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In this first pass at tensor products, we will only consider tensor products of modules over commutative
rings with identity. This is not at all a critical restriction, but does offer many simplifications, while still
illuminating many important features of tensor products and their applications.

1. Desiderata

It is time to take stock of what we are missing in our development of linear algebra and related matters.

Most recently, we are missing the proof of existence of determinants, although linear algebra is sufficient to
give palatable proofs of the properties of determinants.

We want to be able to give a direct and natural proof of the Cayley-Hamilton theorem (without using the
structure theorem for finitely-generated modules over PIDs). This example suggests that linear algebra over
fields is insufficient.

We want a sufficient conceptual situation to be able to finish the uniqueness part of the structure theorem for
finitely-generated modules over PIDs. Again, linear or multi-linear algebra over fields is surely insufficient
for this.

We might want an antidote to the antique styles of discussion of vectors vi [sic], covectors vi [sic], mixed
tensors T ijk , and other vague entities whose nature was supposedly specified by the number and pattern
of upper and lower subscripts. These often-ill-defined notions came into existence in the mid-to-late 19th
century in the development of geometry. Perhaps the impressive point is that, even without adequate
algebraic grounding, people managed to envision and roughly formulate geometric notions.

In a related vein, at the beginning of calculus of several variables, one finds ill-defined notions and ill-made
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390 Tensor products

distinctions between
dx dy

and
dx ∧ dy

with the nature of the so-called differentials dx and dy even less clear. For a usually unspecified reason,

dx ∧ dy = −dy ∧ dx

though perhaps
dx dy = dy dx

In other contexts, one may find confusion between the integration of differential forms versus integration
with respect to a measure. We will not resolve all these confusions here, only the question of what a ∧ b
might mean.

Even in fairly concrete linear algebra, the question of extension of scalars to convert a real vector space to
a complex vector space is possibly mysterious. On one hand, if we are content to say that vectors are column
vectors or row vectors, then we might be equally content in allowing complex entries. For that matter, once
a basis for a real vector space is chosen, to write apparent linear combinations with complex coefficients
(rather than merely real coefficients) is easy, as symbol manipulation. However, it is quite unclear what
meaning can be attached to such expressions. Further, it is unclear what effect a different choice of basis
might have on this process. Finally, without a choice of basis, these ad hoc notions of extension of scalars
are stymied. Instead, the construction below of the tensor product

V ⊗R C = complexification of V

of a real vectorspace V with C over R is exactly right, as will be discussed later.

The notion of extension of scalars has important senses in situations which are qualitatively different than
complexification of real vector spaces. For example, there are several reasons to want to convert abelian groups
A (Z-modules) into Q-vectorspaces in some reasonable, natural manner. After explicating a minimalist
notion of reasonability, we will see that a tensor product

A⊗Z Q

is just right.

There are many examples of application of the construction and universal properties of tensor products.
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2. Definitions, uniqueness, existence

Let R be a commutative ring with 1. We will only consider R-modules M with the property[1] that 1·m = m
for all m ∈M . Let M , N , and X be R-modules. A map

B : M ×N −→ X

is R-bilinear if it is R-linear separately in each argument, that is, if

B(m+m′, n) = B(m,n) +B(m′, n)
B(rm, n) = r ·B(m,n)

B(m,n+ n′) = B(m,n) +B(m,n′)
B(m, rn) = r ·B(m,n)

for all m,m′ ∈M , n, n′ ∈ N , and r ∈ R.

As in earlier discussion of free modules, and in discussion of polynomial rings as free algebras, we will define
tensor products by mapping properties. This will allow us an easy proof that tensor products (if they exist)
are unique up to unique isomorphism. Thus, whatever construction we contrive must inevitably yield the
same (or, better, equivalent) object. Then we give a modern construction.

A tensor product of R-modules M , N is an R-module denoted M ⊗R N together with an R-bilinear map
τ : M ×N −→M ⊗R N

such that, for every R-bilinear map
ϕ : M ×N −→ X

there is a unique linear map
Φ : M ⊗R N −→ X

such that the diagram
M ⊗R N

Φ

$$H
H

H
H

H

M ×N
ϕ //

τ

OO

X

commutes, that is, ϕ = Φ ◦ τ .

The usual notation does not involve any symbol such as τ , but, rather, denotes the image τ(m×n) of m×n
in the tensor product by

m⊗ n = image of m× n in M ⊗R N

In practice, the implied R-bilinear map

M ×N −→M ⊗R N

is often left anonymous. This seldom causes serious problems, but we will be temporarily more careful about
this while setting things up and proving basic properties.

The following proposition is typical of uniqueness proofs for objects defined by mapping property
requirements. Note that internal details of the objects involved play no role. Rather, the argument proceeds
by manipulation of arrows.

[1] Sometimes such a module M is said to be unital, but this terminology is not universal, and, thus, somewhat

unreliable. Certainly the term is readily confused with other usages.
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[2.0.1] Proposition: Tensor products M ⊗R N are unique up to unique isomorphism. That is, given
two tensor products

τ1 : M ×N −→ T1

τ2 : M ×N −→ T2

there is a unique isomorphism i : T1 −→ T2 such that the diagram

T1

i

���
�
�
�
�
�
�

M ×N

τ1

66nnnnnnnnnnnnn

τ2

((PPPPPPPPPPPPP

T2

commutes, that is, τ2 = i ◦ τ1.

Proof: First, we show that for a tensor product τ : M × N −→ T , the only map f : T −→ T compatible
with τ is the identity. That is the identity map is the only map f such that

T

f

���
�
�
�
�
�
�

M ×N

τ

66nnnnnnnnnnnnn

τ

((PPPPPPPPPPPPP

T

commutes. Indeed, the definition of a tensor product demands that, given the bilinear map

τ : M ×N −→ T

(with T in the place of the earlier X) there is a unique linear map Φ : T −→ T such that the diagram

T
Φ

((PPPPPPPP

M ×N

τ

OO

τ // T

commutes. The identity map on T certainly has this property, so is the only map T −→ T with this property.

Looking at two tensor products, first take τ2 : M × N −→ T2 in place of the ϕ : M × N −→ X. That is,
there is a unique linear Φ1 : T1 −→ T2 such that

T1

Φ1

''PPPPPPPP

M ×N

τ1

OO

τ2 // T2

commutes. Similarly, reversing the roles, there is a unique linear Φ2 : T2 −→ T1 such that

T2

Φ2

''PPPPPPPP

M ×N

τ2

OO

τ1 // T1
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commutes. Then Φ2 ◦Φ1 : T1 −→ T1 is compatible with τ1, so is the identity, from the first part of the proof.
And, symmetrically, Φ1 ◦ Φ2 : T2 −→ T2 is compatible with τ2, so is the identity. Thus, the maps Φi are
mutual inverses, so are isomorphisms. ///

For existence, we will give an argument in what might be viewed as an extravagant modern style. Its
extravagance is similar to that in E. Artin’s proof of the existence of algebraic closures of fields, in which
we create an indeterminate for each irreducible polynomial, and look at the polynomial ring in these myriad
indeterminates. In a similar spirit, the tensor product M ⊗RN will be created as a quotient of a truly huge
module by an only slightly less-huge module.

