− 3c)−
√

∆
2

= −a3 + 3bc− 9c− 3
2

(ab− 3c) + (3ω − 1
2

)
√

∆

That is, now we can solve for λ by taking a cube root of the mess on the right-hand side:

λ = 3
√

(right-hand side)

The same computation works for the analogue λ′ of λ with ω replaced by the other [7] primitive cube root
of unity

λ′ = α+ ω2 · β + ω · γ

The analogous computation is much easier when ω is replaced by 1, since

α+ 1 · β + 12 · γ = s1 = −a

Thus, we have a linear system

[5] When the x2 coefficient a vanishes, we will recover the better-known special case that the discriminant is

−27c2 − 4b3.

[6] Which is an instance of this general approach, but for quadratics rather than cubics.

[7] In fact, there is no way to distinguish the two primitive cube roots of unity, so neither has primacy over the other.

And, still, either is the square of the other.
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The linear system  α+ β + γ = −a
α+ ωβ + ω2γ = λ
α+ ω2β + ωγ = λ′

has coefficients that readily allow solution, since for a primitive nth root of unity ζ the matrix

M =



1 1 1 . . . 1
1 ζ ζ2 . . . ζn−1

1 ζ2 (ζ2)2 . . . (ζ2)n−1

1 ζ3 (ζ3)2 . . . (ζ3)n−1

...
1 ζn−1 (ζn−1)2 . . . (ζn−1)n−1


has inverse

M−1 =



1 1 1 . . . 1
1 ζ−1 (ζ−1)2 . . . (ζ−1)n−1

1 ζ−2 (ζ−2)2 . . . (ζ−2)n−1

1 ζ−3 (ζ−3)2 . . . (ζ−3)n−1

...
1 ζ−n+1 (ζ−n+1)2 . . . (ζ−n+1)n−1


In the present simple case this gives the three roots [8] of the cubic as

α = −a+λ+λ′

3

β = −a+ω2λ+ωλ′

3

γ = −a+ωλ+ω2λ′

3

4. Worked examples

[23.1] Let k be a field of characteristic 0. Let f be an irreducible polynomial in k[x]. Prove that f has no
repeated factors, even over an algebraic closure of k.

If f has a factor P 2 where P is irreducible in k[x], then P divides gcd(f, f ′) ∈ k[x]. Since f was monic, and
since the characteristic is 0, the derivative of the highest-degree term is of the form nxn−1, and the coefficient
is non-zero. Since f ′ is not 0, the degree of gcd(f, f ′) is at most deg f ′, which is strictly less than deg f .
Since f is irreducible, this gcd in k[x] must be 1. Thus, there are polynomials a, b such that af + bf ′ = 1.
The latter identity certainly persists in K[x] for any field extension K of k. ///

[23.2] Let K be a finite extension of a field k of characteristic 0. Prove that K is separable over k.

Since K is finite over k, there is a finite list of elements α1, . . . , αn in K such that K = k(α1, . . . , αn). From
the previous example, the minimal polynomial f of α1 over k has no repeated roots in an algebraic closure
k of k, so k(α1) is separable over k.

[8] Again, the seeming asymmetry among the roots is illusory. For example, since λ is a cube root of something, we

really cannot distinguish among λ, ωλ, and ω2λ. And, again, we cannot distinguish between ω and ω2.
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We recall [9] the fact that we can map k(α1) −→ k by sending α1 to any of the [k(α1) : k] = deg f distinct
roots of f(x) = 0 in k. Thus, there are [k(α1) : k] = deg f distinct distinct imbeddings of k(α1) into k, so
k(α1) is separable over k.

Next, observe that for any imbedding σ : k(α1) −→ k of k(α1) into an algebraic closure k of k, by proven
properties of k we know that k is an algebraic closure of σ(k(α1)). Further, if g(x) ∈ k(α1)[x] is the minimal
polynomial of α2 over k(α1), then σ(g)(x) (applying σ to the coefficients) is the minimal polynomial of α2

over σ(k(α1)). Thus, by the same argument as in the previous paragraph we have [k(α1, α2) : k(α1)] distinct
imbeddings of k(α1, α2) into k for a given imbedding of k(α1). Then use induction. ///

[23.3] Let k be a field of characteristic p > 0. Suppose that k is perfect, meaning that for any a ∈ k there
exists b ∈ k such that bp = a. Let f(x) =

∑
i cix

i in k[x] be a polynomial such that its (algebraic) derivative

f ′(x) =
∑
i

ci i x
i−1

is the zero polynomial. Show that there is a unique polynomial g ∈ k[x] such that f(x) = g(x)p.

