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(All this goes back to mid-1800’s, if not earlier!)
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1. Discriminants and multiple zeros

For k a field, and polynomial f ∈ k[x], the discriminant of f is (with no universal notation),∏
i 6=j

(θi − θj) (θi the zeros of f in k)

where k is an algebraic closure of k. The obvious intentional point is that this is 0 if and only if there is a
repeated/multiple zero of f .

Because that expression is invariant under permutations of those zeros, it is expressible in terms of the
elementary symmetric polynomials in the θ’s, which are (up to signs) the coefficients of f . Beyond the
quadratic case, it is tedious to execute the algorithm to obtain that expression of the discriminant. It is
barely palatable in the cubic case.

2. Euclidean algorithm for gcd(f, f ′)

At the same time, f has a multiple root/factor if and only if gcd(f, f ′) is non-trivial, because any repeated
factor of f will persist to f ′. And conversely. In some extreme cases, it is feasible to formulaically describe
the outcome of the Euclidean algorithm applied to f and f ′. For example, for f(x) = xn + ax+ b:

f(x)− x

n
· f ′(x) = (xn + ax+ b)− x

n
(nxn−1 + a) = ax+ b− x

n
a = a(1− 1

n
)x+ b

Of course, we don’t care about n = 1, and we decide now to not care about a = 0 (which would be easy to
appraise separately). Thus, this linear factor is essentially the same as

x+
b

a(1− 1
n )

= x− −b
a(1− 1

n )

From the Euclidean algorithm for polynomials over a field, we know that the remainder, upon dividing g(x)
by x− α, is g(α). Thus, the next step in this slightly larger Euclidean algorithm is

f ′(x)− [?] · (x− −b
a(1− 1

n )
) = f ′(

−b
a(1− 1

n )
)

where we do not care about the dividend. This is

n ·
( −b
a(1− 1

n )

)n−1
+ a = (−1)n−1 ·

(
a(1− 1

n
)
)1−n

·
(
nbn−1 + a ·

(
a(

1

n
− 1)

)n−1)
1



Paul Garrett: Discriminants and Resultants (February 6, 2024)

We can adjust by non-zero constants, to obtain

nnbn−1 + (1− n)n−1an

That is, the latter expression vanishes if and only if f has a repeated factor.

3. gcd(f, f ′) is discriminant of f

[3.1] Claim: For f(x) = xn + ax + b, the expression nnbn−1 + (1 − n)n−1an obtained above, by applying
Euclidean algorithm to f and f ′, is the discriminant of f .

Proof: The heuristic is about degree considerations, in terms of the zeros of f in an algebraic closure of k.
Namely, on one hand,

∏
i6=j(θi − θj) is apparently of degree n(n − 1) in the zeros θi. On the other hand,

a = ±sn−1 and b = sn, the elementary symmetric polynomials in the zeros, which are of degrees n− 1 and
n. Thus, the expression obtained via the Euclidean algorithm is apparently of degree (n− 1)n, as well.

However, for one thing, if the θi are merely numbers of some kind, or abstract field elements, this notion of
degree does not have obvious content. This problem can be overcome by treating the universal version of the
situation, namely, where k is the fraction field K(t1, . . . , tn) of a polynomial ring K[t1, . . . , tn], and f ∈ k[x]
has zeros ti. The notion of (total) degree does make sense in K[t1, . . . , tn], so we might want to consider the
alleged identity in K[x, t1, . . . , tn], even though we did the computation in a larger ring.

That is, in K[t1, . . . , tn], indeed s` is of (total) degree `. So a is indeed of degree n− 1, and b of degree n, so
an and bn−1 are both of degree n(n− 1), as the heuristic gives. And the product defining the discriminant,
likewise, is of (total) degree n(n− 1) in K[t1, . . . , tn].

By unique factorization in polynomial rings over fields, since both expressions vanish (as polynomials in
K[t1, . . . , tn]) whenever any ti and tj are mapped to the same element of any target ring, both are divisible
by all ti − tj . In both cases, by degree arguments, this does not leave any room for further factors of either.

4. Resultants and common zeros

For field k and f, g ∈ k[x], the resultant R(f, g) of f and g is intended to be a polynomial (with coefficients in
k) in the coefficients of f and g whose vanishing is equivalent to f and g having simultaneous zeros. Thus, by
the derivation criterion for repeated factors/roots, it should be that, the discriminant of a single polynomial
f is the resultant of f and f ′.

Letting αi and βj be the zeros (with multiplicities) of f, g in an algebraic closure of k, up to constants, the
resultant should be

R(f, g) =
∏
i,j

(αi − βj)

Since this R(f, g) is invariant under permutations of the αi, and under permutations of the βj , by the theory
of symmetric functions, it is a polynomial in the elementary symmetric polynomials in the αi and the βj .
Up to signs, these are the coefficients of f and g. This is one proof of the existence of the resultant.

However, the basic algorithm to express symmetric polynomials in terms of the elementary ones is
qualitatively opaque, and, being completely general, ignores structural features of a given situation.

Another, more structured/intelligible approach: let f be of degree d and g of degree e. Let P<n be the
k-vectorspace of polynomials of degrees < n. The linear map

P<e ⊕ P<d −→ P<e+d by A⊕B −→ Af +Bg
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is a k-linear map from one (e + d)-dimensional space to another. It has non-zero kernel exactly when the
determinant of the matrix giving the map, in whatever coordinates, is 0.

When the determinant is 0, there are non-zero polynomials A,B, of degrees less than those of g, f (in that
order), such that Af +Bg = 0. That is, Af = −Bg. By unique factorization in k[x], since the degree of B
is strictly less than that of f , some factor of f must divide g. So, again, we have existence of a resultant,
namely, that determinant.

That determinant can be expressed formulaically in terms of the natural basis for polynomials consisting
of monomials xi. Letting T : P<e ⊕ P<d → P<e+d be that map, and f(x) = a0 + a1x + . . . + adx

d, and
g(x) = b0 + b1x+ . . .+ adx

d,

T (1⊕ 0) = 1 · f = a0 + a1x+ . . .+ adx
d

T (x⊕ 0) = x · f = a0x+ a1x
2 + . . .+ adx

d+1

. . .
T (xe−1 ⊕ 0) = xe−1 · f = a0x

e−1 + a1x
e + . . .+ adx

e+d−1

T (0⊕ 1) = 1 · g = b0 + b1x+ . . .+ bex
e

T (0⊕ x) = x · g = b0x+ b1x
2 + . . .+ bex

e+1

. . .
T (0⊕ xd−1) = xd−1 · g = b0x

d−1 + b1x
d + . . .+ bdx

e+d−1

More later! :)

This does lead to a classic algebraic-curve fact, namely, Bézout’s theorem, that two plane algebraic curves
over C, defined by polynomials f, g, intersect in (deg f) · (deg g) points, counting multiplicities and points at
infinity.
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