[2.0.2] Proposition: Tensor products M ⊗R N exist.

Proof: Let i : M ×N −→ F be the free R-module on the set M ×N . Let Y be the R-submodule generated
by all elements

i(m+m′, n)− i(m,n)− i(m′, n)
i(rm, n)− r · i(m,n)
i(m,n+ n′)− i(m,n)− i(m,n′)
i(m, rn)− r · i(m,n)

for all r ∈ R, m,m′ ∈M , and n, n′ ∈ N . Let

q : F −→ F/Y

be the quotient map. We claim that τ = q ◦ i : M ×N −→ F/Y is a tensor product.

Given a bilinear map ϕ : M ×N −→ X, by properties of free modules there is a unique Ψ : F −→ X such
that the diagram

F
Ψ

((PPPPPPPP

M ×N

i

OO

ϕ // X

commutes. We claim that Ψ factors through F/Y , that is, that there is Φ : F/Y −→ X such that

Ψ = Φ ◦ q : F −→ X

Indeed, since ϕ : M ×N −→ X is bilinear, we conclude that, for example,

ϕ(m+m′, n) = ϕ(m,n) + ϕ(m′, n)

Thus,
(Ψ ◦ i)(m+m′, n) = (Ψ ◦ i)(m,n) + (Ψ ◦ i)(m′, n)

Thus, since Ψ is linear,
Ψ( i(m+m′, n)− i(m,n)− i(m′, n) ) = 0

A similar argument applies to all the generators of the submodule Y of F , so Ψ does factor through F/Y .
Let Φ be the map such that Ψ = Φ ◦ q.

A similar argument on the generators for Y shows that the composite

τ = q ◦ i : M ×N −→ F/Y

is bilinear, even though i was only a set map.

The uniqueness of Ψ yields the uniqueness of Φ, since q is a surjection, as follows. For two maps Φ1 and Φ2

with
Φ1 ◦ q = Ψ = Φ2 ◦ q
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given x ∈ F/Y let y ∈ F be such that q(y) = x. Then

Φ1(x) = (Φ1 ◦ q)(y) = Ψ(y) = (Φ2 ◦ q)(y) = Φ2(x)

Thus, Φ1 = Φ2. ///

[2.0.3] Remark: It is worthwhile to contemplate the many things we did not do to prove the uniqueness
and the existence.

Lest anyone think that tensor products M ⊗RN contain anything not implicitly determined by the behavior
of the monomial tensors [2] m⊗ n, we prove

[2.0.4] Proposition: The monomial tensors m ⊗ n (for m ∈ M and n ∈ N) generate M ⊗R N as an
R-module.

Proof: Let X be the submodule of M ⊗R N generated by the monomial tensors, Q = M ⊗R N)/X the
quotient, and q : M ⊗R N −→ Q the quotient map. Let

B : M ×N −→ Q

be the 0-map. A defining property of the tensor product is that there is a unique R-linear

β : M ⊗R N −→ Q

making the usual diagram commute, that is, such that B = β ◦ τ , where τ : M ×N −→M ⊗R N . Both the
quotient map q and the 0-map M ⊗R N −→ Q allow the 0-map M ×N −→ Q to factor through, so by the
uniqueness the quotient map is the 0-map. That is, Q is the 0-module, so X = M ⊗R N . ///

[2.0.5] Remark: Similarly, define the tensor product

τ : M1 × . . .×Mn −→M1 ⊗R . . .⊗RMn

of an arbitrary finite number of R-modules as an R-module and multilinear map τ such that, for any R-
multilinear map

ϕ : M1 ×M2 × . . .×Mn −→ X

there is a unique R-linear map
Φ : M1 ⊗RM2 ⊗R . . .⊗RMn −→ X

such that ϕ = Φ ◦ τ . That is, the diagram

M1 ⊗RM2 ⊗R . . .⊗RMn

Φ

**UUUUUUUUUU

M1 ×M2 × . . .×Mn

τ

OO

ϕ // X

commutes. There is the subordinate issue of proving associativity, namely, that there are natural
isomorphisms

(M1 ⊗R . . .⊗RMn−1)⊗RMn ≈M1 ⊗R (M2 ⊗R . . .⊗RMn)

to be sure that we need not worry about parentheses.

3. First examples
[2] Again, m⊗ n is the image of m× n ∈M ×N in M ⊗R N under the map τ : M ×N −→M ⊗R N .
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We want to illustrate the possibility of computing [3] tensor products without needing to make any use of
any suppositions about the internal structure of tensor products.

First, we emphasize that to show that a tensor product M⊗RN of two R-modules (where R is a commutative
ring with identity) is 0, it suffices to show that all monomial tensors are 0, since these generate the tensor
product (as R-module). [4]

Second, we emphasize [5] that in M ⊗R N , with r ∈ R, m ∈M , and n ∈ N , we can always rearrange

(rm)⊗ n = r(m⊗ n) = m⊗ (rn)

Also, for r, s ∈ R,
(r + s)(m⊗ n) = rm⊗ n+ sm⊗ n

[3.0.1] Example: Let’s experiment [6] first with something like

Z/5⊗Z Z/7

Even a novice may anticipate that the fact that 5 annihilates the left factor, while 7 annihilates the right
factor, creates an interesting dramatic tension. What will come of this? For any m ∈ Z/5 and n ∈ Z/7, we
can do things like

0 = 0 · (m⊗ n) = (0 ·m)⊗ n = (5 ·m)⊗ n = m⊗ 5n

and
0 = 0 · (m⊗ n) = m⊗ (0 · n) = m⊗ (7 · n) = 7m⊗ n = 2m⊗ n

Then
(5m⊗ n)− 2 · (2m⊗ n) = (5− 2 · 2)m⊗ n = m⊗ n

but also
(5m⊗ n)− 2 · (2m⊗ n) = 0− 2 · 0 = 0

That is, every monomial tensor in Z/5⊗Z Z/7 is 0, so the whole tensor product is 0.

[3.0.2] Example: More systematically, given relatively prime integers [7] a, b, we claim that

Z/a⊗Z Z/b = 0

Indeed, using the Euclidean-ness of Z, let r, s ∈ Z such that

1 = ra+ sb

[3] Of course, it is unclear in what sense we are computing. In the simpler examples the tensor product is the 0

module, which needs no further explanation. However, in other cases, we will see that a certain tensor product is the

right answer to a natural question, without necessarily determining what the tensor product is in some other sense.

