28. Exterior powers

28.1 Desiderata
28.2 Definitions, uniqueness, existence
28.3 Some elementary facts
28.4 Exterior powers $\bigwedge^{i} f$ of maps
28.5 Exterior powers of free modules
28.6 Determinants revisited
28.7 Minors of matrices
28.8 Uniqueness in the structure theorem
28.9 Cartan's lemma
28.10 Cayley-Hamilton Theorem
28.11 Worked examples

While many of the arguments here have analogues for tensor products, it is worthwhile to repeat these arguments with the relevant variations, both for practice, and to be sensitive to the differences.

1. Desiderata

Again, we review missing items in our development of linear algebra.
We are missing a development of determinants of matrices whose entries may be in commutative rings, rather than fields. We would like an intrinsic definition of determinants of endomorphisms, rather than one that depends upon a choice of coordinates, even if we eventually prove that the determinant is independent of the coordinates. We anticipate that Artin's axiomatization of determinants of matrices should be mirrored in much of what we do here.

We want a direct and natural proof of the Cayley-Hamilton theorem. Linear algebra over fields is insufficient, since the introduction of the indeterminate x in the definition of the characteristic polynomial takes us outside the class of vector spaces over fields.

We want to give a conceptual proof for the uniqueness part of the structure theorem for finitely-generated modules over principal ideal domains. Multi-linear algebra over fields is surely insufficient for this.

2. Definitions, uniqueness, existence

Let R be a commutative ring with 1 . We only consider R-modules M with the property that $1 \cdot m=m$ for all $m \in M$. Let M and X be R-modules. An R-multilinear map

$$
B: \underbrace{M \times \ldots \times M}_{n} \longrightarrow X
$$

is alternating if $B\left(m_{1}, \ldots, m_{n}\right)=0$ whenever $m_{i}=m_{j}$ for two indices $i \neq j$.
As in earlier discussion of free modules, and in discussion of polynomial rings as free algebras, we will define exterior powers by mapping properties. As usual, this allows an easy proof that exterior powers (if they exist) are unique up to unique isomorphism. Then we give a modern construction.

An exterior $n^{t h}$ power $\bigwedge_{R}^{n} M$ over R of an R-module M is an R-module $\bigwedge_{R}^{n} M$ with an alternating R multilinear map (called the canonical map) ${ }^{[1]}$

$$
\alpha: \underbrace{M \times \ldots \times M}_{n} \longrightarrow \bigwedge_{R}^{n} M
$$

such that, for every alternating R-multilinear map

$$
\varphi: \underbrace{M \times \ldots \times M}_{n} \longrightarrow X
$$

there is a unique R-linear map

$$
\Phi: \bigwedge_{R}^{n} M \longrightarrow X
$$

such that $\varphi=\Phi \circ \alpha$, that is, such that the diagram

commutes.
[2.0.1] Remark: If there is no ambiguity, we may drop the subscript R on the exterior power $\bigwedge_{R}^{n} M$, writing simply $\wedge^{n} M$.

The usual notation does not involve any symbol such as α, but in our development it is handy to have a name for this map. The standard notation denotes the image $\alpha(m \times n)$ of $m \times n$ in the exterior product by

$$
\text { image of } m_{1} \times \ldots \times m_{n} \text { in } \bigwedge^{n} M=m_{1} \wedge \ldots \wedge m_{n}
$$

In practice, the implied R-multilinear alternating map

$$
M \times \ldots \times M \longrightarrow \bigwedge^{n} M
$$

called α here is often left anonymous.

[^0]The following proposition is typical of uniqueness proofs for objects defined by mapping property requirements. It is essentially identical to the analogous argument for tensor products. Note that internal details of the objects involved play no role. Rather, the argument proceeds by manipulation of arrows.
[2.0.2] Proposition: Exterior powers $\alpha: M \times \ldots \times M \longrightarrow \bigwedge^{n} M$ are unique up to unique isomorphism. That is, given two exterior $n^{\text {th }}$ powers

$$
\begin{aligned}
& \alpha_{1}: M \times \ldots \times M \longrightarrow E_{1} \\
& \alpha_{2}: M \times \ldots \times M \longrightarrow E_{2}
\end{aligned}
$$

there is a unique R-linear isomorphism $i: E_{1} \longrightarrow E_{2}$ such that the diagram

commutes, that is, $\alpha_{2}=i \circ \alpha_{1}$.
Proof: First, we show that for a $n^{\text {th }}$ exterior power $\alpha: M \times \ldots \times M \longrightarrow T$, the only map $f: E \longrightarrow E$ compatible with α is the identity. That is, the identity map is the only map f such that

commutes. Indeed, the definition of a $n^{t h}$ exterior power demands that, given the alternating multilinear map

$$
\alpha: M \times \ldots \times M \longrightarrow E
$$

(with E in the place of the earlier X) there is a unique linear map $\Phi: E \longrightarrow E$ such that the diagram

commutes. The identity map on E certainly has this property, so is the only map $E \longrightarrow E$ with this property.
Looking at two $n^{\text {th }}$ exterior powers, first take $\alpha_{2}: M \times \ldots \times M \longrightarrow E_{2}$ in place of the $\varphi: M \times \ldots \times M \longrightarrow X$. That is, there is a unique linear $\Phi_{1}: E_{1} \longrightarrow E_{2}$ such that the diagram

commutes. Similarly, reversing the roles, there is a unique linear $\Phi_{2}: E_{2} \longrightarrow E_{1}$ such that

commutes. Then $\Phi_{2} \circ \Phi_{1}: E_{1} \longrightarrow E_{1}$ is compatible with α_{1}, so is the identity, from the first part of the proof. And, symmetrically, $\Phi_{1} \circ \Phi_{2}: E_{2} \longrightarrow E_{2}$ is compatible with α_{2}, so is the identity. Thus, the maps Φ_{i} are mutual inverses, so are isomorphisms.

For existence, we express the $n^{t h}$ exterior power $\bigwedge^{n} M$ as a quotient of the tensor power

$$
\bigotimes^{n} M=\underbrace{M \otimes \ldots \otimes M}_{n}
$$

[2.0.3] Proposition: $n^{t h}$ exterior powers $\bigwedge^{n} M$ exist. In particular, let I be the submodule of $\bigotimes^{n} M$ generated by all tensors

$$
m_{1} \otimes \ldots \otimes m_{n}
$$

where $m_{i}=m_{j}$ for some $i \neq j$. Then

$$
\Lambda^{n} M=\bigotimes^{n} M / I
$$

The alternating map

$$
\alpha: M \times \ldots \times M \longrightarrow \bigwedge^{n} M
$$

is the composite of the quotient map $\bigotimes^{n} \longrightarrow \bigwedge^{n} M$ with the canonical multilinear map $M \times \ldots \times M \longrightarrow$ $\bigotimes^{n} M$.

Proof: Let $\varphi: M \times \ldots \times M \longrightarrow X$ be an alternating R-multilinear map. Let $\tau: M \times \ldots \times M \longrightarrow \bigotimes^{n} M$ be the tensor product. By properties of the tensor product there is a unique R-linear $\Psi: \bigotimes^{n} M \longrightarrow X$ through which φ factors, namely $\varphi=\Psi \circ \tau$.
Let $q: \otimes^{n} \longrightarrow \bigwedge^{n} M$ be the quotient map. We claim that Ψ factors through q, as $\Psi=\Phi \circ q$, for a linear map $\Phi: \bigwedge^{n} M \longrightarrow X$. That is, we claim that there is a commutative diagram

Specifically, we claim that $\Psi(I)=0$, where I is the submodule generated by $m_{1} \otimes \ldots \otimes m_{n}$ with $m_{i}=m_{j}$ for some $i \neq j$. Indeed, using the fact that φ is alternating,

$$
\Psi\left(m_{1} \otimes \ldots \otimes_{m}\right)=\Psi\left(\tau\left(m_{1} \times \ldots \times m_{n}\right)\right)=\varphi\left(m_{1} \times \ldots \times m_{n}\right)=0
$$

That is, $\operatorname{ker} \Psi \supset I$, so Ψ factors through the quotient $\bigwedge^{n} M$.

Last, we must check that the map $\alpha=q \circ \tau$ is alternating. Indeed, with $m_{i}=m_{j}$ (and $i \neq j$),

$$
\alpha\left(m_{1} \times \ldots \times m_{n}\right)=(q \circ \tau)\left(m_{1} \times \ldots \times m_{n}\right)=q\left(m_{1} \otimes \ldots \otimes m_{n}\right)
$$

Since $m_{i}=m_{j}$, that monomial tensor is in the submodule I, which is the kernel of the quotient map q. Thus, α is alternating.

3. Some elementary facts

Again, ${ }^{[2]}$ the naive notion of alternating would entail that, for example, in $\bigwedge^{2} M$

$$
x \wedge y=-y \wedge x
$$

More generally, in $\bigwedge^{n} M$,

$$
\ldots \wedge m_{i} \wedge \ldots \wedge m_{j} \wedge \ldots=-\ldots \wedge m_{j} \wedge \ldots \wedge m_{i} \wedge \ldots
$$

(interchanging the $i^{t h}$ and $j^{t h}$ elements) for $i \neq j$. However, this isn't the definition. Again, the definition is that

$$
\ldots \wedge m_{i} \wedge \ldots \wedge m_{j} \wedge \ldots=0 \quad \text { if } m_{i}=m_{j} \text { for any } i \neq j
$$

This latter condition is strictly stronger than the change-of-sign requirement if 2 is a 0 -divisor in the underlying ring R. As in Artin's development of determinants from the alternating property, we do recover the change-of-sign property, since

$$
0=(x+y) \wedge(x+y)=x \wedge x+x \wedge y+y \wedge x+y \wedge y=0+x \wedge y+y \wedge x+0
$$

which gives

$$
x \wedge y=-y \wedge x
$$

The natural induction on the number of 2-cycles in a permutation π proves
[3.0.1] Proposition: For m_{1}, \ldots, m_{n} in M, and for a permutation π of n things,

$$
m_{\pi(1)} \wedge \ldots \wedge m_{\pi(n)}=\sigma(\pi) \cdot m_{1} \wedge \ldots \wedge m_{n}
$$

Proof: Let $\pi=s \tau$, where s is a 2 -cycle and τ is a permutation expressible as a product of fewer 2-cycles than π. Then

$$
\begin{gathered}
m_{\pi(1)} \wedge \ldots \wedge m_{\pi(n)}=m_{s \tau(1)} \wedge \ldots \wedge m_{s \tau(n)}=-m_{\tau(1)} \wedge \ldots \wedge m_{\tau(n)} \\
=-\sigma(\tau) \cdot m_{1} \wedge \ldots \wedge m_{n}=\sigma(\pi) \cdot m_{1} \wedge \ldots \wedge m_{n}
\end{gathered}
$$

as asserted.
[3.0.2] Proposition: The monomial exterior products $m_{1} \wedge \ldots \wedge m_{n}$ generate $\bigwedge^{n} M$ as an R-module, as the m_{i} run over all elements of M.

