Another presentation of basic Quadratic Reciprocity

Paul Garrett garrett@umn.edu https://www-users.cse.umn.edu/~garrett/

Earlier ad hoc examples of quadratic reciprocity for $2 \bmod p,-3 \bmod p$, and $5 \bmod p$, used the presence of $\sqrt{2}, \sqrt{-3}$, and $\sqrt{5}$ in fields generated by roots of unity, to obtain expressions for the quadratic symbols that were manifestly periodic as functions of p. We systematize this:
[0.1] Claim: Fix an odd prime p. There is an explicit linear combination of $p^{t h}$ roots of unity equal to $\sqrt{ \pm p}$. Specifically,

$$
\left(\sum_{a \in(\mathbb{Z} / p)^{\times}} \chi(a) \cdot \psi(a)\right)^{2}=\binom{-1}{p}_{2} \cdot p
$$

where $\chi(a)=\binom{a}{p}_{2}$, and $\psi(a)=e^{2 \pi i a / p}=\omega_{p}^{a}$, where ω_{p} is a primitive $p^{t h}$ root of unity.
[0.2] Remark: $g=\sum_{a \in(\mathbb{Z} / p) \times} \chi(a) \cdot \psi(a)$ is an instance of a Gauss sum.
Proof: Since $(\mathbb{Z} / p)^{\times}$is cyclic, we have Euler's expression

$$
\chi(a)=a^{\frac{p-1}{2}} \bmod p
$$

Thus, the map $a \rightarrow \chi(a)=\binom{a}{p}_{2}$ is a group homomorphism $(\mathbb{Z} / p)^{\times} \rightarrow\{ \pm 1\} \subset \mathbb{C}^{\times}$. Then

$$
g^{2}=\left(\sum_{a \in(\mathbb{Z} / p)^{\times}} \chi(a) \cdot \psi(a)\right)^{2}=\sum_{a, b \in(\mathbb{Z} / p)^{\times}} \chi(a) \cdot \psi(a) \cdot \chi(b) \cdot \psi(b)
$$

Make a change of variables in the group $(\mathbb{Z} / p)^{\times}$: replace a by $a b$, so the previous becomes
$\sum_{a, b \in(\mathbb{Z} / p)^{\times}} \chi(a b) \cdot \psi(a b) \cdot \chi(b) \cdot \psi(b)=\sum_{a, b \in(\mathbb{Z} / p)^{\times}} \chi(a) \chi(b) \cdot \psi(a b) \cdot \chi(b) \cdot \psi(b)=\sum_{a, b \in(\mathbb{Z} / p)^{\times}} \chi(a) \cdot \psi((a+1) b)$
since $\chi(b)^{2}=(\pm 1)^{2}=1$. We prove the following after this proof:
[0.3] Claim: Cancellation Lemma For a group homomorphism $\varphi: G \rightarrow \mathbb{C}^{\times}$,

$$
\sum_{g \in G} \varphi(g)=\left\{\begin{array}{cc}
0 & \text { for } \varphi \text { non-trivial } \\
\# G & \text { for } \varphi \text { trivial }
\end{array}\right.
$$

This cancellation lemma will be applied twice, both to $G=\mathbb{Z} / p$ with addition, and to $G=(\mathbb{Z} / p)^{\times}$. First, for fixed $a \in(\mathbb{Z} / p)^{\times}$, the inner sum over b is

$$
\sum_{b \in(\mathbb{Z} / p)^{\times}} \psi((a+1) b)=\sum_{b \in \mathbb{Z} / p} \psi((a+1) b)-\sum_{b=0} 1=\left\{\begin{array}{rr}
0-1 & b \rightarrow \psi((a+1) b) \text { non-trivial } \\
p-1 & b \rightarrow \psi((a+1) b) \text { trivial }
\end{array}=\left\{\begin{array}{cc}
-1 & a \neq-1 \\
p-1 & a=-1
\end{array}\right.\right.
$$

Thus, the whole sum is

$$
g^{2}=\sum_{a \in(\mathbb{Z} / p)^{\times}, a \neq-1} \chi(a) \cdot(-1)+\sum_{a=-1} \chi(a) \cdot(p-1)=-\sum_{a \in(\mathbb{Z} / p)^{\times}} \chi(a)+p \cdot \chi(-1)
$$