[4] This was proven just above.

[5] These are merely translations into this notation of part of the definition of the tensor product, but deserve

emphasis.

[6] Or pretend, disingenuously, that we don’t know what will happen? Still, some tangible numerical examples are

worthwhile, much as a picture may be worth many words.

[7] The same argument obviously works as stated in Euclidean rings R, rather than just Z. Further, a restated form

works for arbitrary commutative rings R with identity: given two ring elements a, b such that the ideal Ra + Rb

generated by both is the whole ring, we have R/a⊗R R/b = 0. The point is that this adjusted hypothesis again gives

us r, s ∈ R such that 1 = ra+ sb, and then the same argument works.
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Then
m⊗ n = 1 · (m⊗ n) = (ra+ sb) · (m⊗ n) = ra(m⊗ n) + s

= b(m⊗ n) = a(rm⊗ n) + b(m⊗ sn) = a · 0 + b · 0 = 0

Thus, every monomial tensor is 0, so the whole tensor product is 0.

[3.0.3] Remark: Yes, it somehow not visible that these should be 0, since we probably think of tensors
are complicated objects, not likely to be 0. But this vanishing is an assertion that there are no non-zero
Z-bilinear maps from Z/5× Z/7, which is a plausible more-structural assertion.

[3.0.4] Example: Refining the previous example: let a, b be arbitrary non-zero integers. We claim that

Z/a⊗Z Z/b ≈ Z/gcd(a, b)

First, take r, s ∈ Z such that
gcd(a, b) = ra+ sb

Then the same argument as above shows that this gcd annihilates every monomial

(ra+ sb)(m⊗ n) = r(am⊗ n) + s(m⊗ bn) = r · 0 + s · 0 = 0

Unlike the previous example, we are not entirely done, since we didn’t simply prove that the tensor product
is 0. We need something like

[3.0.5] Proposition: Let {mα : α ∈ A} be a set of generators for an R-module M , and {nβ : β ∈ B} a
set of generators for an R-module N . Then

{mα ⊗ nβ : α ∈ A, β ∈ B}

is a set of generators [8] for M ⊗R N .

Proof: Since monomial tensors generate the tensor product, it suffices to show that every monomial tensor
is expressible in terms of the mα ⊗ nβ . Unsurprisingly, taking rα and sβ in R (0 for all but finitely-many
indices), by multilinearity

(
∑
α

rαmα)⊗ (
∑
β

sβnβ) =
∑
α,β

rαsβ mα ⊗ nβ

This proves that the special monomials mα ⊗ nβ generate the tensor product. ///

Returning to the example, since 1 + aZ generates Z/a and 1 + bZ generates Z/b, the proposition assures us
that 1⊗ 1 generates the tensor product. We already know that

gcd(a, b) · 1⊗ 1 = 0

Thus, we know that Z/a⊗ Z/b is isomorphic to some quotient of Z/gcd(a, b).

But this does not preclude the possibility that something else is 0 for a reason we didn’t anticipate. One
more ingredient is needed to prove the claim, namely exhibition of a sufficiently non-trivial bilinear map
to eliminate the possibility of any further collapsing. One might naturally contrive a Z-blinear map with
formulaic expression

B(x, y) = xy . . .

[8] It would be unwise, and generally very difficult, to try to give generators and relations for tensor products.
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but there may be some difficulty in intuiting where that xy resides. To understand this, we must be
scrupulous about cosets, namely

(x+ aZ) · (y + bZ) = xy + ayZ+ bxZ+ abZ ⊂ xy + aZ+ bZ = xy + gcd(a, b)Z

That is, the bilinear map is
B : Z/a× Z/b −→ Z/gcd(a, b)

By construction,
B(1, 1) = 1 ∈ Z/gcd(a, b)

so
β(1⊗ 1) = B(1, 1) = 1 ∈ Z/gcd(a, b)

In particular, the map is a surjection. Thus, knowing that the tensor product is generated by 1 ⊗ 1, and
that this element has order dividing gcd(a, b), we find that it has order exactly gcd(a, b), so is isomorphic to
Z/gcd(a, b), by the map

x⊗ y −→ xy

4. Tensor products f 
 g of maps

Still R is a commutative ring with 1.

An important type of map on a tensor product arises from pairs of R-linear maps on the modules in the
tensor product. That is, let

f : M −→M ′ g : N −→ N ′

be R-module maps, and attempt to define

f ⊗ g : M ⊗R N −→M ′ ⊗R N ′

by
(f ⊗ g)(m⊗ n) = f(m)⊗ g(n)

Justifiably interested in being sure that this formula makes sense, we proceed as follows.

If the map is well-defined then it is defined completely by its values on the monomial tensors, since these
generate the tensor product. To prove well-definedness, we invoke the defining property of the tensor product,
by first considering a bilinear map

B : M ×N −→M ′ ⊗R N ′

given by
B(m× n) = f(m)⊗ g(n)

To see that this bilinear map is well-defined, let

τ ′ : M ′ ×N ′ −→M ′ ⊗R N ′

For fixed n ∈ N , the composite

m −→ f(m) −→ τ ′(f(m), g(n)) = f(m)⊗ g(n)

is certainly an R-linear map in m. Similarly, for fixed m ∈M ,

n −→ g(n) −→ τ ′(f(m), g(n)) = f(m)⊗ g(n)
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is an R-linear map in n. Thus, B is an R-bilinear map, and the formula for f ⊗ g expresses the induced
linear map on the tensor product.

Similarly, for an n-tuple of R-linear maps
fi : Mi −→ Ni

there is an associated linear

f1 ⊗ . . .⊗ fn : M1 ⊗ . . .⊗Mn −→ N1 ⊗ . . .⊗Nn

5. Extension of scalars, functoriality, naturality

How to turn an R-module M into an S-module? [9] We assume that R and S are commutative rings with
unit, and that there is a ring homomorphism α : R −→ S such that α(1R) = 1S . For example the situation
that R ⊂ S with 1R = 1S is included. But also we want to allow not-injective maps, such as quotient maps
Z −→ Z/n. This makes S an R-algebra, by

r · s = α(r)s

Before describing the internal details of this conversion, we should tell what criteria it should meet. Let

F : {R−modules} −→ {S −modules}

be this conversion. [10] Our main requirement is that for R-modules M and S-modules N , there should be
a natural [11] isomorphism [12]

HomS(FM,N) ≈ HomR(M,N)

where on the right side we forget that N is an S-module, remembering only the action of R on it. If we want
to make more explicit this forgetting, we can write

ResSRN = R-module obtained by forgetting S-module structure on N

and then, more carefully, write what we want for extension of scalars as

HomS(FM,N) ≈ HomR(M,ResSRN)

[9] As an alert reader can guess, the anticipated answer involves tensor products. However, we can lend some dignity

to the proceedings by explaining requirements that should be met, rather than merely contriving from an R-module

a thing that happens to be an S-module.