Proof: Let X be the submodule of $\bigwedge^{n} M$ generated by the monomial tensors, $Q=\left(\bigwedge^{n} M\right) / X$ the quotient, and $q: \bigwedge^{n} M \longrightarrow X$ the quotient map. Let

$$
B: M \times \ldots \times M \longrightarrow Q
$$

[^1]be the 0 -map. A defining property of the $n^{t h}$ exterior power is that there is a unique R-linear
$$
\beta: \bigwedge^{n} M \longrightarrow Q
$$
making the usual diagram commute, that is, such that $B=\beta \circ \alpha$, where $\alpha: M \times \ldots \times M \longrightarrow \bigwedge^{n} M$. Both the quotient map q and the 0 -map $\wedge^{n} M \longrightarrow Q$ allow the 0 -map $M \times \ldots \times M \longrightarrow Q$ to factor through, so by the uniqueness the quotient map is the 0 -map. That is, Q is the 0 -module, so $X=\bigwedge^{n} M$.
[3.0.3] Proposition: Let $\left\{m_{\beta}: \beta \in B\right\}$ be a set of generators for an R-module M, where the index set B is ordered. Then the monomials
$$
m_{\beta_{1}} \wedge \ldots \wedge m_{\beta_{n}} \quad \text { with } \quad \beta_{1}<\beta_{2}<\ldots<\beta_{n}
$$
generate $\bigwedge^{n} M$.
Proof: First, claim that the monomials
$$
m_{\beta_{1}} \wedge \ldots \wedge m_{\beta_{n}} \quad\left(\text { no condition on } \beta_{i} \mathrm{~s}\right)
$$
generate the exterior power. Let I be the submodule generated by them. If I is proper, let $X=\left(\bigwedge^{n} M\right) / I$ and let $q: \bigwedge^{n} M \longrightarrow X$ be the quotient map. The composite
$$
q \circ \alpha: \underbrace{M \times \ldots \times M}_{n} \longrightarrow \bigwedge^{n} M \longrightarrow X
$$
is an alternating map, and is 0 on any $m_{\beta_{1}} \times \ldots \times m_{\beta_{n}}$. In each variable, separately, the map is linear, and vanishes on generators for M, so is 0 . Thus, $q \circ \alpha=0$. This map certainly factors through the 0 -map $\bigwedge^{n} M \longrightarrow X$. But, using the defining property of the exterior power, the uniqueness of a map $\bigwedge^{n} M \longrightarrow X$ through which $q \circ \alpha$ factors implies that $q=0$, and $X=0$. Thus, these monomials generate the whole.

Now we will see that we can reorder monomials to put the indices in ascending order. First, since

$$
m_{\beta_{1}} \wedge \ldots \wedge m_{\beta_{n}}=\alpha\left(m_{\beta_{1}} \times \ldots \times m_{\beta_{n}}\right)
$$

and α is alternating, the monomial is 0 if $m_{\beta_{i}}=m_{\beta_{j}}$ for $\beta_{i} \neq \beta_{j}$. And for a permutation π of n things, as observed just above,

$$
m_{\beta_{\pi(1)}} \wedge \ldots \wedge m_{\beta_{\pi(n)}}=\sigma(\pi) \cdot m_{\beta_{1}} \wedge \ldots \wedge m_{\beta_{n}}
$$

where σ is the parity function on permutations. Thus, to express elements of $\bigwedge^{n} M$ it suffices to use only monomials with indices in ascending order.

4. Exterior powers $\bigwedge^{n} f$ of maps

Still R is a commutative ring with 1 .
An important type of map on an exterior power $\bigwedge^{n} M$ arises from R-linear maps on the module M. That is, let

$$
f: M \longrightarrow N
$$

be an R-module map, and attempt to define

$$
\Lambda^{n} f: \Lambda^{n} M \longrightarrow \Lambda^{n} N
$$

by

$$
\left(\bigwedge^{n} f\right)\left(m_{1} \wedge \ldots \wedge m_{n}\right)=f\left(m_{1}\right) \wedge \ldots \wedge f\left(m_{n}\right)
$$

Justifiably interested in being sure that this formula makes sense, we proceed as follows.
If the map is well-defined then it is defined completely by its values on the monomial exterior products, since these generate the exterior power. To prove well-definedness, we invoke the defining property of the $n^{\text {th }}$ exterior power. Let $\alpha^{\prime}: N \times \ldots \times N \longrightarrow \bigwedge^{n} N$ be the canonical map. Consider

$$
B: \underbrace{M \times \ldots \times M}_{n} \stackrel{f \times \ldots \times f}{\longrightarrow} \underbrace{N \times \ldots \times N}_{n} \stackrel{\alpha^{\prime}}{\longrightarrow} \bigwedge^{n} N
$$

given by

$$
B\left(m_{1} \times \ldots \times m_{n}\right)=f\left(m_{1}\right) \wedge \ldots \wedge f\left(m_{n}\right)
$$

For fixed index i, and for fixed $m_{j} \in M$ for $j \neq i$, the composite

$$
m \longrightarrow \alpha^{\prime}\left(\ldots \times f\left(m_{i-1}\right) \times f(m) \times f\left(m_{i+1}\right) \wedge \ldots\right)
$$

is certainly an R-linear map in m. Thus, B is R-multilinear. As a function of each single argument in $M \times \ldots \times M$, the map B is linear, so B is multilinear. Since α^{\prime} is alternating, B is alternating. Then (by the defining property of the exterior power) there is a unique R-linear map Φ giving a commutative diagram

the formula for $\bigwedge^{n} f$ is the induced linear map Φ on the $n^{t h}$ exterior power. Since the map arises as the unique induced map via the defining property of $\bigwedge^{n} M$, it is certainly well-defined.

5. Exterior powers of free modules

The main point here is that free modules over commutative rings with identity behave much like vector spaces over fields, with respect to multilinear algebra operations. In particular, we prove non-vanishing of the $n^{\text {th }}$ exterior power of a free module of rank n, which (as we will see) proves the existence of determinants.

At the end, we discuss the natural bilinear map

$$
\Lambda^{s} M \times \Lambda^{t} M \longrightarrow \Lambda^{s+t} M
$$

by

$$
\left(m_{1} \wedge \ldots \wedge m_{s}\right) \times\left(m_{s+1} \wedge \ldots \wedge m_{s+t}\right) \longrightarrow m_{1} \wedge \ldots \wedge m_{s} \wedge m_{s+1} \wedge \ldots \wedge m_{s+t}
$$

which does not require free-ness of M.
[5.0.1] Theorem: Let F be a free module of rank n over a commutative ring R with identity. Then $\bigwedge^{\ell} F$ is free of rank $\binom{n}{\ell}$. In particular, if m_{1}, \ldots, m_{n} form an R-basis for F, then the monomials

$$
m_{i_{1}} \wedge \ldots \wedge m_{i_{\ell}} \quad \text { with } i_{1}<\ldots<i_{\ell}
$$

are an R basis for $\bigwedge^{\ell} F$.
Proof: The elementary discussion just above shows that the monomials involving the basis and with strictly ascending indices generate $\bigwedge^{\ell} F$. The remaining issue is to prove linear independence.

First, we prove that $\bigwedge^{n} F$ is free of rank 1 . We know that it is generated by

$$
m_{1} \wedge \ldots \wedge m_{n}
$$

But for all we know it might be that

$$
r \cdot m_{1} \wedge \ldots \wedge m_{n}=0
$$

for some $r \neq 0$ in R. We must prove that this does not happen. To do so, we make a non-trivial alternating (multilinear) map

$$
\varphi: \underbrace{F \times \ldots \times F}_{n} \longrightarrow R
$$

To make this, let $\lambda_{1}, \ldots, \lambda_{n}$ be a dual basis ${ }^{[3]}$ for $\operatorname{Hom}_{R}(F, R)$, namely,

$$
\lambda_{i}\left(m_{j}\right)= \begin{cases}1 & i=j \\ 0 & (\mathrm{else})\end{cases}
$$

For arbitrary x_{1}, \ldots, x_{n} in F, let ${ }^{[4]}$

$$
\varphi\left(x_{1} \times \ldots \times x_{n}\right)=\sum_{\pi \in S_{n}} \sigma(\pi) \lambda_{1}\left(x_{\pi(1)}\right) \ldots \lambda_{n}\left(x_{\pi(n)}\right)
$$

where S_{n} is the group of permutations of n things. Suppose that for some $i \neq j$ we have $x_{i}=x_{j}$. Let i^{\prime} and j^{\prime} be indices such that $\pi\left(i^{\prime}\right)=i$ and $\pi\left(j^{\prime}\right)=j$. Let s still be the 2 -cycle that interchanges i and j. Then the n ! summands can be seen to cancel in pairs, by

$$
\begin{gathered}
\sigma(\pi) \lambda_{1}\left(x_{\pi(1)}\right) \ldots \lambda_{n}\left(x_{\pi(n)}\right)+\sigma(s \pi) \lambda_{1}\left(x_{s \pi(1)}\right) \ldots \lambda_{n}\left(x_{s \pi(n)}\right) \\
=\sigma(\pi)\left(\prod_{\ell \neq i^{\prime}, j^{\prime}} \lambda_{\ell}\left(x_{\pi(\ell)}\right)\right) \cdot\left(\lambda_{i}\left(x_{\pi\left(i^{\prime}\right)} \lambda_{i}\left(x_{\pi\left(j^{\prime}\right)}\right)-\lambda_{i}\left(x_{s \pi\left(i^{\prime}\right)}\right) \lambda_{i}\left(x_{s \pi\left(j^{\prime}\right)}\right)\right)\right.
\end{gathered}
$$

Since s just interchanges $i=\pi\left(i^{\prime}\right)$ and $j=\pi\left(j^{\prime}\right)$, the rightmost sum is 0 . This proves the alternating property of φ.
To see that φ is not trivial, note that when the arguments to φ are the basis elements m_{1}, \ldots, m_{n}, in the expression

$$
\varphi\left(m_{1} \times \ldots \times m_{n}\right)=\sum_{\pi \in S_{n}} \sigma(\pi) \lambda_{1}\left(m_{\pi(1)}\right) \ldots \lambda_{n}\left(m_{\pi(n)}\right)
$$

$\lambda_{i}\left(m_{\pi(i)}\right)=0$ unless $\pi(i)=i$. That is, the only non-zero summand is with $\pi=1$, and we have

$$
\varphi\left(m_{1} \times \ldots \times m_{n}\right)=\lambda_{1}\left(m_{1}\right) \ldots \lambda_{n}\left(m_{n}\right)=1 \in R
$$

Then φ induces a map $\Phi: \bigwedge^{n} F \longrightarrow R$ such that

$$
\Phi\left(m_{1} \wedge \ldots \wedge m_{n}\right)=1
$$

For $r \in R$ such that $r \cdot\left(m_{1} \wedge \ldots \wedge m_{n}\right)=0$, apply Φ to obtain

$$
0=\Phi(0)=\Phi\left(r \cdot m_{1} \wedge \ldots \wedge m_{n}\right)=r \cdot \Phi\left(m_{1} \wedge \ldots \wedge m_{n}\right)=r \cdot 1=r
$$

[3] These exist, since (by definition of free-ness of F) given a set of desired images $\varphi\left(m_{i}\right) \in R$ of the basis m_{i}, there is a unique map $\Phi: F \longrightarrow R$ such that $\Phi\left(m_{i}\right)=\varphi\left(m_{i}\right)$.
${ }^{[4]}$ This formula is suggested by the earlier discussion of determinants of matrices following Artin.