Again invoking the cancellation lemma, the first sum is 0 , so the whole is indeed

$$
\left(\sum_{a \in(\mathbb{Z} / p)^{\times}} \chi(a) \cdot \psi(a)\right)^{2}=p \cdot \chi(-1)=p \cdot\binom{-1}{p}_{2}
$$

as claimed.
Returning to the main argument for Quadratic Reciprocity: using Euler's criterion: since $g^{2}=\binom{-1}{p}$. $p=$ $\chi(-1) \cdot p$, not just p, compute

$$
\binom{\chi(-1) \cdot p}{q}_{2}=(\chi(-1) \cdot p)^{\frac{q-1}{2}}=\left(\sum_{a \in(\mathbb{Z} / p)^{\times}} \chi(a) \cdot \psi(a)\right)^{q-1} \quad(\bmod q, \text { in } \mathbb{Z}[\omega])
$$

To use the fact that inner binomial coefficients $\binom{q}{k}$, with $0<k<q$, are divisible by q, multiply both sides by the Gauss sum g again, so

$$
g \cdot\binom{\chi(-1) \cdot p}{q}_{2}=\left(\sum_{a \in(\mathbb{Z} / p)^{\times}} \chi(a) \cdot \psi(a)\right)^{q}=\sum_{a \in(\mathbb{Z} / p)^{\times}} \chi(a)^{q} \cdot \psi(a)^{q} \quad(\bmod q \text { in } \mathbb{Z}[\omega])
$$

Since $\chi(a)= \pm 1$ and q is odd, $\chi(a)^{q}=\chi(a)$. So

$$
\sum_{a \in(\mathbb{Z} / p)^{\times}} \chi(a)^{q} \cdot \psi(a)^{q}=\sum_{a \in(\mathbb{Z} / p)^{\times}} \chi(a) \cdot \psi(q a)
$$

Note that now we are discussing this sum without thinking about reduction $\bmod q$ in $\mathbb{Z}[\omega]$. Since q is a unit in $(\mathbb{Z} / p)^{\times}$, we can change variables, replacing a by $a q^{-1}$, obtaining

$$
\sum_{a \in(\mathbb{Z} / p)^{\times}} \chi\left(a q^{-1}\right) \cdot \psi(a)=\chi\left(q^{-1}\right) \sum_{a \in(\mathbb{Z} / p)^{\times}} \chi(a) \cdot \psi(a)=\chi(q) \cdot g
$$

since $\chi(q)= \pm 1$. Altogether,

$$
g \cdot\binom{\chi(-1) \cdot p}{q}_{2}=\chi(q) \cdot g=\binom{q}{p}_{2} \cdot g \quad(\bmod q \text { in } \mathbb{Z}[\omega])
$$

Since $g^{2}= \pm p$, it is a unit $\bmod q$, so we can cancel, to obtain

$$
\binom{\binom{-1}{p}_{2} \cdot p}{q}_{2}=\binom{q}{p}_{2}
$$

In many regards, this is the most natural presentation of the argument for the main part of Quadratic Reciprocity over \mathbb{Z}.

To recover the more typical assertion of the main part of Quadratic Reciprocity over \mathbb{Z}, we realize that we can interpolate

$$
\binom{-1}{p}_{2}=(-1)^{\frac{p-1}{2}}
$$

And, since the quadratic symbol is a group homomorphism in the upper argument

$$
\binom{\binom{-1}{p}_{2} \cdot p}{q}_{2}=\binom{(-1)^{\frac{p-1}{2}} \cdot p}{q}_{2}=\binom{-1}{q}_{2}^{\frac{p-1}{2}} q \cdot\binom{p}{q}_{2}=(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}} \cdot\binom{p}{q}_{2}
$$

Paul Garrett: Another presentation of basic Quadratic Reciprocity (March 19, 2024)
Thus,

$$
(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}\binom{p}{q}_{2}=\binom{q}{p}_{2}
$$

And now, the proof of the Cancellation Lemma:
Proof: For a finite group G, and group homomorphism $\varphi: G \rightarrow \mathbb{C}^{t}$ imes, when φ is the trivial homomorphism, then, of course, $\sum_{g} \varphi(g)=\sum_{g} 1=\# G$. Otherwise, for φ non-trivial, there is $h \in G$ such that $\varphi(h) \neq 1$. Then $\sum_{g} \varphi(g)=\sum_{g} 1=\# G$. Otherwise, for φ non-trivial, there is $h \in G$ such that $\varphi(h) \neq 1$. Changing variables in the sum, replacing g by $h g$,

$$
\sum_{g} \varphi(g)=\sum_{g} \varphi(h g)=\sum_{g} \varphi(h) \varphi(g)=\varphi(h) \sum_{g} \varphi(g)
$$

Subtracting the right-hand side from both sides:

$$
(1-\varphi(h)) \cdot \sum_{g} \varphi(g)=0
$$

Since $1-\varphi(h) \neq 0$, the sum is 0 , finishing the proof of the Cancellation Lemma.