[10] This F would be an example of a functor from the category of R-modules and R-module maps to the

category of S-modules and S-module maps. To be a genuine functor, we should also tell how F converts R-

module homomorphisms to S-module homomorphisms. We do not need to develop the formalities of category theory

just now, so will not do so. In fact, direct development of a variety of such examples surely provides the only sensible

and genuine motivation for a later formal development of category theory.

[11] This sense of natural will be made precise shortly. It is the same sort of naturality as discussed earlier in the

simplest example of second duals of finite-dimensional vector spaces over fields.

[12] It suffices to consider the map as an isomorphism of abelian groups, but, in fact, the isomorphism potentially

makes sense as an S-module map, if we give both sides S-module structures. For Φ ∈ HomS(FM,N), there is an

unambiguous and unsurprising S-module structure, namely (sΦ)(m′) = s ·Φ(m′) = s ·Φ(m′) for m′ ∈ FM and s ∈ S.

For ϕ ∈ HomR(M,N), since N does have the additional structure of S-module, we have (s · ϕ)(m) = s · ϕ(m).
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Though we’ll not use it much in the immediate sequel, this extra notation does have the virtue that it makes
clear that something happened to the module N .

This association of an S-module FM to an R-module M is not itself a module map. Instead, it is a
functor from R-modules to S-modules, meaning that for an R-module map f : M −→M ′ there should be
a naturally associated S-module map Ff : FM −→ FM ′. Further, F should respect the composition of
module homomorphisms, namely, for R-module homomorphisms

M
f
−→M ′

g
−→M ′′

it should be that
F (g ◦ f) = Fg ◦ Ff : FM −→ FM ′′

This already makes clear that we shouldn’t be completely cavalier in converting R-modules to S-modules.

Now we are able to describe the naturality we require of the desired isomorphism

HomS(FM,N)
iM,N

−→ HomR(M,N)

One part of the naturality is functoriality in N , which requires that for every R-module map g : N −→ N ′

the diagram

HomS(FM,N)
iM,N //

g◦−
��

HomR(M,N)

g◦−
��

HomS(FM,N ′)
iM,N′

// HomR(M,N ′)

commutes, where the map g ◦ − is (post-) composition with g, by

g ◦ − : ϕ −→ g ◦ ϕ

Obviously one oughtn’t imagine that it is easy to haphazardly guess a functor F possessing such virtues.
[13] There is also the requirement of functoriality in M , which requires for every f : M −→M ′ that the
diagram

HomS(FM,N)
iM,N // HomR(M,N)

HomS(FM ′, N)
iM′,N //

−◦Ff

OO

HomR(M ′, N)

−◦f

OO

commutes, where the map − ◦ Ff is (pre-) composition with Ff , by

− ◦ Ff : ϕ −→ ϕ ◦ Ff

After all these demands, it is a relief to have

[5.0.1] Theorem: The extension-of-scalars (from R to S) module FM attached to an R-module M is

extension-of-scalars-R-to-S of M = M ⊗R S

[13] Further, the same attitude might demand that we worry about the uniqueness of such F . Indeed, there is such a

uniqueness statement that can be made, but more preparation would be required than we can afford just now. The

assertion would be about uniqueness of adjoint functors.
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That is, for every R-module M and S-module N there is a natural isomorphism

HomS(M ⊗R S,N)
iM,N

−→ HomR(M,ResSRN)

given by
iM,N (Φ)(m) = Φ(m⊗ 1)

for Φ ∈ HomS(M ⊗R S,N), with inverse

jM,N (ϕ)(m⊗ s) = s · ϕ(m)

for s ∈ S, m ∈M .

Proof: First, we verify that the map iM,N given in the statement is an isomorphism, and then prove the
functoriality in N , and functoriality in M .

For the moment, write simply i for iM,N and j for jM,N . Then

((j ◦ i)Φ)(m⊗ s) = (j(iΦ))(m⊗ s) = s · (iΦ)(m) = s · Φ(m⊗ 1) = Φ(m⊗ s)

and
((i ◦ j)ϕ)(m) = (i(jϕ))(m) = (jϕ)(m⊗ 1) = 1 · ϕ(m) = ϕ(m)

This proves that the maps are isomorphisms.

For functoriality in N , we must prove that for every R-module map g : N −→ N ′ the diagram

HomS(M ⊗R S,N)
iM,N //

g◦−
��

HomR(M,N)

g◦−
��

HomS(M ⊗R S,N ′)
iM,N′

// HomR(M,N ′)

commutes. For brevity, let i = iM,N and i′ = iM,N ′ . Directly computing, using the definitions,

((i′ ◦ (g ◦ −))Φ)(m) = (i′ ◦ (g ◦ Φ))(m) = (g ◦ Φ)(m⊗ 1)

= g(Φ(m⊗ 1)) = g(iΦ(m)) = ((g ◦ −) ◦ i)Φ)(m)

For functoriality in M , for each R-module homomorphism f : M −→M ′ we must prove that the diagram

HomS(M ⊗R S,N)
iM,N // HomR(M,N)

HomS(M ′ ⊗R S,N)
iM′,N //

−◦Ff

OO

HomR(M ′, N)

−◦f

OO

commutes, where f ⊗ 1 is the map of M ⊗R S to itself determined by

(f ⊗ 1)(m⊗ s) = f(m)⊗ s

and − ◦ (f ⊗ 1) is (pre-) composition with this function. Again, let i = iM,N and i′ = iM ′,N , and compute
directly

(((− ◦ f) ◦ i′)Ψ)(m) = ((− ◦ f)(i′Ψ)(m) = (i′Ψ ◦ f)(m) = (i′Ψ)(fm)

= Ψ(fm⊗ 1) = (Ψ ◦ (f ⊗ 1))(m⊗ 1) = (i(Ψ ◦ (f ⊗ 1)))(m) = ((i ◦ (− ◦ (f ⊗ 1)))Ψ)(m)
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Despite the thicket of parentheses, this does prove what we want, namely, that

(− ◦ f) ◦ i′ = i ◦ (− ◦ (f ⊗ 1))

proving the functoriality of the isomorphism in M . ///

6. Worked examples

[27.1] For distinct primes p, q, compute
Z/p⊗Z/pq Z/q

where for a divisor d of an integer n the abelian group Z/d is given the Z/n-module structure by

(r + nZ) · (x+ dZ) = rx+ dZ

We claim that this tensor product is 0. To prove this, it suffices to prove that every m ⊗ n (the image of
m × n in the tensor product) is 0, since we have shown that these monomial tensors always generate the
tensor product.