This proves that $\bigwedge^{n} F$ is free of rank 1 .
The case of $\bigwedge^{\ell} F$ with $\ell<n$ reduces to the case $\ell=n$, as follows. We already know that monomials $m_{i_{1}} \wedge \ldots \wedge m_{i_{\ell}}$ with $i_{1}<\ldots<i_{\ell}$ span $\bigwedge^{\ell} F$. Suppose that

$$
\sum_{i_{1}<\ldots<i_{\ell}} r_{i_{1} \ldots i_{\ell}} \cdot m_{i_{1}} \wedge \ldots \wedge m_{i_{\ell}}=0
$$

The trick is to consider, for a fixed ℓ-tuple $j_{1}<\ldots<j_{\ell}$ of indices, the R-linear map

$$
f: \bigwedge^{\ell} F \longrightarrow \bigwedge^{n} F
$$

given by

$$
f(x)=x \wedge\left(m_{1} \wedge m_{2} \wedge \ldots \wedge \widehat{m_{j_{1}}} \wedge \ldots \wedge \widehat{m_{j_{\ell}}} \wedge \ldots \wedge m_{n}\right)
$$

where

$$
\left.m_{1} \wedge m_{2} \wedge \ldots \wedge \widehat{m_{j_{1}}} \wedge \ldots \wedge \widehat{m_{j_{\ell}}} \wedge \ldots \wedge m_{n}\right)
$$

is the monomial with exactly the $m_{j_{t}} \mathrm{~s}$ missing. Granting that this map is well-defined,

$$
0=f(0)=f\left(\sum_{i_{1}<\ldots<i_{\ell}} r_{i_{1} \ldots i_{\ell}} \cdot m_{i_{1}} \wedge \ldots \wedge m_{i_{\ell}}\right)= \pm r_{j_{1} \ldots j_{\ell}} m_{1} \wedge \ldots \wedge m_{n}
$$

since all the other monomials have some repeated m_{t}, so are 0 . That is, any such relation must have all coefficients 0 . This proves the linear independence of the indicated monomials.
To be sure that these maps f are well-defined, ${ }^{[5]}$ we prove a more systematic result, which will finish the proof of the theorem.
[5.0.2] Proposition: Let M be an R-module. ${ }^{[6]}$ Let s, t be positive integers. The canonical alternating multilinear map

$$
\alpha: M \times \ldots \times M \longrightarrow \bigwedge^{s+t} M
$$

induces a natural bilinear map

$$
B:\left(\bigwedge^{s} M\right) \times\left(\bigwedge^{t} M\right) \longrightarrow \bigwedge^{s+t} M
$$

by

$$
\left(m_{1} \wedge \ldots \wedge m_{s}\right) \times\left(m_{s+1} \wedge \ldots \wedge m_{s+t}\right) \longrightarrow m_{1} \wedge \ldots \wedge m_{s} \wedge m_{s+1} \wedge \ldots \wedge m_{s+t}
$$

Proof: For fixed choice of the last t arguments, the map α on the first s factors is certainly alternating multilinear. Thus, from the defining property of $\bigwedge^{s} M, \alpha$ factors uniquely through the map

$$
\bigwedge^{s} M \times \underbrace{M \times \ldots \times M}_{t} \longrightarrow \bigwedge^{s+t} M
$$

defined (by linearity) by

$$
\left(m_{1} \wedge \ldots \wedge m_{s}\right) \times m_{s+1} \times \ldots \times m_{s+t}=m_{1} \wedge \ldots \wedge m_{s} \wedge m_{s+1} \wedge \ldots \wedge m_{s+t}
$$

[^2]${ }^{[6]}$ In particular, M need not be free, and need not be finitely-generated.

Indeed, by the defining property of the exterior power, for each fixed choice of last t arguments the map is linear on $\bigwedge^{s} M$. Further, for fixed choice of first arguments α on the last t arguments is alternating multilinear, so α factors through the expected map

$$
\left(\bigwedge^{s} M\right) \times\left(\bigwedge^{t} M\right) \longrightarrow \bigwedge^{s+t} M
$$

linear in the $\bigwedge^{t} M$ argument for each choice of the first. That is, this map is bilinear.

6. Determinants revisited

The fundamental idea is that for an endomorphism T of a free R-module M of rank (with R commutative with unit), $\operatorname{det} T \in R$ is determined as

$$
T m_{1} \wedge \ldots \wedge T m_{n}=(\operatorname{det} T) \cdot\left(m_{1} \wedge \ldots \wedge m_{n}\right)
$$

Since $\bigwedge^{n} M$ is free of rank 1 , all R-linear endomorphisms are given by scalars: indeed, for an endomorphism A of a rank-1 R-module with generator e,

$$
A(r e)=r \cdot A e=r \cdot(s \cdot e)
$$

for all $r \in$, for some $s \in R$, since $A e \in R \cdot e$.
This gives a scalar $\operatorname{det} T$, intrinsically defined, assuming that we verify that this does what we want.
And certainly this would give a pleasant proof of the multiplicativity of determinants, since

$$
\begin{gathered}
(\operatorname{det} S T) \cdot\left(m_{1} \wedge \ldots \wedge m_{n}\right)=(S T) m_{1} \wedge \ldots \wedge(S T) m_{n}=S\left(T m_{1}\right) \wedge \ldots \wedge S\left(T m_{n}\right) \\
=(\operatorname{det} S)\left(T m_{1} \wedge \ldots \wedge T m_{n}\right)=(\operatorname{det} S)(\operatorname{det} T)\left(m_{1} \wedge \ldots \wedge m_{n}\right)
\end{gathered}
$$

Note that we use the fact that

$$
(\operatorname{det} T) \cdot\left(m_{1} \wedge \ldots \wedge m_{n}\right)=T m_{1} \wedge \ldots \wedge T m_{n}
$$

for all n-tuples of elements m_{i} in F.
Let e_{1}, \ldots, e_{n} be the standard basis of k^{n}. Let v_{1}, \ldots, v_{n} be the columns of an n-by- n matrix. Let T be the endomorphism (of column vectors) given by (left multiplication by) that matrix. That is, $T e_{i}=v_{i}$. Then

$$
v_{1} \wedge \ldots \wedge v_{n}=T e_{1} \wedge \ldots \wedge T e_{n}=(\operatorname{det} T) \cdot\left(e_{1} \wedge \ldots \wedge e_{n}\right)
$$

The leftmost expression in the latter line is an alternating multilinear $\bigwedge^{n}\left(k^{n}\right)$-valued function. (Not k valued.) But since we know that $\bigwedge^{n}\left(k^{n}\right)$ is one-dimensional, and is spanned by $e_{1} \wedge \ldots \wedge e_{n}$, (once again) we know that there is a unique scalar $\operatorname{det} T$ such that the right-hand equality holds. That is, the map

$$
v_{1} \times \ldots \times v_{n} \longrightarrow \operatorname{det} T
$$

where T is the endomorphism given by the matrix with columns v_{i}, is an alternating k-valued map. And it is 1 for $v_{i}=e_{i}$.

This translation back to matrices verifies that our intrinsic determinant meets our earlier axiomatized requirements for a determinant.

Finally we note that the basic formula for determinants of matrices that followed from Artin's axiomatic characterization, at least in the case of entires in fields, is valid for matrices with entries in commutative rings (with units). That is, for an n-by- n matrix A with entries $A_{i j}$ in a commutative ring R with unit,

$$
\operatorname{det} A=\sum_{\pi \in S_{n}} \sigma(\pi) A_{\pi(1), 1} \ldots A_{\pi(n), n}
$$

where S_{n} is the symmetric group on n things and $\sigma(\pi)$ is the sign function on permutations. Indeed, let v_{1}, \ldots, v_{n} be the rows of A, let e_{1}, \ldots, e_{n} be the standard basis (row) vectors for R^{n}, and consider A as an endomorphism of R^{n}. As in the previous argument, $A \cdot e_{j}=e_{j} A=v_{j}$ (where A acts by right matrix multiplication). And $v_{i}=\sum_{j} A_{i j} e_{j}$. Then

$$
\begin{gathered}
(\operatorname{det} A) e_{1} \wedge \ldots \wedge e_{n}=\left(A \cdot e_{1}\right) \wedge \ldots \wedge\left(A \cdot e_{n}\right)=v_{1} \wedge \ldots \wedge v_{n}=\sum_{i_{1}, \ldots, i_{n}}\left(A_{1 i_{1}} e_{i_{1}}\right) \wedge \ldots \wedge\left(A_{n i_{n}} e_{i_{n}}\right) \\
=\sum_{\pi \in S_{n}}\left(A_{1 \pi(1)} e_{\pi(1)}\right) \wedge \ldots \wedge\left(A_{n \pi(n)} e_{\pi(n)}\right)=\sum_{\pi \in S_{n}}\left(A_{1 \pi(1)} \ldots A_{n \pi(n)}\right) e_{\pi(1)} \wedge \ldots \wedge e_{\pi(n)} \\
=\sum_{\pi \in S_{n}}\left(A_{\pi^{-1}(1), 1} \ldots A_{\pi^{-1}(n)}, n\right) \sigma(\pi) e_{1} \wedge \ldots \wedge e_{n}
\end{gathered}
$$

by reordering the $e_{i} \mathrm{~s}$, using the alternating multilinear nature of $\bigwedge^{n}\left(R^{n}\right)$. Of course $\sigma(\pi)=\sigma\left(\pi^{-1}\right)$. Replacing π by π^{-1} (thus replacing π^{-1} by π) gives the desired

$$
(\operatorname{det} A) e_{1} \wedge \ldots \wedge e_{n}=\sum_{\pi \in S_{n}}\left(A_{\pi(1), 1} \ldots A_{\pi(n)}, n\right) \sigma(\pi) e_{1} \wedge \ldots \wedge e_{n}
$$

Since $e_{1} \wedge \ldots \wedge e_{n}$ is an R-basis for the free rank-one R-module $\bigwedge^{n}\left(R^{n}\right)$, this proves that $\operatorname{det} A$ is given by the asserted formula.
[6.0.1] Remark: Indeed, the point that $e_{1} \wedge \ldots \wedge e_{n}$ is an R-basis for the free rank-one R-module $\bigwedge^{n}\left(R^{n}\right)$, as opposed to being 0 or being annihilated by some non-zero elements of R, is exactly what is needed to make the earlier seemingly field-oriented arguments work more generally.

7. Minors of matrices

At first, one might be surprised at the following phenomenon.
Let

$$
M=\left(\begin{array}{lll}
a & b & c \\
x & y & z
\end{array}\right)
$$

with entries in some commutative ring R with unit. Viewing each of the two rows as a vector in R^{3}, inside $\bigwedge^{2} R^{3}$ we compute (letting e_{1}, e_{2}, e_{3} be the standard basis)

$$
\begin{aligned}
& \left(a e_{1}+b e_{2}+c e_{3}\right) \wedge\left(x e_{1}+y e_{2}+z e_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left\{\begin{array}{ccccc}
0 & + & a^{2} e_{1} \wedge e_{2} & + & a z e_{1} \wedge e_{3} \\
-b x e_{1} \wedge e_{2} & + & 0 & + & b z e_{2} \wedge e_{3} \\
-c x e_{1} \wedge e_{3} & + & -c y e_{2} \wedge e_{3} & + & 0
\end{array}\right. \\
& =(a y-b x) e_{1} \wedge e_{2}+(a z-c x) e_{1} \wedge e_{3}+(b z-c y) e_{2} \wedge e_{3} \\
& =\left|\begin{array}{ll}
a & b \\
x & y
\end{array}\right| e_{1} \wedge e_{2}+\left|\begin{array}{ll}
a & c \\
x & z
\end{array}\right| e_{1} \wedge e_{3}+\left|\begin{array}{ll}
b & c \\
y & z
\end{array}\right| e_{2} \wedge e_{3}
\end{aligned}
$$

where, to fit it on a line, we have written

$$
\left|\begin{array}{ll}
a & b \\
x & y
\end{array}\right|=\operatorname{det}\left(\begin{array}{ll}
a & b \\
x & y
\end{array}\right)
$$