For the derivative to be the 0 polynomial it must be that the characteristic p divides the exponent of every
term (with non-zero coefficient). That is, we can rewrite

f(x) =
∑
i

cip x
ip

Let bi ∈ k such that bpi = cip, using the perfectness. Since p divides all the inner binomial coefficients
p!/i!(p− i)!, (∑

i

bi x
i

)p
=
∑
i

cip x
ip

as desired. ///

[23.4] Let k be a perfect field of characteristic p > 0, and f an irreducible polynomial in k[x]. Show that
f has no repeated factors (even over an algebraic closure of k).

If f has a factor P 2 where P is irreducible in k[x], then P divides gcd(f, f ′) ∈ k[x]. If deg gcd(f, f ′) < deg f
then the irreducibility of f in k[x] implies that the gcd is 1, so no such P exists. If deg gcd(f, f ′) = deg f ,
then f ′ = 0, and (from above) there is a polynomial g(x) ∈ k[x] such that f(x) = g(x)p, contradicting the
irreducibility in k[x]. ///

[23.5] Show that all finite fields Fpn with p prime and 1 ≤ n ∈ Z are perfect.

Again because the inner binomial coefficients p!/i!(p − i)! are 0 in characteristic p, the (Frobenius) map
α −→ αp is not only (obviously) multiplicative, but also additive, so is a ring homomorphism of Fpn to
itself. Since F×pn is cyclic (of order pn), for any α ∈ Fpn (including 0)

α(pn) = α

Thus, since the map α −→ αp has the (two-sided) inverse α −→ αp
n−1

, it is a bijection. That is, everything
has a pth root. ///

[23.6] Let K be a finite extension of a finite field k. Prove that K is separable over k.

[9] Recall the proof: Let β be a root of f(x) = 0 in k. Let ϕ : k[x] −→ k[β] by x −→ β. The kernel of ϕ is the

principal ideal generated by f(x) in k[x]. Thus, the map ϕ factors through k[x]/〈f〉 ≈ k[α1].
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That is, we want to prove that the number of distinct imbeddings σ of K into a fixed algebraic closure k is
[K : k]. Let α ∈ K be a generator for the cyclic group K×. Then K = k(α) = k[α], since powers of α already
give every element but 0 in K. Thus, from basic field theory, the degree of the minimal polynomial f(x) of
α over k is [K : k]. The previous example shows that k is perfect, and the example before that showed that
irreducible polynomials over a perfect field have no repeated factors. Thus, f(x) has no repeated factors in
any field extension of k.

We have also already seen that for algebraic α over k, we can map k(α) to k to send α to any root β of
f(x) = 0 in k. Since f(x) has not repeated factors, there are [K : k] distinct roots β, so [K : k] distinct
imbeddings. ///

[23.7] Find all fields intermediate between Q and Q(ζ) where ζ is a primitive 17th root of unity.

Since 17 is prime, Gal(Q(ζ)/Q) ≈ (Z/17)× is cyclic (of order 16), and we know that a cyclic group has
a unique subgroup of each order dividing the order of the whole. Thus, there are intermediate fields
corresponding to the proper divisors 2, 4, 8 of 16. Let σa be the automorphism σaζ = ζa.

By a little trial and error, 3 is a generator for the cyclic group (Z/17)×, so σ3 is a generator for the
automorphism group. Thus, one reasonably considers

α8 = ζ + ζ32
+ ζ34

+ ζ36
+ ζ38

+ ζ310
+ ζ312

+ ζ314

α4 = ζ + ζ34
+ ζ38

+ ζ312

α2 = ζ + ζ38
= ζ + ζ−1

The αn is visibly invariant under the subgroup of (Z/17)× of order n. The linear independence of
ζ, ζ2, ζ3, . . . , ζ16 shows αn is not by accident invariant under any larger subgroup of the Galois group. Thus,
Q(αn) is (by Galois theory) the unique intermediate field of degree 16/n over Q.