Since p and q are relatively prime, there exist integers a, b such that 1 = ap+ bq. Then for all m ∈ Z/p and
n ∈ Z/q,

m⊗ n = 1 · (m⊗ n) = (ap+ bq)(m⊗ n) = a(pm⊗ n) + b(m⊗ qn) = a · 0 + b · 0 = 0

An auxiliary point is to recognize that, indeed, Z/p and Z/q really are Z/pq-modules, and that the equation
1 = ap+ bq still does make sense inside Z/pq. ///

[27.2] Compute Z/n⊗Z Q with 0 < n ∈ Z.

We claim that the tensor product is 0. It suffices to show that every m ⊗ n is 0, since these monomials
generate the tensor product. For any x ∈ Z/n and y ∈ Q,

x⊗ y = x⊗ (n · y
n

) = (nx)⊗ y

n
= 0⊗ y

n
= 0

as claimed. ///

[27.3] Compute Z/n⊗Z Q/Z with 0 < n ∈ Z.

We claim that the tensor product is 0. It suffices to show that every m ⊗ n is 0, since these monomials
generate the tensor product. For any x ∈ Z/n and y ∈ Q/Z,

x⊗ y = x⊗ (n · y
n

) = (nx)⊗ y

n
= 0⊗ y

n
= 0

as claimed. ///

[27.4] Compute HomZ(Z/n,Q/Z) for 0 < n ∈ Z.

Let q : Z −→ Z/n be the natural quotient map. Given ϕ ∈ HomZ(Z/n,Q/Z), the composite ϕ ◦ q
is a Z-homomorphism from the free Z-module Z (on one generator 1) to Q/Z. A homomorphism
Φ ∈ HomZ(Z,Q/Z) is completely determined by the image of 1 (since Φ(`) = Φ(` · 1) = ` · Φ(1)), and
since Z is free this image can be anything in the target Q/Z.
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Such a homomorphism Φ ∈ HomZ(Z,Q/Z) factors through Z/n if and only if Φ(n) = 0, that is, n ·Φ(1) = 0.
A complete list of representatives for equivalence classes in Q/Z annihilated by n is 0, 1

n ,
2
n ,

3
n , . . . ,

n−1
n .

Thus, HomZ(Z/n,Q/Z) is in bijection with this set, by

ϕi/n(x+ nZ) = ix/n+ Z

In fact, we see that HomZ(Z/n,Q/Z) is an abelian group isomorphic to Z/n, with

ϕ1/n(x+ nZ) = x/n+ Z

as a generator. ///

[27.5] Compute Q⊗Z Q.

We claim that this tensor product is isomorphic to Q, via the Z-linear map β induced from the Z-bilinar
map B : Q×Q −→ Q given by

B : x× y −→ xy

First, observe that the monomials x ⊗ 1 generate the tensor product. Indeed, given a/b ∈ Q (with a, b
integers, b 6= 0) we have

x⊗ a

b
= (

x

b
· b)⊗ a

b
=
x

b
⊗ (b · a

b
) =

x

b
⊗ a =

x

b
⊗ a · 1 = (a · x

b
)⊗ 1 =

ax

b
⊗ 1

proving the claim. Further, any finite Z-linear combination of such elements can be rewritten as a single
one: letting ni ∈ Z and xi ∈ Q, we have∑

i

ni · (xi ⊗ 1) = (
∑
i

nixi)⊗ 1

This gives an outer bound for the size of the tensor product. Now we need an inner bound, to know that
there is no further collapsing in the tensor product.

From the defining property of the tensor product there exists a (unique) Z-linear map from the tensor
product to Q, through which B factors. We have B(x, 1) = x, so the induced Z-linear map β is a bijection
on {x⊗ 1 : x ∈ Q}, so it is an isomorphism. ///

[27.6] Compute (Q/Z)⊗Z Q.

We claim that the tensor product is 0. It suffices to show that every m ⊗ n is 0, since these monomials
generate the tensor product. Given x ∈ Q/Z, let 0 < n ∈ Z such that nx = 0. For any y ∈ Q,

x⊗ y = x⊗ (n · y
n

) = (nx)⊗ y

n
= 0⊗ y

n
= 0

as claimed. ///

[27.7] Compute (Q/Z)⊗Z (Q/Z).

We claim that the tensor product is 0. It suffices to show that every m ⊗ n is 0, since these monomials
generate the tensor product. Given x ∈ Q/Z, let 0 < n ∈ Z such that nx = 0. For any y ∈ Q/Z,

x⊗ y = x⊗ (n · y
n

) = (nx)⊗ y

n
= 0⊗ y

n
= 0

as claimed. Note that we do not claim that Q/Z is a Q-module (which it is not), but only that for given
y ∈ Q/Z there is another element z ∈ Q/Z such that nz = y. That is, Q/Z is a divisible Z-module.
///
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[27.8] Prove that for a subring R of a commutative ring S, with 1R = 1S , polynomial rings R[x] behave
well with respect to tensor products, namely that (as rings)

R[x]⊗R S ≈ S[x]

Given an R-algebra homomorphism ϕ : R −→ A and a ∈ A, let Φ : R[x] −→ A be the unique R-algebra
homomorphism R[x] −→ A which is ϕ on R and such that ϕ(x) = a. In particular, this works for A an
S-algebra and ϕ the restriction to R of an S-algebra homomorphism ϕ : S −→ A. By the defining property
of the tensor product, the bilinear map B : R[x]× S −→ A given by

B(P (x)× s) = s · Φ(P (x))

gives a unique R-module map β : R[x] ⊗R S −→ A. Thus, the tensor product has most of the properties
necessary for it to be the free S-algebra on one generator x⊗ 1.

[6.0.1] Remark: However, we might be concerned about verification that each such β is an S-algebra
map, rather than just an R-module map. We can certainly write an expression that appears to describe the
multiplication, by

(P (x)⊗ s) · (Q(x)⊗ t) = P (x)Q(x)⊗ st

for polynomials P,Q and s, t ∈ S. If it is well-defined, then it is visibly associative, distributive, etc., as
required.

[6.0.2] Remark: The S-module structure itself is more straightforward: for any R-module M the tensor
product M ⊗R S has a natural S-module structure given by

s · (m⊗ t) = m⊗ st

for s, t ∈ S and m ∈ M . But one could object that this structure is chosen at random. To argue that this
is a good way to convert M into an S-module, we claim that for any other S-module N we have a natural
isomorphism of abelian groups

HomS(M ⊗R S,N) ≈ HomR(M,N)

(where on the right-hand side we simply forget that N had more structure than that of R-module). The
map is given by

Φ −→ ϕΦ where ϕΦ(m) = Φ(m⊗ 1)

and has inverse
Φϕ ←− ϕ where Φϕ(m⊗ s) = s · ϕ(m)

One might further carefully verify that these two maps are inverses.