That is, the coefficients in the second exterior power are the determinants of the two-by-two minors.
At some point it becomes unsurprising to have
[7.0.1] Proposition: Let M be an m-by- n matrix with $m<n$, entries in a commutative ring R with identity. Viewing the rows M_{1}, \ldots, M_{m} of M as elements of R^{n}, and letting e_{1}, \ldots, e_{n} be the standard basis of R^{n}, in $\Lambda^{m} R^{n}$

$$
M_{1} \wedge \ldots \wedge M_{n}=\sum_{i_{1}<\ldots<i_{m}} \operatorname{det}\left(M^{i_{1} \ldots i_{m}}\right) \cdot e_{i_{1}} \wedge \ldots \wedge e_{i_{m}}
$$

where $M^{i_{1} \ldots i_{m}}$ is the m-by- m matrix consisting of the $i_{1}^{\text {th }}, i_{2}^{\text {th }}, \ldots, i_{m}^{\text {th }}$ columns of M.
Proof: Write

$$
M_{i}=\sum_{j} r_{i j} e_{j}
$$

Then

$$
\begin{gathered}
M_{1} \wedge \ldots \wedge M_{m}=\sum_{i_{1}, \ldots, i_{m}}\left(M_{1 i_{1}} e_{i_{1}}\right) \wedge\left(M_{2 i_{2}} e_{i_{2}}\right) \wedge \ldots \wedge\left(M_{m i_{m}} e_{i_{n}}\right) \\
=\sum_{i_{1}, \ldots, i_{m}} M_{1 i_{1}} \ldots M_{m i_{m}} e_{i_{1}} \wedge e_{i_{2}} \wedge \ldots \wedge e_{i_{m}} \\
=\sum_{i_{1}<\ldots<i_{m}} \sum_{\pi \in S_{m}} \sigma(\pi) M_{1, i_{\pi(1)}} \ldots M_{m, i_{\pi(i)}} e_{i_{1}} \wedge \ldots \wedge e_{i_{m}} \\
=\sum_{i_{1}<\ldots<i_{m}} \operatorname{det} M^{i_{1} \ldots i_{m}} e_{i_{1}} \wedge \ldots \wedge e_{i_{m}}
\end{gathered}
$$

where we reorder the $e_{i_{j}} s$ via π in the permutations group S_{m} of $\{1,2, \ldots, m\}$ and $\sigma(\pi)$ is the sign function on permutation. This uses the general formula for the determinant of an n-by- n matrix, from above.
//I

8. Uniqueness in the structure theorem

Exterior powers give a decisive trick to give an elegant proof of the uniqueness part of the structure theorem for finitely-generated modules over principal ideal domains. This will be the immediate application of
[8.0.1] Proposition: Let R be a commutative ring with identity. Let M be a free R-module with R-basis m_{1}, \ldots, m_{n}. Let d_{1}, \ldots, d_{n} be elements of R, and let

$$
N=R \cdot d_{1} m_{1} \oplus \ldots \oplus R \cdot d_{n} m_{n} \subset M
$$

Then, for any $1<\ell \in \mathbb{Z}$, we have

$$
\Lambda^{\ell} N=\bigoplus_{j_{1}<\ldots<j_{\ell}} R \cdot\left(d_{j_{1}} \ldots d_{j_{\ell}}\right) \cdot\left(m_{j_{1}} \wedge \ldots \wedge m_{j_{\ell}}\right) \subset \bigwedge^{\ell} M
$$

[8.0.2] Remark: We do not need to assume that R is a PID, nor that $d_{1}|\ldots| d_{n}$, in this proposition.
Proof: Without loss of generality, by re-indexing, suppose that d_{1}, \ldots, d_{t} are non-zero and $d_{t+1}=d_{t+2}=$ $\ldots=d_{n}=0$. We have already shown that the ordered monomials $m_{j_{1}} \wedge \ldots \wedge m_{j_{\ell}}$ are a basis for the free
R-module $\bigwedge^{\ell} M$, whether or not R is a PID. Similarly, the basis $d_{1} m_{1}, \ldots, d_{t} m_{t}$ for N yields a basis of the ℓ-fold monomials for $\Lambda^{\ell} N$, namely

$$
d_{j_{1}} m_{j_{1}} \wedge \ldots \wedge d_{j_{\ell}} m_{j_{\ell}} \quad \text { with } \quad j_{1}<\ldots<j_{\ell} \leq t
$$

By the multilinearity,

$$
d_{j_{1}} m_{j_{1}} \wedge \ldots \wedge d_{j_{\ell}} m_{j_{\ell}}=\left(d_{j_{1}} d_{j_{2}} \ldots d_{j_{\ell}}\right) \cdot\left(m_{j_{1}} \wedge \ldots \wedge m_{j_{\ell}}\right)
$$

This is all that is asserted.
At last, we prove the uniqueness of elementary divisors.
[8.0.3] Corollary: Let R be a principal ideal domain. Let M be a finitely-generated free R-module, and N a submodule of M. Then there is a basis m_{1}, \ldots, m_{n} of M and elementary divisors $d_{1}|\ldots| d_{n}$ in R such that

$$
N=R d_{1} m_{1} \oplus \ldots \oplus R d_{n} m_{n}
$$

The ideals $R d_{i}$ are uniquely determined by M, N.
Proof: The existence was proven much earlier. Note that the highest elementary divisor d_{n}, or, really, the ideal $R d_{n}$, is determined intrinsically by the property

$$
R d_{n}=\{r \in R: r \cdot(M / N)=0\}
$$

since d_{n} is a least common multiple of all the d_{i} s. That is, $R d_{n}$ is the annihilator of M / N.
Suppose that t is the last index so that $d_{t} \neq 0$, so d_{1}, \ldots, d_{t} are non-zero and $d_{t+1}=d_{t+2}=\ldots=d_{n}=0$. Using the proposition, the annihilator of $\bigwedge^{2} M / \bigwedge^{2} N$ is $R \cdot d_{t-1} d_{t}$, since d_{t-1} and d_{t} are the two largest non-zero elementary divisors. Since $R d_{t}$ is uniquely determined, $R d_{t-1}$ is uniquely determined.

Similarly, the annihilator of $\bigwedge^{i} M / \bigwedge^{i} N$ is $R d_{t-i+1} \ldots d_{t-1} d_{t}$, which is uniquely determined. By induction, $d_{t}, d_{t-1}, \ldots, d_{t-i+2}$ are uniquely determined. Thus, d_{t-i+1} is uniquely determined.

9. Cartan's lemma

To further illustrate computations in exterior algebra, we prove a result that arises in differential geometry, often accidentally disguised as something more than the simple exterior algebra it is.
[9.0.1] Proposition: (Cartan) Let V be a vector space over a field k. Let v_{1}, \ldots, v_{n} be linearly independent vectors in V. Let w_{1}, \ldots, w_{n} be any vectors in V. Then

$$
v_{1} \wedge w_{1}+\ldots+v_{n} \wedge w_{n}=0
$$

if and only if there is a symmetric matrix with entries $A_{i j} \in k$ such that

$$
w_{i}=\sum_{i} A_{i j} v_{j}
$$

Proof: First, prove that if the identity holds, then the w_{j} 's lie in the span of the v_{i} 's. Suppose not. Then, by renumbering for convenience, we can suppose that $w_{1}, v_{1}, \ldots, v_{n}$ are linearly independent. Let $\eta=v_{2} \wedge \ldots \wedge v_{n}$. Then

$$
\left(v_{1} \wedge w_{1}+\ldots+v_{n} \wedge w_{n}\right) \wedge \eta=0 \wedge \eta=0 \in \bigwedge^{n+1} V
$$

On the other hand, the exterior products of η with all summands but the first are 0 , since some v_{i} with $i \geq 2$ is repeated. Thus,

$$
\left(v_{1} \wedge w_{1}+\ldots+v_{n} \wedge w_{n}\right) \wedge \eta=v_{1} \wedge w_{1} \wedge \eta=v_{1} \wedge w_{1} \wedge v_{2} \wedge \ldots \wedge v_{n} \neq 0
$$

This contradiction proves that the w_{j} 's do all lie in the span of the v_{i} 's if the identity is satisfied. Let $A_{i j}$ be elements of k expressing the w_{j} 's as linear combinations

$$
w_{i}=\sum_{i} A_{i j} v_{j}
$$

We need to prove that $A_{i j}=A_{j i}$.
Let

$$
\omega=v_{1} \wedge \ldots \wedge v_{n} \in \bigwedge^{n} V
$$

By our general discussion of exterior powers, by the linear independence of the v_{i} this is non-zero. For $1 \leq i \leq n$, let

$$
\omega_{i}=v_{1} \wedge \ldots \wedge \widehat{v_{i}} \wedge \ldots \wedge v_{n} \in \bigwedge^{n-1} V
$$

where the hat indicates omission. In any linear combination $v=\sum_{j} c_{j} v_{j}$ we can pick out the $i^{t h}$ coefficient by exterior product with ω_{i}, namely

$$
v \wedge \omega_{i}=\left(\sum_{j} c_{j} v_{j}\right) \wedge \omega_{i}=\sum_{j} c_{j} v_{j} \wedge \omega_{i}=c_{i} v_{i} \wedge \omega_{i}=(-1)^{i-1} c_{i} \omega
$$

For $i<j$, let

$$
\omega_{i j}=v_{1} \wedge \ldots \wedge \widehat{v_{i}} \wedge \ldots \wedge \widehat{v_{j}} \wedge \ldots \wedge v_{n} \in \wedge^{n-2} V
$$

Then, using the hypothesis of the lemma,

$$
\begin{gathered}
0 \wedge \omega_{i j}=\left(v_{1} \wedge w_{1}+\ldots+v_{n} \wedge w_{n}\right) \wedge \omega_{i j}=v_{1} \wedge w_{1} \wedge \omega_{i j}+\ldots+v_{n} \wedge w_{n} \wedge \omega_{i j} \\
=v_{i} \wedge w_{i} \wedge \omega_{i j}+v_{j} \wedge w_{j} \wedge \omega_{i j}
\end{gathered}
$$

since all the other monomials vanish, having repeated factors. Thus, moving things around slightly,

$$
w_{i} \wedge v_{i} \wedge \omega_{i j}=-w_{j} \wedge v_{j} \wedge \omega_{i j}
$$

By moving the v_{i} and v_{j} across, flipping signs as we go, with $i<j$, we have

$$
v_{i} \wedge \omega_{i j}=(-1)^{i-1} \omega_{j} \quad v_{j} \wedge \omega_{i j}=(-1)^{j-2} \omega_{i}
$$

Expanding the equality $w_{i} \wedge v_{i} \wedge \omega_{i j}=-w_{j} \wedge v_{j} \wedge \omega_{i j}$, the left-hand side is

$$
w_{i} \wedge v_{i} \wedge \omega_{i j}=(-1)^{i-1} w_{i} \wedge \omega_{i}=(-1)^{i-1} \sum_{k} A_{i k} v_{k} \wedge \omega_{j}=(-1)^{i-1} A_{i j} v_{i} \wedge \omega_{j}=(-1)^{i-1}(-1)^{j-1} A_{i j} \omega
$$

while, similarly, the right-hand side is

$$
-w_{j} \wedge v_{j} \wedge \omega_{i j}=(-1)(-1)^{j-2}(-1)^{i-1} A_{j i} \omega
$$

Equating the transformed versions of left and right sides,

$$
A_{i j}=A_{j i}
$$

Reversing this argument gives the converse. Specifically, suppose that $w_{i}=\sum_{j} A_{i j} v_{j}$ with $A_{i j}=A_{j i}$. Let W be the span of v_{1}, \ldots, v_{n} inside W. Then running the previous computation backward directly yields

$$
\left(v_{1} \wedge w_{1}+\ldots+v_{n} \wedge w_{n}\right) \wedge \omega_{i j}=0
$$

for all $i<j$. The monomials $\omega_{i j}$ span $\bigwedge^{n-2} W$ and we have shown the non-degeneracy of the pairing

$$
\bigwedge^{n-2} W \times \bigwedge^{2} W \longrightarrow \bigwedge^{n} W \quad \text { by } \quad \alpha \times \beta \longrightarrow \alpha \wedge \beta
$$

Thus,

$$
v_{1} \wedge w_{1}+\ldots+v_{n} \wedge w_{n}=0 \in \bigwedge^{2} W \subset \bigwedge^{2} V
$$

as claimed.