We can also give other characterizations of some of these intermediate fields. First, we have already seen (in
discussion of Gauss sums) that ∑

a mod 17

( a
17

)
2
· ζa =

√
17

where
(
a
17

)
2

is the quadratic symbol. Thus,

α8 − σ3α8 =
√

17
α8 + σ3α8 = 0

so α8 and σ3α8 are ±
√

17/2. Further computation can likewise express all the intermediate fields as being
obtained by adjoining square roots to the next smaller one. ///

[23.8] Let f, g be relatively prime polynomials in n indeterminates t1, . . . , tn, with g not 0. Suppose that
the ratio f(t1, . . . , tn)/g(t1, . . . , tn) is invariant under all permutations of the ti. Show that both f and g are
polynomials in the elementary symmetric functions in the ti.

Let si be the ith elementary symmetric function in the tj ’s. Earlier we showed that k(t1, . . . , tn) has Galois
group Sn (the symmetric group on n letters) over k(s1, . . . , sn). Thus, the given ratio lies in k(s1, . . . , sn).
Thus, it is expressible as a ratio

f(t1, . . . , tn)
g(t1, . . . , tn)

=
F (s1, . . . , sn)
G(s1, . . . , sn)

of polynomials F,G in the si.

To prove the stronger result that the original f and g were themselves literally polynomials in the ti, we seem
to need the characteristic of k to be not 2, and we certainly must use the unique factorization in k[t1, . . . , tn].
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Write
f(t1, . . . , tn) = pe11 . . . pem

m

where the ei are positive integers and the pi are irreducibles. Similarly, write

g(t1, . . . , tn) = qf11 . . . qfn
m

where the fi are positive integers and the qi are irreducibles. The relative primeness says that none of the
qi are associate to any of the pi. The invariance gives, for any permutation π of

π

(
pe11 . . . pem

m

qf11 . . . qfn
m

)
=
pe11 . . . pem

m

qf11 . . . qfn
m

Multiplying out, ∏
i

π(pei
i ) ·

∏
i

qfi

i =
∏
i

pei
i ·
∏
i

π(qfi

i )

By the relative prime-ness, each pi divides some one of the π(pj). These ring automorphisms preserve
irreducibility, and gcd(a, b) = 1 implies gcd(πa, πb) = 1, so, symmetrically, the π(pj)’s divide the pi’s. And
similarly for the qi’s. That is, permuting the ti’s must permute the irreducible factors of f (up to units k×

in k[t1, . . . , tn]) among themselves, and likewise for the irreducible factors of g.

If all permutations literally permuted the irreducible factors of f (and of g), rather than merely up to units,
then f and g would be symmetric. However, at this point we can only be confident that they are permuted
up to constants.

What we have, then, is that for a permutation π

π(f) = απ · f

for some α ∈ k×. For another permutation τ , certainly τ(π(f)) = (τπ)f . And τ(απf) = απ · τ(f), since
permutations of the indeterminates have no effect on elements of k. Thus, we have

ατπ = ατ · απ

That is, π −→ απ is a group homomorphism Sn −→ k×.

It is very useful to know that the alternating group An is the commutator subgroup of Sn. Thus, if f is not
actually invariant under Sn, in any case the group homomorphism Sn −→ k× factors through the quotient
Sn/An, so is the sign function π −→ σ(π) that is +1 for π ∈ An and −1 otherwise. That is, f is equivariant
under Sn by the sign function, in the sense that πf = σ(π) · f .

Now we claim that if πf = σ(π) · f then the square root

δ =
√

∆ =
∏
i<j

(ti − tj)

of the discriminant ∆ divides f . To see this, let sij be the 2-cycle which interchanges ti and tj , for i 6= j.
Then

sijf = −f

Under any homomorphism which sends ti − tj to 0, since the characteristic is not 2, f is sent to 0. That is,
ti − tj divides f in k[t1, . . . , tn]. By unique factorization, since no two of the monomials ti − tj are associate
(for distinct pairs i < j), we see that the square root δ of the discriminant must divide f .

That is, for f with πf = σ(π) · f we know that δ|f . For f/g to be invariant under Sn, it must be that also
πg = σ(π) · g. But then δ|g also, contradicting the assumed relative primeness. Thus, in fact, it must have
been that both f and g were invariant under Sn, not merely equivariant by the sign function. ///
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Exercises

23.[4.0.1] Let k be a field. Let α1, . . . , αn be distinct elements of k×. Suppose that c1, . . . , cn in k are
such that for all positive integers ` ∑

i

ci α
`
i = 0

Show that all the ci are 0.

23.[4.0.2] Solve the cubic x3 + ax+ b = 0 in terms of radicals.

23.[4.0.3] Express a primitive 11th root of unity in terms of radicals.

23.[4.0.4] Solve x4 + ax+ b = 0 in terms of radicals.