[6.0.3] Remark: The definition of the tensor product does give an R-linear map

β : R[x]⊗R S −→ S[x]

associated to the R-bilinear B : R[x]× S −→ S[x] by

B(P (x)⊗ s) = s · P (x)

for P (x) ∈ R[x] and s ∈ S. But it does not seem trivial to prove that this gives an isomorphism. Instead, it
may be better to use the universal mapping property of a free algebra. In any case, there would still remain
the issue of proving that the induced maps are S-algebra maps.

[27.9] Let K be a field extension of a field k. Let f(x) ∈ k[x]. Show that

k[x]/f ⊗k K ≈ K[x]/f



404 Tensor products

where the indicated quotients are by the ideals generated by f in k[x] and K[x], respectively.

Upon reflection, one should realize that we want to prove isomorphism as K[x]-modules. Thus, we implicitly
use the facts that k[x]/f is a k[x]-module, that k[x]⊗k K ≈ K[x] as K-algebras, and that M ⊗k K gives a
k[x]-module M a K[x]-module structure by

(
∑
i

six
i) · (m⊗ 1) =

∑
i

(xi ·m)⊗ si

The map
k[x]⊗k K ≈ring K[x] −→ K[x]/f

has kernel (in K[x]) exactly of multiples Q(x) · f(x) of f(x) by polynomials Q(x) =
∑
i six

i in K[x]. The
inverse image of such a polynomial via the isomorphism is∑

i

xif(x)⊗ si

Let I be the ideal generated in k[x] by f , and Ĩ the ideal generated by f in K[x]. The k-bilinear map

k[x]/f ×K −→ K[x]/f

by
B : (P (x) + I)× s −→ s · P (x) + Ĩ

gives a map β : k[x]/f ⊗k K −→ K[x]/f . The map β is surjective, since

β(
∑
i

(xi + I)⊗ si) =
∑
i

six
i + Ĩ

hits every polynomial
∑
i six

i mod Ĩ. On the other hand, if

β(
∑
i

(xi + I)⊗ si) ∈ Ĩ

then
∑
i six

i = F (x) · f(x) for some F (x) ∈ K[x]. Let F (x) =
∑
j tjx

j . With f(x) =
∑
` c`x

`, we have

si =
∑
j+`=i

tjc`

Then, using k-linearity,

∑
i

(xi + I)⊗ si =
∑
i

xi + I ⊗ (
∑
j+`=i

tjc`)

 =
∑
j,`

(
xj+` + I ⊗ tjc`

)
=
∑
j,`

(
c`x

j+` + I ⊗ tj
)

=
∑
j

(
∑
`

c`x
j+` + I)⊗ tj =

∑
j

(f(x)xj + I)⊗ tj =
∑
j

0 = 0

So the map is a bijection, so is an isomorphism. ///

[27.10] Let K be a field extension of a field k. Let V be a finite-dimensional k-vectorspace. Show that
V ⊗k K is a good definition of the extension of scalars of V from k to K, in the sense that for any
K-vectorspace W

HomK(V ⊗k K,W ) ≈ Homk(V,W )
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where in Homk(V,W ) we forget that W was a K-vectorspace, and only think of it as a k-vectorspace.

This is a special case of a general phenomenon regarding extension of scalars. For any k-vectorspace V the
tensor product V ⊗k K has a natural K-module structure given by

s · (v ⊗ t) = v ⊗ st

for s, t ∈ K and v ∈ V . To argue that this is a good way to convert k-vectorspaces V into K-vectorspaces,
claim that for any other K-module W have a natural isomorphism of abelian groups

HomK(V ⊗k K,W ) ≈ Homk(V,W )

On the right-hand side we forget that W had more structure than that of k-vectorspace. The map is

Φ −→ ϕΦ where ϕΦ(v) = Φ(v ⊗ 1)

and has inverse
Φϕ ←− ϕ where Φϕ(v ⊗ s) = s · ϕ(v)

To verify that these are mutual inverses, compute

ϕΦϕ
(v) = Φϕ(v ⊗ 1) = 1 · ϕ(v) = ϕ(v)

and
ΦϕΦ(v ⊗ 1) = 1 · ϕΦ(v) = Φ(v ⊗ 1)

which proves that the maps are inverses. ///

[6.0.4] Remark: In fact, the two spaces of homomorphisms in the isomorphism can be given natural
structures of K-vectorspaces, and the isomorphism just constructed can be verified to respect this additional
structure. The K-vectorspace structure on the left is clear, namely

(s · Φ)(m⊗ t) = Φ(m⊗ st) = s · Φ(m⊗ t)

The structure on the right is
(s · ϕ)(m) = s · ϕ(m)

The latter has only the one presentation, since only W is a K-vectorspace.

[27.11] Let M and N be free R-modules, where R is a commutative ring with identity. Prove that M ⊗RN
is free and

rankM ⊗R N = rankM · rankN

Let M and N be free on generators i : X −→ M and j : Y −→ N . We claim that M ⊗R N is free on a set
map

` : X × Y −→M ⊗R N

To verify this, let ϕ : X × Y −→ Z be a set map. For each fixed y ∈ Y , the map x −→ ϕ(x, y) factors
through a unique R-module map By : M −→ Z. For each m ∈ M , the map y −→ By(m) gives rise to a
unique R-linear map n −→ B(m,n) such that

B(m, j(y)) = By(m)

The linearity in the second argument assures that we still have the linearity in the first, since for
n =

∑
t rt j(yt) we have

B(m,n) = B(m,
∑
t

rtj(yt)) =
∑
t

rtByt(m)
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which is a linear combination of linear functions. Thus, there is a unique map to Z induced on the tensor
product, showing that the tensor product with set map i× j : X × Y −→M ⊗R N is free. ///

[27.12] Let M be a free R-module of rank r, where R is a commutative ring with identity. Let S be a
commutative ring with identity containing R, such that 1R = 1S . Prove that as an S module M ⊗R S is free
of rank r.

We prove a bit more. First, instead of simply an inclusion R ⊂ S, we can consider any ring homomorphism
ψ : R −→ S such that ψ(1R) = 1S .

Also, we can consider arbitrary sets of generators, and give more details. Let M be free on generators
i : X −→M , where X is a set. Let τ : M × S −→M ⊗R S be the canonical map. We claim that M ⊗R S is
free on j : X −→M ⊗R S defined by

j(x) = τ(i(x)× 1S)

Given an S-module N , we can be a little forgetful and consider N as an R-module via ψ, by r · n = ψ(r)n.
Then, given a set map ϕ : X −→ N , since M is free, there is a unique R-module map Φ : M −→ N such
that ϕ = Φ ◦ i. That is, the diagram

M
Φ

''NNNNNNN

X

i

OO

ϕ // N

commutes. Then the map
ψ : M × S −→ N

by
ψ(m× s) = s · Φ(m)

induces (by the defining property of M ⊗R S) a unique Ψ : M ⊗R S −→ N making a commutative diagram

M ⊗R S

Ψ

��

E
C

@
>

;
9

7
5

3
1

/
.