10. Cayley-Hamilton Theorem

[10.0.1] Theorem: (Cayley-Hamilton) Let T be a k-linear endomorphism of a finite-dimensional vector space V over a field k. Let $P_{T}(x)$ be the characteristic polynomial

$$
P_{T}(x)=\operatorname{det}\left(x \cdot 1_{V}-T\right)
$$

Then

$$
P_{T}(T)=0 \in \operatorname{End}_{k}(V)
$$

[10.0.2] Remarks: Cayley and Hamilton proved the cases with $n=2,3$ by direct computation. The theorem can be made a corollary of the structure theorem for finitely-generated modules over principal ideal domains, if certain issues are glossed over. For example, how should an indeterminate x act on a vectorspace? It would be premature to say that $x \cdot 1_{V}$ acts as T on V, even though at the end this is exactly what is supposed to happen, because, if $x=T$ at the outset, then $P_{T}(x)$ is simply 0 , and the theorem asserts nothing. Various misconceptions can be turned into false proofs. For example, it is not correct to argue that

$$
P_{T}(T)=\operatorname{det}(T-T)=\operatorname{det} 0=0 \quad \text { (incorrect) }
$$

However, the argument given just below is a correct version of this idea. Indeed, in light of these remarks, we must clarify what it means to substitute T for x. Incidental to the argument, intrinsic versions of determinant and adjugate (or cofactor) endomorphism are described, in terms of multi-linear algebra.

Proof: The module $V \otimes_{k} k[x]$ is free of $\operatorname{rank} \operatorname{dim}_{k} V$ over $k[x]$, and is the object associated to V on which the indeterminate x reasonably acts. Also, V is a $k[T]$-module by the action $v \longrightarrow T v$, so $V \otimes_{k} k[x]$ is a $k[T] \otimes_{k} k[x]$-module. The characteristic polynomial $P_{T}(x) \in k[x]$ of $T \in \operatorname{End}_{k}(V)$ is the determinant of $1 \otimes x-T \otimes 1$, defined intrinsically by

$$
\bigwedge_{k[x]}^{n}(T \otimes 1-1 \otimes x)=P_{T}(x) \cdot 1 \quad\left(\text { where } n=\operatorname{dim}_{k} V=\operatorname{rk}_{k[x]} V \otimes_{k} k[x]\right)
$$

where the first 1 is the identity in $k[x]$, the second 1 is the identity map on V, and the last 1 is the identity map on $\bigwedge_{k[x]}^{n}\left(V \otimes_{k} k[x]\right)$.

To substitute T for x is a special case of the following procedure. Let R be a commutative ring with 1 , and M an R-module with $1 \cdot m=m$ for all $m \in M$. For an ideal I of R, the quotient $M / I \cdot M$ is the natural associated R / I-module, and every R-endomorphism α of M such that

$$
\alpha(I \cdot M) \subset I \cdot M
$$

descends to an R / I-endomorphism of $M / I \cdot M$. In the present situation,

$$
R=k[T] \otimes_{k} k[x] \quad M=V \otimes_{k} k[x]
$$

and I is the ideal generated by $1 \otimes x-T \otimes 1$. Indeed, $1 \otimes x$ is the image of x in this ring, and $T \otimes 1$ is the image of T. Thus, $1 \otimes x-T \otimes 1$ should map to 0 .

To prove that $P_{T}(T)=0$, we will factor $P_{T}(x) \cdot 1$ so that after substituting T for x the resulting endomorphism $P_{T}(T) \cdot 1$ has a literal factor of $T-T=0$. To this end, consider the natural $k[x]$-bilinear map

$$
\langle,\rangle: \bigwedge_{k[x]}^{n-1} V \otimes_{k} k[x] \times V \otimes_{k} k[x] \longrightarrow \bigwedge_{k[x]}^{n} V \otimes_{k} k[x]
$$

of free $k[x]$-modules, identifying $V \otimes_{k} k[x]$ with its first exterior power. Letting $A=1 \otimes x-T \otimes 1$, for all m_{1}, \ldots, m_{n} in $V \otimes_{k} k[x]$,

$$
\left\langle\bigwedge^{n-1} A\left(m_{1} \wedge \ldots \wedge m_{n-1}\right), A m_{n}\right\rangle=P_{T}(x) \cdot m_{1} \wedge \ldots \wedge m_{n}
$$

By definition, the adjugate or cofactor endomorphism $A^{\text {adg }}$ of A is the adjoint of $\bigwedge^{n-1} A$ with respect to this pairing. Thus,

$$
\left\langle m_{1} \wedge \ldots \wedge m_{n-1},\left(A^{\operatorname{adg}} \circ A\right) m_{n}\right\rangle=P_{T}(x) \cdot m_{1} \wedge \ldots \wedge m_{n}
$$

and, therefore,

$$
A^{\text {adg }} \circ A=P_{T}(x) \cdot 1 \quad\left(\text { on } V \otimes_{k} k[x]\right)
$$

Since \langle,$\rangle is k[x]$-bilinear, $A^{\text {adg }}$ is a $k[x]$-endomorphism of $V \otimes_{k} k[x]$. To verify that $A^{\text {adg }}$ commutes with $T \otimes 1$, it suffices to verify that $A^{\text {adg }}$ commutes with A. To this end, further extend scalars on all the free $k[x]$-modules $\bigwedge_{k[x]}^{\ell} V \otimes_{k} k[x]$ by tensoring with the field of fractions $k(x)$ of $k[x]$. Then

$$
A^{\text {adg }} \cdot A=P_{T}(x) \cdot 1 \quad \text { (now on } V \otimes_{k} k(x) \text {) }
$$

Since $P_{T}(x)$ is monic, it is non-zero, hence, invertible in $k(x)$. Thus, A is invertible on $V \otimes_{k} k(x)$, and

$$
A^{\text {adg }}=P_{T}(x) \cdot A^{-1} \quad\left(\text { on } V \otimes_{k} k(x)\right)
$$

In particular, the corresponding version of $A^{\text {adg }}$ commutes with A on $V \otimes_{k} k(x)$, and, thus, $A^{\text {adg }}$ commutes with A on $V \otimes_{k} k[x]$.

Thus, $A^{\text {adg }}$ descends to an R / I-linear endomorphism of $M / I \cdot M$, where

$$
R=k[T] \otimes_{k} k[x] \quad M=V \otimes_{k} k[x] \quad I=R \cdot A \quad \text { (with } A=1 \otimes x-T \otimes 1 \text {) }
$$

That is, on the quotient $M / I \cdot M$,

$$
(\text { image of }) A^{\text {adg }} \cdot(\text { image of })(1 \otimes x-T \otimes 1)=P_{T}(T) \cdot 1_{M / I M}
$$

The image of $1 \otimes x-T \otimes 1$ here is 0 , so

$$
\text { (image of) } A^{\text {adg }} \cdot 0=P_{T}(T) \cdot 1_{M / I M}
$$

This implies that

$$
P_{T}(T)=0 \quad(\text { on } M / I M)
$$

Note that the composition

$$
V \longrightarrow V \otimes_{k} k[x]=M \longrightarrow M / I M
$$

is an isomorphism of $k[T]$-modules, and, a fortiori, of k-vectorspaces.
[10.0.3] Remark: This should not be the first discussion of this result seen by a novice. However, all the issues addressed are genuine!

11. Worked examples

[28.1] Consider the injection $\mathbb{Z} / 2 \xrightarrow{t} \mathbb{Z} / 4$ which maps

$$
t: x+2 \mathbb{Z} \longrightarrow 2 x+4 \mathbb{Z}
$$

Show that the induced map

$$
t \otimes 1_{\mathbb{Z} / 2}: \mathbb{Z} / 2 \otimes_{\mathbb{Z}} \mathbb{Z} / 2 \longrightarrow \mathbb{Z} / 4 \otimes_{\mathbb{Z}} \mathbb{Z} / 2
$$

is no longer an injection.
We claim that $t \otimes 1$ is the 0 map. Indeed,

$$
(t \otimes 1)(m \otimes n)=2 m \otimes n=2 \cdot(m \otimes n)=m \otimes 2 n=m \otimes 0=0
$$

for all $m \in \mathbb{Z} / 2$ and $n \in \mathbb{Z} / 2$.
[28.2] Prove that if $s: M \longrightarrow N$ is a surjection of \mathbb{Z}-modules and X is any other \mathbb{Z} module, then the induced map

$$
s \otimes 1_{Z}: M \otimes_{\mathbb{Z}} X \longrightarrow N \otimes_{\mathbb{Z}} X
$$

is still surjective.
Given $\sum_{i} n_{i} \otimes x_{i}$ in $N \otimes_{\mathbb{Z}} X$, let $m_{i} \in M$ be such that $s\left(m_{i}\right)=n_{i}$. Then

$$
(s \otimes 1)\left(\sum_{i} m_{i} \otimes x_{i}\right)=\sum_{i} s\left(m_{i}\right) \otimes x_{i}=\sum_{i} n_{i} \otimes x_{i}
$$

so the map is surjective.
[11.0.1] Remark: Note that the only issue here is hidden in the verification that the induced map $s \otimes 1$ exists.
[28.3] Give an example of a surjection $f: M \longrightarrow N$ of \mathbb{Z}-modules, and another \mathbb{Z}-module X, such that the induced map

$$
f \circ-: \operatorname{Hom}_{\mathbb{Z}}(X, M) \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(X, N)
$$

(by post-composing) fails to be surjective.
Let $M=\mathbb{Z}$ and $N=\mathbb{Z} / n$ with $n>0$. Let $X=\mathbb{Z} / n$. Then

$$
\operatorname{Hom}_{\mathbb{Z}}(X, M)=\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / n, \mathbb{Z})=0
$$

since

$$
0=\varphi(0)=\varphi(n x)=n \cdot \varphi(x) \in \mathbb{Z}
$$

so (since n is not a 0 -divisor in \mathbb{Z}) $\varphi(x)=0$ for all $x \in \mathbb{Z} / n$. On the other hand,

$$
\operatorname{Hom}_{\mathbb{Z}}(X, N)=\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / n, \mathbb{Z} / n) \approx \mathbb{Z} / n \neq 0
$$

Thus, the map cannot possibly be surjective.
[28.4] Let $G:\{\mathbb{Z}$ - modules $\} \longrightarrow\{$ sets $\}$ be the functor that forgets that a module is a module, and just retains the underlying set. Let $F:\{$ sets $\} \longrightarrow\{\mathbb{Z}$ - modules $\}$ be the functor which creates the free module $F S$ on the set S (and keeps in mind a map $i: S \longrightarrow F S$). Show that for any set S and any \mathbb{Z}-module M

$$
\operatorname{Hom}_{\mathbb{Z}}(F S, M) \approx \operatorname{Hom}_{\text {sets }}(S, G M)
$$

Prove that the isomorphism you describe is natural in S. (It is also natural in M, but don't prove this.)
Our definition of free module says that $F S=X$ is free on a (set) map $i: S \longrightarrow X$ if for every set map $\varphi: S \longrightarrow M$ with R-module M gives a unique R-module map $\Phi: X \longrightarrow M$ such that the diagram

commutes. Of course, given Φ, we obtain $\varphi=\Phi \circ i$ by composition (in effect, restriction). We claim that the required isomorphism is

$$
\operatorname{Hom}_{\mathbb{Z}}(F S, M) \stackrel{\Phi \longleftrightarrow \varphi}{\longleftrightarrow} \operatorname{Hom}_{\text {sets }}(S, G M)
$$

Even prior to naturality, we must prove that this is a bijection. Note that the set of maps of a set into an R-module has a natural structure of R-module, by

$$
(r \cdot \varphi)(s)=r \cdot \varphi(s)
$$

The map in the direction $\varphi \longrightarrow \Phi$ is an injection, because two maps φ, ψ mapping $S \longrightarrow M$ that induce the same map Φ on X give $\varphi=\Phi \circ i=\psi$, so $\varphi=\psi$. And the map $\varphi \longrightarrow \Phi$ is surjective because a given Φ is induced from $\varphi=\Phi \circ i$.

For naturality, for fixed S and M let the $\operatorname{map} \varphi \longrightarrow \Phi$ be named $j_{S, M}$. That is, the isomorphism is

$$
\operatorname{Hom}_{\mathbb{Z}}(F S, M) \stackrel{j_{s, X}}{\leftarrow} \operatorname{Hom}_{\text {sets }}(S, G M)
$$

To show naturality in S, let $f: S \longrightarrow S^{\prime}$ be a set map. Let $i^{\prime}: S^{\prime} \longrightarrow X^{\prime}$ be a free module on S^{\prime}. That is, $X^{\prime}=F S^{\prime}$. We must show that

commutes, where $-\circ f$ is pre-composition by f, and $-\circ F f$ is pre-composition by the induced map $F f: F S \longrightarrow F S^{\prime}$ on the free modules $X=F S$ and $X^{\prime}=F S^{\prime}$. Let $\varphi \in \operatorname{Hom}_{\text {set }}\left(S^{\prime}, G M\right)$, and $x=\sum_{s} r_{s} \cdot i(s) \in X=F S$, Go up, then left, in the diagram, computing,

$$
\left(j_{S, M} \circ(-\circ f)\right)(\varphi)(x)=j_{S, M}(\varphi \circ f)(x)=j_{S, M}(\varphi \circ f)\left(\sum_{s} r_{s} i(s)\right)=\sum_{s} r_{s}(\varphi \circ f)(s)
$$

On the other hand, going left, then up, gives

$$
\left((-\circ F f) \circ j_{S^{\prime}, M}\right)(\varphi)(x)=\left(j_{S^{\prime}, M}(\varphi) \circ F f\right)(x)=\left(j_{S^{\prime}, M}(\varphi)\right) F f(x)
$$

$$
=\left(j_{S^{\prime}, M}(\varphi)\right)\left(\sum_{s} r_{s} i^{\prime}(f s)\right)=\sum_{s} r_{s} \varphi(f s)
$$

These are the same.
[28.5] Let $M=\left(\begin{array}{lll}m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33}\end{array}\right)$ be a 2-by-3 integer matrix, such that the $g c d$ of the three 2-by-2 minors is 1 . Prove that there exist three integers m_{11}, m_{12}, m_{33} such that

$$
\operatorname{det}\left(\begin{array}{lll}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33}
\end{array}\right)=1
$$

This is the easiest of this and the following two examples. Namely, let M_{i} be the 2-by-2 matrix obtained by omitting the $i^{\text {th }}$ column of the given matrix. Let a, b, c be integers such that

$$
a \operatorname{det} M_{1}-b \operatorname{det} M_{2}+c \operatorname{det} M_{3}=\operatorname{gcd}\left(\operatorname{det} M_{1}, \operatorname{det} M_{2}, \operatorname{det} M_{3}\right)=1
$$

Then, expanding by minors,

$$
\operatorname{det}\left(\begin{array}{ccc}
a & b & c \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33}
\end{array}\right)=a \operatorname{det} M_{1}-b \operatorname{det} M_{2}+c \operatorname{det} M_{3}=1
$$

as desired.
[28.6] Let a, b, c be integers whose $g c d$ is 1 . Prove (without manipulating matrices) that there is a 3 -by- 3 integer matrix with top row ($a b c$) with determinant 1.

Let $F=\mathbb{Z}^{3}$, and $E=\mathbb{Z} \cdot(a, b, c)$. We claim that, since $\operatorname{gcd}(a, b, c)=1, F / E$ is torsion-free. Indeed, for $(x, y, z) \in F=\mathbb{Z}^{3}, r \in \mathbb{Z}$, and $r \cdot(x, y, z) \in E$, there must be an integer t such that $t a=r x, t b=r y$, and $t c=r z$. Let u, v, w be integers such that

$$
u a+v b+w z=\operatorname{gcd}(a, b, c)=1
$$

Then the usual stunt gives

$$
t=t \cdot 1=t \cdot(u a+v b+w z)=u(t a)+v(t b)+w(t c)=u(r x)+v(r y)+w(r z)=r \cdot(u x+v y+w z)
$$

This implies that $r \mid t$. Thus, dividing through by $r,(x, y, z) \in \mathbb{Z} \cdot(a, b, c)$, as claimed.
Invoking the Structure Theorem for finitely-generated \mathbb{Z}-modules, there is a basis f_{1}, f_{2}, f_{3} for F and $0<d_{1} \in \mathbb{Z}$ such that $E=\mathbb{Z} \cdot d_{1} f_{1}$. Since F / E is torsionless, $d_{1}=1$, and $E=\mathbb{Z} \cdot f_{1}$. Further, since both (a, b, c) and f_{1} generate E, and $\mathbb{Z}^{\times}=\{ \pm 1\}$, without loss of generality we can suppose that $f_{1}=(a, b, c)$.

Let A be an endomorphism of $F=\mathbb{Z}^{3}$ such that $A f_{i}=e_{i}$. Then, writing A for the matrix giving the endomorphism A,

$$
(a, b, c) \cdot A=(1,0,0)
$$

Since A has an inverse B,

$$
1=\operatorname{det} 1_{3}=\operatorname{det}(A B)=\operatorname{det} A \cdot \operatorname{det} B
$$

so the determinants of A and B are in $\mathbb{Z}^{\times}=\{ \pm 1\}$. We can adjust A by right-multiplying by

$$
\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

to make $\operatorname{det} A=+1$, and retaining the property $f_{1} \cdot A=e_{1}$. Then

$$
A^{-1}=1_{3} \cdot A^{-1}=\left(\begin{array}{c}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right) \cdot A^{-1}=\left(\begin{array}{ccc}
a & b & c \\
* & * & * \\
* & * & *
\end{array}\right)
$$

That is, the original (a, b, c) is the top row of A^{-1}, which has integer entries and determinant 1.
[28.7] Let

$$
M=\left(\begin{array}{lllll}
m_{11} & m_{12} & m_{13} & m_{14} & m_{15} \\
m_{21} & m_{22} & m_{23} & m_{24} & m_{25} \\
m_{31} & m_{32} & m_{33} & m_{34} & m_{35}
\end{array}\right)
$$

and suppose that the $g c d$ of all determinants of 3 -by- 3 minors is 1 . Prove that there exists a 5 -by- 5 integer matrix \tilde{M} with M as its top 3 rows, such that $\operatorname{det} \tilde{M}=1$.
Let $F=\mathbb{Z}^{5}$, and let E be the submodule generated by the rows of the matrix. Since \mathbb{Z} is a PID and F is free, E is free.

Let e_{1}, \ldots, e_{5} be the standard basis for \mathbb{Z}^{5}. We have shown that the monomials $e_{i_{1}} \wedge e_{i_{2}} \wedge e_{i_{3}}$ with $i_{1}<i_{2}<i_{3}$ are a basis for $\bigwedge^{3} F$. Since the $g c d$ of the determinants of 3 -by- 3 minors is 1 , some determinant of 3 -by- 3 minor is non-zero, so the rows of M are linearly independent over \mathbb{Q}, so E has rank 3 (rather than something less). The structure theorem tells us that there is a \mathbb{Z}-basis f_{1}, \ldots, f_{5} for F and divisors $d_{1}\left|d_{2}\right| d_{3}$ (all non-zero since E is of rank 3) such that

$$
E=\mathbb{Z} \cdot d_{1} f_{1} \oplus \mathbb{Z} \cdot d_{2} f_{2} \oplus \mathbb{Z} \cdot d_{3} f_{3}
$$

Let $i: E \longrightarrow F$ be the inclusion. Consider $\bigwedge^{3}: \bigwedge^{3} E \longrightarrow \bigwedge^{3} F$. We know that $\bigwedge^{3} E$ has \mathbb{Z}-basis

$$
d_{1} f_{1} \wedge d_{2} f_{2} \wedge d_{3} f_{3}=\left(d_{1} d_{2} d_{3}\right) \cdot\left(f_{1} \wedge f_{2} \wedge f_{3}\right)
$$

On the other hand, we claim that the coefficients of $\left(d_{1} d_{2} d_{3}\right) \cdot\left(f_{1} \wedge f_{2} \wedge f_{3}\right)$ in terms of the basis $e_{i_{1}} \wedge e_{i_{2}} \wedge e_{i_{3}}$ for $\bigwedge^{3} F$ are exactly (perhaps with a change of sign) the determinants of the 3-by-3 minors of M. Indeed, since both f_{1}, f_{2}, f_{3} and the three rows of M are bases for the rowspace of M, the f_{i} s are linear combinations of the rows, and vice versa (with integer coefficients). Thus, there is a 3 -by- 3 matrix with determinant ± 1 such that left multiplication of M by it yields a new matrix with rows f_{1}, f_{2}, f_{3}. At the same time, this changes the determinants of 3 -by- 3 minors by at most \pm, by the multiplicativity of determinants.

The hypothesis that the $g c d$ of all these coordinates is 1 means exactly that $\bigwedge^{3} F / \Lambda^{3} E$ is torsion-free. (If the coordinates had a common factor $d>1$, then d would annihilate the quotient.) This requires that $d_{1} d_{2} d_{3}=1$, so $d_{1}=d_{2}=d_{3}=1$ (since we take these divisors to be positive). That is,

$$
E=\mathbb{Z} \cdot f_{1} \oplus \mathbb{Z} \cdot f_{2} \oplus \mathbb{Z} \cdot f_{3}
$$

Writing f_{1}, f_{2}, and f_{3} as row vectors, they are \mathbb{Z}-linear combinations of the rows of M, which is to say that there is a 3 -by- 3 integer matrix L such that

$$
L \cdot M=\left(\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3}
\end{array}\right)
$$

Since the f_{i} are also a \mathbb{Z}-basis for E, there is another 3-by-3 integer matrix K such that

$$
M=K \cdot\left(\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3}
\end{array}\right)
$$

Then $L K=L K=1_{3}$. In particular, taking determinants, both K and L have determinants in \mathbb{Z}^{\times}, namely, ± 1.

Let A be a \mathbb{Z}-linear endomorphism of $F=\mathbb{Z}^{5}$ mapping f_{i} to e_{i}. Also let A be the 5 -by- 5 integer matrix such that right multiplication of a row vector by A gives the effect of the endomorphism A. Then

$$
L \cdot M \cdot A=\left(\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3}
\end{array}\right) \cdot A=\left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right)
$$

Since the endormorphism A is invertible on $F=\mathbb{Z}^{5}$, it has an inverse endomorphism A^{-1}, whose matrix has integer entries. Then

$$
M=L^{-1} \cdot\left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right) \cdot A^{-1}
$$

Let

$$
\Lambda=\left(\begin{array}{ccc}
L^{-1} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \pm 1
\end{array}\right)
$$

where the $\pm 1=\operatorname{det} A=\operatorname{det} A^{-1}$. Then

$$
\Lambda \cdot\left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3} \\
e_{4} \\
e_{5}
\end{array}\right) \cdot A^{-1}=\Lambda \cdot 1_{5} \cdot A^{-1}=\Lambda \cdot A^{-1}
$$

has integer entries and determinant 1 (since we adjusted the ± 1 in Λ). At the same time, it is

$$
\Lambda \cdot A^{-1}=\left(\begin{array}{ccc}
L^{-1} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \pm 1
\end{array}\right) \cdot\left(\begin{array}{c}
e_{1} \\
e_{2} \\
e_{3} \\
* \\
*
\end{array}\right) \cdot A^{-1}=\left(\begin{array}{c}
M \\
* \\
*
\end{array}\right)=5 \text {-by- } 5
$$

This is the desired integer matrix \tilde{M} with determinant 1 and upper 3 rows equal to the given matrix. ///
[28.8] Let R be a commutative ring with unit. For a finitely-generated free R-module F, prove that there is a (natural) isomorphism

$$
\operatorname{Hom}_{R}(F, R) \approx F
$$

Or is it only

$$
\operatorname{Hom}_{R}(R, F) \approx F
$$

instead? (Hint: Recall the definition of a free module.)
For any R-module M, there is a (natural) isomorphism

$$
i: M \longrightarrow \operatorname{Hom}_{R}(R, M)
$$

given by

$$
i(m)(r)=r \cdot m
$$

This is injective, since if $i(m)(r)$ were the 0 homomorphism, then $i(m)(r)=0$ for all r, which is to say that $r \cdot m=0$ for all $r \in R$, in particular, for $r=1$. Thus, $m=1 \cdot m=0$, so $m=0$. (Here we use the standing assumption that $1 \cdot m=m$ for all $m \in M$.) The map is surjective, since, given $\varphi \in \operatorname{Hom}_{R}(R, M)$, we have

$$
\varphi(r)=\varphi(r \cdot 1)=r \cdot \varphi(1)
$$

That is, $m=\varphi(1)$ determines φ completely. Then $\varphi=i(\varphi(m))$ and $m=i(m)(1)$, so these are mutually inverse maps. This did not use finite generation, nor free-ness.