,
+

M × S

ψ

!!B
B

B
B

B
B

B
B

B
B

τ

OO

X × {1S}

i×inc

OO

X
ϕ //

t

OO

N

where inc is the inclusion map {1S} −→ S, and where t : X −→ X × {1S} by x −→ x× 1S . Thus, M ⊗R S
is free on the composite j : X −→ M ⊗R S defined to be the composite of the vertical maps in that last
diagram. This argument does not depend upon finiteness of the generating set. ///

[27.13] For finite-dimensional vectorspaces V,W over a field k, prove that there is a natural isomorphism

(V ⊗k W )∗ ≈ V ∗ ⊗W ∗

where X∗ = Homk(X, k) for a k-vectorspace X.

For finite-dimensional V and W , since V ⊗k W is free on the cartesian product of the generators for V and
W , the dimensions of the two sides match. We make an isomorphism from right to left. Create a bilinear
map

V ∗ ×W ∗ −→ (V ⊗k W )∗
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as follows. Given λ ∈ V ∗ and µ ∈W ∗, as usual make Λλ,µ ∈ (V ⊗k W )∗ from the bilinear map

Bλ,µ : V ×W −→ k

defined by
Bλ,µ(v, w) = λ(v) · µ(w)

This induces a unique functional Λλ,µ on the tensor product. This induces a unique linear map

V ∗ ⊗W ∗ −→ (V ⊗k W )∗

as desired.

Since everything is finite-dimensional, bijectivity will follow from injectivity. Let e1, . . . , em be a basis for
V , f1, . . . , fn a basis for W , and λ1, . . . , λm and µ1, . . . , µn corresponding dual bases. We have shown that
a basis of a tensor product of free modules is free on the cartesian product of the generators. Suppose that∑
ij cijλi ⊗ µj gives the 0 functional on V ⊗W , for some scalars cij . Then, for every pair of indices s, t, the

function is 0 on es ⊗ ft. That is,
0 =

∑
ij

cijλi(es)λj(ft) = cst

Thus, all constants cij are 0, proving that the map is injective. Then a dimension count proves the
isomorphism. ///

[27.14] For a finite-dimensional k-vectorspace V , prove that the bilinear map

B : V × V ∗ −→ Endk(V )

by
B(v × λ)(x) = λ(x) · v

gives an isomorphism V ⊗k V ∗ −→ Endk(V ). Further, show that the composition of endormorphisms is the
same as the map induced from the map on

(V ⊗ V ∗)× (V ⊗ V ∗) −→ V ⊗ V ∗

given by
(v ⊗ λ)× (w ⊗ µ) −→ λ(w)v ⊗ µ

The bilinear map v × λ −→ Tv,λ given by

Tv,λ(w) = λ(w) · v

induces a unique linear map j : V ⊗ V ∗ −→ Endk(V ).

To prove that j is injective, we may use the fact that a basis of a tensor product of free modules is free on
the cartesian product of the generators. Thus, let e1, . . . , en be a basis for V , and λ1, . . . , λn a dual basis for
V ∗. Suppose that

n∑
i,j=1

cij ei ⊗ λj −→ 0Endk(V )

That is, for every e`, ∑
ij

cijλj(e`)ei = 0 ∈ V

This is ∑
i

cijei = 0 (for all j)
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Since the eis are linearly independent, all the cijs are 0. Thus, the map j is injective. Then counting
k-dimensions shows that this j is a k-linear isomorphism.

Composition of endomorphisms is a bilinear map

Endk(V )× Endk(V )
◦
−→Endk(V )

by
S × T −→ S ◦ T

Denote by
c : (v ⊗ λ)× (w ⊗ µ) −→ λ(w)v ⊗ µ

the allegedly corresonding map on the tensor products. The induced map on (V ⊗ V ∗) ⊗ (V ⊗ V ∗) is an
example of a contraction map on tensors. We want to show that the diagram

Endk(V )× Endk(V ) ◦ // Endk(V )

(V ⊗k V ∗)× (V ⊗k V ∗)

j×j

OO

c // V ⊗k V ∗

j

OO

commutes. It suffices to check this starting with (v⊗λ)× (w⊗µ) in the lower left corner. Let x ∈ V . Going
up, then to the right, we obtain the endomorphism which maps x to

j(v ⊗ λ) ◦ j(w ⊗ µ) (x) = j(v ⊗ λ)(j(w ⊗ µ)(x)) = j(v ⊗ λ)(µ(x)w)

= µ(x) j(v ⊗ λ)(w) = µ(x)λ(w) v

Going the other way around, to the right then up, we obtain the endomorphism which maps x to

j( c((v ⊗ λ)× (w ⊗ µ))) (x) = j(λ(w)(v ⊗ µ) ) (x) = λ(w)µ(x) v

These two outcomes are the same. ///

[27.15] Under the isomorphism of the previous problem, show that the linear map

tr : Endk(V ) −→ k

is the linear map
V ⊗ V ∗ −→ k

induced by the bilinear map v × λ −→ λ(v).

Note that the induced map
V ⊗k V ∗ −→ k by v ⊗ λ −→ λ(v)

is another contraction map on tensors. Part of the issue is to compare the coordinate-bound trace with
the induced (contraction) map t(v ⊗ λ) = λ(v) determined uniquely from the bilinear map v × λ −→ λ(v).
To this end, let e1, . . . , en be a basis for V , with dual basis λ1, . . . , λn. The corresponding matrix coefficients
Tij ∈ k of a k-linear endomorphism T of V are

Tij = λi(Tej)

(Always there is the worry about interchange of the indices.) Thus, in these coordinates,

trT =
∑
i

λi(Tei)
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Let T = j(es ⊗ λt). Then, since λt(ei) = 0 unless i = t,

trT =
∑
i

λi(Tei) =
∑
i

λi(j(es ⊗ λt)ei) =
∑
i

λi(λt(ei) · es) = λt(λt(et) · es) =
{

1 (s = t)
0 (s 6= t)

On the other hand,

t(es ⊗ λt) = λt(es) =
{

1 (s = t)
0 (s 6= t)

Thus, these two k-linear functionals agree on the monomials, which span, they are equal. ///

[27.16] Prove that tr (AB) = tr (BA) for two endomorphisms of a finite-dimensional vector space V over
a field k, with trace defined as just above.

Since the maps
Endk(V )× Endk(V ) −→ k

by
A×B −→ tr (AB) and/or A×B −→ tr (BA)

are bilinear, it suffices to prove the equality on (images of) monomials v ⊗ λ, since these span the
endomophisms over k. Previous examples have converted the issue to one concerning V ⊗k V

∗. (We have
already shown that the isomorphism V ⊗k V ∗ ≈ Endk(V ) is converts a contraction map on tensors to
composition of endomorphisms, and that the trace on tensors defined as another contraction corresponds to
the trace of matrices.) Let tr now denote the contraction-map trace on tensors, and (temporarily) write

(v ⊗ λ) ◦ (w ⊗ µ) = λ(w) v ⊗ µ

for the contraction-map composition of endomorphisms. Thus, we must show that

tr (v ⊗ λ) ◦ (w ⊗ µ) = tr (w ⊗ µ) ◦ (v ⊗ λ)

The left-hand side is

tr (v ⊗ λ) ◦ (w ⊗ µ) = tr (λ(w) v ⊗ µ) = λ(w) tr (v ⊗ µ) = λ(w)µ(v)

The right-hand side is

tr (w ⊗ µ) ◦ (v ⊗ λ) = tr (µ(v)w ⊗ λ) = µ(v) tr (w ⊗ λ) = µ(v)λ(w)

These elements of k are the same. ///

[27.17] Prove that tensor products are associative, in the sense that, for R-modules A,B,C, we have a
natural isomorphism

A⊗R (B ⊗R C) ≈ (A⊗R B)⊗R C

In particular, do prove the naturality, at least the one-third part of it which asserts that, for every R-module
homomorphism f : A −→ A′, the diagram

A⊗R (B ⊗R C) ≈ //

f⊗(1B⊗1C)

��

(A⊗R B)⊗R C

(f⊗1B)⊗1C

��
A′ ⊗R (B ⊗R C) ≈ // (A′ ⊗R B)⊗R C

commutes, where the two horizontal isomorphisms are those determined in the first part of the problem.
(One might also consider maps g : B −→ B′ and h : C −→ C ′, but these behave similarly, so there’s no real
compulsion to worry about them, apart from awareness of the issue.)
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Since all tensor products are over R, we drop the subscript, to lighten the notation. As usual, to make a
(linear) map from a tensor product M ⊗ N , we induce uniquely from a bilinear map on M × N . We have
done this enough times that we will suppress this part now.

The thing that is slightly less trivial is construction of maps to tensor products M ⊗ N . These are always
obtained by composition with the canonical bilinear map

M ×N −→M ⊗N

Important at present is that we can create n-fold tensor products, as well. Thus, we prove the indicated
isomorphism by proving that both the indicated iterated tensor products are (naturally) isomorphic to the
un-parenthesis’d tensor product A ⊗ B ⊗ C, with canonical map τ : A × B × C −→ A ⊗ B ⊗ C, such that
for every trilinear map ϕ : A×B × C −→ X there is a unique linear Φ : A⊗B ⊗ C −→ X such that

A⊗B ⊗ C
Φ

((QQQQQQQQ

A×B × C
ϕ //

τ

OO

X

The set map
A×B × C ≈ (A×B)× C −→ (A⊗B)⊗ C

by
a× b× c −→ (a× b)× c −→ (a⊗ b)⊗ c

is linear in each single argument (for fixed values of the others). Thus, we are assured that there is a unique
induced linear map

A⊗B ⊗ C −→ (A⊗B)⊗ C

such that
A⊗B ⊗ C

i

))TTTTTTTT

A×B × C //

OO

(A⊗B)⊗ C

commutes.

Similarly, from the set map
(A×B)× C ≈ A×B × C −→ A⊗B ⊗ C

by
(a× b)× c −→ a× b× c −→ a⊗ b⊗ c

is linear in each single argument (for fixed values of the others). Thus, we are assured that there is a unique
induced linear map

(A⊗B)⊗ C −→ A⊗B ⊗ C

such that
(A⊗B)⊗ C

j

))TTTTTTTT

(A×B)× C //

OO

A⊗B ⊗ C

commutes.

Then j ◦ i is a map of A⊗B⊗C to itself compatible with the canonical map A×B×C −→ A⊗B⊗C. By
uniqueness, j ◦ i is the identity on A⊗B ⊗ C. Similarly (just very slightly more complicatedly), i ◦ j must
be the identity on the iterated tensor product. Thus, these two maps are mutual inverses.
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To prove naturality in one of the arguments A,B,C, consider f : C −→ C ′. Let jABC be the isomorphism
for a fixed triple A,B,C, as above. The diagram of maps of cartesian products (of sets, at least)

(A×B)× C
jABC //

(1A×1B)×f
��

A×B × C

1A×1B×f
��

(A×B)× C
j // A×B × C

does commute: going down, then right, is

jABC′ ((1A × 1B)× f)((a× b)× c)) = jABC′ ((a× b)× f(c)) = a× b× f(c)

Going right, then down, gives

(1A × 1B × f) (jABC((a× b)× c)) = (1A × 1B × f) (a× b× c)) = a× b× f(c)

These are the same. ///

Exercises

27.[6.0.1] Let I and J be two ideals in a PID R. Determine

R/I ⊗R R/J

27.[6.0.2] For an R-module M and an ideal I in R, show that

M/I ·M ≈ M ⊗R R/I

27.[6.0.3] Let R be a commutative ring with unit, and S a commutative R algebra. Given an R-bilinear
map B : V × W −→ R, give a natural S-blinear extension of B to the S-linear extensions S ⊗R V and
S ⊗RW .

27.[6.0.4] A multiplicative subset S of a commutative ring R with unit is a subset of R closed under
multiplication. The localization S−1R of R at S is the collection of ordered pairs (r, s) with r ∈ R and
s ∈ S, modulo the equivalence relation that (r, s) ∼ (r′, s′) if and only if there is s′′ ∈ S such that

s′′ · (rs′ − r′s) = 0

Let P be a prime ideal in R. Show that S−1P is a prime ideal in S−1R.

27.[6.0.5] In the situation of the previous exercise, show that the field of fractions of (S−1R)/(S−1P ) is
naturally isomorphic to the field of fractions of R/P .

27.[6.0.6] In the situation of the previous two exercises, for an R-module M , define a reasonable notion
of S−1M .

27.[6.0.7] In the situation of the previous three exercises, for an R-module M , show that

S−1M ≈ M ⊗R S−1R
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27.[6.0.8] Identify the commutative Q-algebra Q(
√

2)⊗Q Q(
√

2) as a sum of fields.

27.[6.0.9] Identify the commutative Q-algebra Q( 3
√

2)⊗Q Q( 3
√

2) as a sum of fields.

27.[6.0.10] Let ζ be a primitie 5th root of unity. Identify the commutative Q-algebra Q(
√

5)⊗QQ(ζ) as
a sum of fields.

27.[6.0.11] Let H be the Hamiltonian quaternions. Identify H⊗R C in familiar terms.

27.[6.0.12] Let H be the Hamiltonian quaternions. Identify H⊗R H in familiar terms.