Consider now the other form of the question, namely whether or not

$$
\operatorname{Hom}_{R}(F, R) \approx F
$$

is valid for F finitely-generated and free. Let F be free on $i: S \longrightarrow F$, with finite S. Use the natural isomorphism

$$
\operatorname{Hom}_{R}(F, R) \approx \operatorname{Hom}_{\text {sets }}(S, R)
$$

discussed earlier. The right-hand side is the collection of R-valued functions on S. Since S is finite, the collection of all R-valued functions on S is just the collection of functions which vanish off a finite subset. The latter was our construction of the free R-module on S. So we have the isomorphism.
[11.0.2] Remark: Note that if S is not finite, $\operatorname{Hom}_{R}(F, R)$ is too large to be isomorphic to F. If F is not free, it may be too small. Consider $F=\mathbb{Z} / n$ and $R=\mathbb{Z}$, for example.
[11.0.3] Remark: And this discussion needs a choice of the generators $i: S \longrightarrow F$. In the language style which speaks of generators as being chosen elements of the module, we have most certainly chosen a basis.
[28.9] Let R be an integral domain. Let M and N be free R-modules of finite ranks r, s, respectively. Suppose that there is an R-bilinear map

$$
B: M \times N \longrightarrow R
$$

which is non-degenerate in the sense that for every $0 \neq m \in M$ there is $n \in N$ such that $B(m, n) \neq 0$, and vice versa. Prove that $r=s$.

All tensors and homomorphisms are over R, so we suppress the subscript and other references to R when reasonable to do so. We use the important identity (proven afterward)

$$
\operatorname{Hom}(A \otimes B, C) \xrightarrow{i_{A, B, C}} \operatorname{Hom}(A, \operatorname{Hom}(B, C))
$$

by

$$
i_{A, B, C}(\Phi)(a)(b)=\Phi(a \otimes b)
$$

We also use the fact (from an example just above) that for F free on $t: S \longrightarrow F$ there is the natural (given $t: S \longrightarrow F$, anyway!) isomorphism

$$
j: \operatorname{Hom}(F, R) \approx \operatorname{Hom}_{\mathrm{sets}}(S, R)=F
$$

for modules E, given by

$$
j(\psi)(s)=\psi(t(s))
$$

where we use construction of free modules on sets S that they are R-valued functions on S taking non-zero values at only finitely-many elements.

Thus,

$$
\operatorname{Hom}(M \otimes N, R) \xrightarrow{i} \operatorname{Hom}(M, \operatorname{Hom}(N, R)) \xrightarrow{j} \operatorname{Hom}(M, N)
$$

The bilinear form B induces a linear functional β such that

$$
\beta(m \otimes n)=B(m, n)
$$

The hypothesis says that for each $m \in M$ there is $n \in N$ such that

$$
i(\beta)(m)(n) \neq 0
$$

That is, for all $m \in M, i(\beta)(m) \in \operatorname{Hom}(N, R) \approx N$ is 0 . That is, the map $m \longrightarrow i(\beta)(m)$ is injective. So the existence of the non-degenerate bilinear pairing yields an injection of M to N. Symmetrically, there is an injection of N to M.

Using the assumption that R is a PID, we know that a submodule of a free module is free of lesser-or-equal rank. Thus, the two inequalities

$$
\operatorname{rank} M \leq \operatorname{rank} N \quad \operatorname{rank} N \leq \operatorname{rank} M
$$

from the two inclusions imply equality.
[11.0.4] Remark: The hypothesis that R is a PID may be too strong, but I don't immediately see a way to work around it.

Now let's prove (again?) that

$$
\operatorname{Hom}(A \otimes B, C) \xrightarrow[i]{\longrightarrow} \operatorname{Hom}(A, \operatorname{Hom}(B, C))
$$

by

$$
i(\Phi)(a)(b)=\Phi(a \otimes b)
$$

is an isomorphism. The map in the other direction is

$$
j(\varphi)(a \otimes b)=\varphi(a)(b)
$$

First,

$$
i(j(\varphi))(a)(b)=j(\varphi)(a \otimes b)=\varphi(a)(b)
$$

Second,

$$
j(i(\Phi))(a \otimes b)=i(\Phi)(a)(b)=\Phi(a \otimes b)
$$

Thus, these maps are mutual inverses, so each is an isomorphism.
[28.10] Write an explicit isomorphism

$$
\mathbb{Z} / a \otimes_{\mathbb{Z}} \mathbb{Z} / b \longrightarrow \mathbb{Z} / \operatorname{gcd}(a, b)
$$

and verify that it is what is claimed.
First, we know that monomial tensors generate the tensor product, and for any $x, y \in \mathbb{Z}$

$$
x \otimes y=(x y) \cdot(1 \otimes 1)
$$

so the tensor product is generated by $1 \otimes 1$. Next, we claim that $g=\operatorname{gcd}(a, b)$ annihilates every $x \otimes y$, that is, $g \cdot(x \otimes y)=0$. Indeed, let r, s be integers such that $r a+s b=g$. Then

$$
g \cdot(x \otimes y)=(r a+s b) \cdot(x \otimes y)=r(a x \otimes y)=s(x \otimes b y)=r \cdot 0+s \cdot 0=0
$$

So the generator $1 \otimes 1$ has order dividing g. To prove that that generator has order exactly g, we construct a bilinear map. Let

$$
B: \mathbb{Z} / a \times \mathbb{Z} / b \longrightarrow \mathbb{Z} / g
$$

by

$$
B(x \times y)=x y+g \mathbb{Z}
$$

To see that this is well-defined, first compute

$$
(x+a \mathbb{Z})(y+b \mathbb{Z})=x y+x b \mathbb{Z}+y a \mathbb{Z}+a b \mathbb{Z}
$$

Since

$$
x b \mathbb{Z}+y a \mathbb{Z} \subset b \mathbb{Z}+a \mathbb{Z}=\operatorname{gcd}(a, b) \mathbb{Z}
$$

(and $a b \mathbb{Z} \subset g \mathbb{Z}$), we have

$$
(x+a \mathbb{Z})(y+b \mathbb{Z})+g \mathbb{Z}=x y+x b \mathbb{Z}+y a \mathbb{Z}+a b \mathbb{Z}+\mathbb{Z}
$$

and well-definedness. By the defining property of the tensor product, this gives a unique linear map β on the tensor product, which on monomials is

$$
\beta(x \otimes y)=x y+\operatorname{gcd}(a, b) \mathbb{Z}
$$

The generator $1 \otimes 1$ is mapped to 1 , so the image of $1 \otimes 1$ has order $\operatorname{gcd}(a, b)$, so $1 \otimes 1$ has order divisible by $\operatorname{gcd}(a, b)$. Thus, having already proven that $1 \otimes 1$ has order at most $\operatorname{gcd}(a, b)$, this must be its order.

In particular, the map β is injective on the cyclic subgroup generated by $1 \otimes 1$. That cyclic subgroup is the whole group, since $1 \otimes 1$. The map is also surjective, since $\cdot 1 \otimes 1 \operatorname{hits} r \bmod \operatorname{gcd}(a, b)$. Thus, it is an isomorphism.
[28.11] Let $\varphi: R \longrightarrow S$ be commutative rings with unit, and suppose that $\varphi\left(1_{R}\right)=1_{S}$, thus making S an R-algebra. For an R-module N prove that $\operatorname{Hom}_{R}(S, N)$ is (yet another) good definition of extension of scalars from R to S, by checking that for every S-module M there is a natural isomorphism

$$
\operatorname{Hom}_{R}\left(\operatorname{Res}_{R}^{S} M, N\right) \approx \operatorname{Hom}_{S}\left(M, \operatorname{Hom}_{R}(S, N)\right.
$$

where $\operatorname{Res}_{R}^{S} M$ is the R-module obtained by forgetting S, and letting $r \in R$ act on M by $r \cdot m=\varphi(r) m$. (Do prove naturality in M, also.)

Let

$$
i: \operatorname{Hom}_{R}\left(\operatorname{Res}_{R}^{S} M, N\right) \longrightarrow \operatorname{Hom}_{S}\left(M, \operatorname{Hom}_{R}(S, N)\right.
$$

be defined for $\varphi \in \operatorname{Hom}_{R}\left(\operatorname{Res}_{R}^{S} M, N\right)$ by

$$
i(\varphi)(m)(s)=\varphi(s \cdot m)
$$

This makes some sense, at least, since M is an S-module. We must verify that $i(\varphi): M \longrightarrow \operatorname{Hom}_{R}(S, N)$ is S-linear. Note that the S-module structure on $\operatorname{Hom}_{R}(S, N)$ is

$$
(s \cdot \psi)(t)=\psi(s t)
$$

where $s, t \in S, \psi \in \operatorname{Hom}_{R}(S, N)$. Then we check:

$$
(i(\varphi)(s m))(t)=i(\varphi)(t \cdot s m)=i(\varphi)(s t m)=i(\varphi)(m)(s t)=(s \cdot i(\varphi)(m))(t)
$$

which proves the S-linearity.

The map j in the other direction is described, for $\Phi \in \operatorname{Hom}_{S}\left(M, \operatorname{Hom}_{R}(S, N)\right)$, by

$$
j(\Phi)(m)=\Phi(m)\left(1_{S}\right)
$$

where 1_{S} is the identity in S. Verify that these are mutual inverses, by

$$
i(j(\Phi))(m)(s)=j(\Phi)(s \cdot m)=\Phi(s m)\left(1_{S}\right)=(s \cdot \Phi(m))\left(1_{S}\right)=\Phi(m)\left(s \cdot 1_{S}\right)=\Phi(m)(s)
$$

as hoped. (Again, the equality

$$
(s \cdot \Phi(m))\left(1_{S}\right)=\Phi(m)\left(s \cdot 1_{S}\right)
$$

is the definition of the S-module structure on $\operatorname{Hom}_{R}(S, N)$.) In the other direction,

$$
j(i(\varphi))(m)=i(\varphi)(m)\left(1_{S}\right)=\varphi(1 \cdot m)=\varphi(m)
$$

Thus, i and j are mutual inverses, so are isomorphisms.
For naturality, let $f: M \longrightarrow M^{\prime}$ be an S-module homomorphism. Add indices to the previous notation, so that

$$
i_{M, N}: \operatorname{Hom}_{R}\left(\operatorname{Res}_{R}^{S} M, N\right) \longrightarrow \operatorname{Hom}_{S}\left(M, \operatorname{Hom}_{R}(S, N)\right.
$$

is the isomorphism discussed just above, and $i_{M^{\prime}, N}$ the analogous isomorphism for M^{\prime} and N. We must show that the diagram

commutes, where $-\circ f$ is pre-composition with f. (We use the same symbol for the map $f: M \longrightarrow M^{\prime}$ on the modules whose S-structure has been forgotten, leaving only the R-module structure.) Starting in the lower left of the diagram, going up then right, for $\varphi \in \operatorname{Hom}_{R}\left(\operatorname{Res}_{R}^{S} M^{\prime}, N\right)$,

$$
\left(i_{M, N} \circ(-\circ f) \varphi\right)(m)(s)=\left(i_{M, N}(\varphi \circ f)\right)(m)(s)=(\varphi \circ f)(s \cdot m)=\varphi(f(s \cdot m))
$$

On the other hand, going right, then up,

$$
\left((-\circ f) \circ i_{M^{\prime}, N} \varphi\right)(m)(s)=\left(i_{M^{\prime}, N} \varphi\right)(f m)(s)=\varphi(s \cdot f m)=\varphi(f(s \cdot m))
$$

since f is S-linear. That is, the two outcomes are the same, so the diagram commutes, proving functoriality in M, which is a part of the naturality assertion.

[28.12] Let

$$
M=\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \quad N=\mathbb{Z} \oplus 4 \mathbb{Z} \oplus 24 \mathbb{Z} \oplus 144 \mathbb{Z}
$$

What are the elementary divisors of $\bigwedge^{2}(M / N)$?
First, note that this is not the same as asking about the structure of $\left(\bigwedge^{2} M\right) /\left(\bigwedge^{2} N\right)$. Still, we can address that, too, after dealing with the question that was asked.

First,

$$
M / N=\mathbb{Z} / \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 24 \mathbb{Z} \oplus \mathbb{Z} / 144 \mathbb{Z} \approx \mathbb{Z} / 4 \oplus \mathbb{Z} / 24 \oplus \mathbb{Z} / 144
$$

where we use the obvious slightly lighter notation. Generators for M / N are

$$
m_{1}=1 \oplus 0 \oplus 0 \quad m_{2}=0 \oplus 1 \oplus 0 \quad m_{3}=0 \oplus 0 \oplus 1
$$

where the 1 s are respectively in $\mathbb{Z} / 4, \mathbb{Z} / 24$, and $\mathbb{Z} / 144$. We know that $e_{i} \wedge e_{j}$ generate the exterior square, for the 3 pairs of indices with $i<j$. Much as in the computation of $\mathbb{Z} / a \otimes \mathbb{Z} / b$, for e in a \mathbb{Z}-module E with $a \cdot e=0$ and f in E with $b \cdot f=0$, let r, s be integers such that

$$
r a+s b=\operatorname{gcd}(a, b)
$$

Then

$$
\operatorname{gcd}(a, b) \cdot e \wedge f=r(a e \wedge f)+s(e \wedge b f)=r \cdot 0+s \cdot 0=0
$$

Thus, $4 \cdot e_{1} \wedge e_{2}=0$ and $4 \cdot e_{1} \wedge e_{3}=0$, while $24 \cdot e_{2} \wedge e_{3}=0$. If there are no further relations, then we could have

$$
\bigwedge^{2}(M / N) \approx \mathbb{Z} / 4 \oplus \mathbb{Z} / 4 \oplus \mathbb{Z} / 24
$$

(so the elementary divisors would be $4,4,24$.)
To prove, in effect, that there are no further relations than those just indicated, we must construct suitable alternating bilinear maps. Suppose for $r, s, t \in \mathbb{Z}$

$$
r \cdot e_{1} \wedge e_{2}+s \cdot e_{1} \wedge e_{3}+t \cdot e_{2} \wedge e_{3}=0
$$

Let

$$
B_{12}:\left(\mathbb{Z} e_{1} \oplus \mathbb{Z} e_{2} \oplus \mathbb{Z} e_{3}\right) \times\left(\mathbb{Z} e_{1} \oplus \mathbb{Z} e_{2} \oplus \mathbb{Z} e_{3}\right) \longrightarrow \mathbb{Z} / 4
$$

by

$$
B_{12}\left(x e_{1}+y e_{2}+z e_{3}, \xi e_{1}+\eta e_{2}+\zeta e_{3}\right)=(x \eta-\xi y)+4 \mathbb{Z}
$$

(As in earlier examples, since $4 \mid 4$ and $4 \mid 24$, this is well-defined.) By arrangement, this B_{12} is alternating, and induces a unique linear map β_{12} on $\bigwedge^{2}(M / N)$, with

$$
\beta_{12}\left(e_{1} \wedge e_{2}\right)=1 \quad \beta_{12}\left(e_{1} \wedge e_{3}\right)=0 \quad \beta_{12}\left(e_{2} \wedge e_{3}\right)=0
$$

Applying this to the alleged relation, we find that $r=0 \bmod 4$. Similar contructions for the other two pairs of indices $i<j$ show that $s=0 \bmod 4$ and $t=0 \bmod 24$. This shows that we have all the relations, and

$$
\bigwedge^{2}(M / N) \approx \mathbb{Z} / 4 \oplus \mathbb{Z} / 4 \oplus \mathbb{Z} / 24
$$

as hoped/claimed.
Now consider the other version of this question. Namely, letting

$$
M=\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \quad N=\mathbb{Z} \oplus 4 \mathbb{Z} \oplus 24 \mathbb{Z} \oplus 144 \mathbb{Z}
$$

compute the elementary divisors of $\left(\bigwedge^{2} M\right) /\left(\bigwedge^{2} N\right)$.
Let $e_{1}, e_{2}, e_{3}, e_{4}$ be the standard basis for \mathbb{Z}^{4}. Let $i: N \longrightarrow M$ be the inclusion. We have shown that exterior powers of free modules are free with the expected generators, so M is free on

$$
e_{1} \wedge e_{2}, \quad e_{1} \wedge e_{3}, \quad e_{1} \wedge e_{4}, \quad e_{2} \wedge e_{3}, \quad e_{2} \wedge e_{4}, \quad e_{3} \wedge e_{4}
$$

and N is free on

$$
(1 \cdot 4) e_{1} \wedge e_{2}, \quad(1 \cdot 24) e_{1} \wedge e_{3}, \quad(1 \cdot 144) e_{1} \wedge e_{4}, \quad(4 \cdot 24) e_{2} \wedge e_{3}, \quad(4 \cdot 144) e_{2} \wedge e_{4}, \quad(24 \cdot 144) e_{3} \wedge e_{4}
$$

The inclusion $i: N \longrightarrow M$ induces a natural map $\bigwedge^{2} i: \bigwedge^{2} \longrightarrow \bigwedge^{2} M$, taking $r \cdot e_{i} \wedge e_{j}($ in $N)$ to $r \cdot e_{i} \wedge e_{j}$ (in M). Thus, the quotient of $\bigwedge^{2} M$ by (the image of) $\bigwedge^{2} N$ is visibly

$$
\mathbb{Z} / 4 \oplus \mathbb{Z} / 24 \oplus \mathbb{Z} / 144 \oplus \mathbb{Z} / 96 \oplus \mathbb{Z} / 576 \oplus \mathbb{Z} / 3456
$$

The integers $4,24,144,96,576,3456$ do not quite have the property $4|24| 144|96| 576 \mid 3456$, so are not elementary divisors. The problem is that neither $144 \mid 96$ nor $96 \mid 144$. The only primes dividing all these integers are 2 and 3 , and, in particular,

$$
4=2^{2}, 24=2^{3} \cdot 3,144=2^{4} \cdot 3^{2}, 96=2^{5} \cdot 3,576=2^{6} \cdot 3^{2}, 3456=2^{7} \cdot 3^{3}
$$

From Sun-Ze's theorem,

$$
\mathbb{Z} /\left(2^{a} \cdot 3^{b}\right) \approx \mathbb{Z} / 2^{a} \oplus \mathbb{Z} / 3^{b}
$$

so we can rewrite the summands $\mathbb{Z} / 144$ and $\mathbb{Z} / 96$ as

$$
\mathbb{Z} / 144 \oplus \mathbb{Z} / 96 \approx\left(\mathbb{Z} / 2^{4} \oplus \mathbb{Z} / 3^{2}\right) \oplus\left(\mathbb{Z} / 2^{5} \oplus \mathbb{Z} / 3\right) \approx\left(\mathbb{Z} / 2^{4} \oplus \mathbb{Z} / 3\right) \oplus\left(\mathbb{Z} / 2^{5} \oplus \mathbb{Z} / 3^{2}\right) \approx \mathbb{Z} / 48 \oplus \mathbb{Z} / 288
$$

Now we do have $4|24| 48|288| 576 \mid 3456$, and

$$
\left(\bigwedge^{2} M\right) /\left(\bigwedge^{2} N\right) \approx \mathbb{Z} / 4 \oplus \mathbb{Z} / 24 \oplus \mathbb{Z} / 48 \oplus \mathbb{Z} / 288 \oplus \mathbb{Z} / 576 \oplus \mathbb{Z} / 3456
$$

is in elementary divisor form.

Exercises

28.[11.0.1] Show that there is a natural isomorphism

$$
f_{X}: \Pi_{s} \operatorname{Hom}_{R}\left(M_{s}, X\right) \approx \operatorname{Hom}_{R}\left(\oplus_{s} M_{s}, X\right)
$$

where everything is an R-module, and R is a commutative ring.
28.[11.0.2] For an abelian group A (equivalently, \mathbb{Z}-module), the dual group (\mathbb{Z}-module) is

$$
A^{*}=\operatorname{Hom}(A, \mathbb{Q} / \mathbb{Z})
$$

Prove that the dual group of a direct sum is the direct product of the duals. Prove that the dual group of a finite abelian group A is isomorphic to A (although not naturally isomorphic).
28.[11.0.3] Let R be a commutative ring with unit. Let M be a finitely-generated free module over R. Let $M^{*}=\operatorname{Hom}_{R}(M, R)$ be the dual. Show that, for each integer $\ell \geq 1$, the module $\bigwedge^{\ell} M$ is dual to $\bigwedge^{\ell} M^{*}$, under the bilinear map induced by

$$
\left\langle m_{1} \wedge \ldots \wedge m_{\ell}, \mu_{1} \wedge \ldots \wedge \mu_{\ell}\right\rangle=\operatorname{det}\left\{\left\langle m_{i}, \mu_{j}\right\rangle\right\}
$$

for $m_{i} \in M$ and $\mu_{j} \in M^{*}$.
28.[11.0.4] Let v_{1}, \ldots, v_{n} be linearly independent vectors in a vector space V over a field k. For each pair of indices $i<j$, take another vector $w_{i j} \in V$. Suppose that

$$
\sum_{i<j} v_{i} \wedge v_{j} \wedge w_{i j}=0
$$

Show that the $w_{i j}$'s are in the span of the v_{k} 's. Let

$$
w_{i j}=\sum_{k} c_{i j}^{k} v_{k}
$$

Show that, for $i<j<k$,

$$
c_{i j}^{k}-c_{i k}^{j}+c_{j k}^{i}=0
$$

28.[11.0.5] Show that the adjugate (that is, cofactor) matrix of a 2-by-2 matrix with entries in a commutative ring R is

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{\text {adg }}=\left(\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right)
$$

28.[11.0.6] Let M be an n-by- n matrix with entries in a commutative ring R with unit, viewed as an endomorphism of the free R-module R^{n} by left matrix multiplication. Determine the matrix entries for the adjugate matrix $M^{\text {adg }}$ in terms of those of M.

[^0]: [1] There are many different canonical maps in different situations, but context should always make clear what the properties are that are expected. Among other things, this potentially ambiguous phrase allows us to avoid trying to give a permanent symbolic name to the maps in question.

[^1]: [2] We already saw this refinement in the classical context of determinants of matrices, as axiomatized in the style of Emil Artin.

[^2]: [5] The importance of verifying that symbolically reasonable expressions make sense is often underestimated. Seemingly well-defined things can easily be ill-defined. For example, $f: \mathbb{Z} / 3 \longrightarrow \mathbb{Z} / 5$ defined [sic] by $f(x)=x$, or, seemingly more clearly, by $f(x+3 \mathbb{Z})=x+5 \mathbb{Z}$. This is not well-defined, since $0=f(0)=f(3)=3 \neq 0$.

