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Albert Girard (1629), and, later, Isaac Newton (1666), expressed the elementary symmetric functions [1]

sj =
∑

i1<i2<...<ij

xi1xi2 . . . xij

in terms of symmetric power sum functions

pj = xj
1 + . . . + xj

n

where x1, . . . , xn are indeterminates.

Basic properties of exp and log, either as convergent or formal power series, produce the relation. Thus,
consider ∏

i

(1− zxi) = exp
∑

i

log(1− zxi)

with an indeterminate z, and evaluate this in the two obvious ways. First, of course, the left-hand side
essentially defines the elementary symmetric functions:∏

i

(1− zxi) =
∑

j

(−1)j sj zj

On the right-hand side, use the power series for log, interchange order of summation, use the fact that exp
converts sums to products, and expand exp: this will inevitably produce the relation. Indeed, the point is
not the specific formula, but the device by which to recover it. We have

exp
(
−
∑

i

∑
n≥1

zn xn
i

n

)
= exp

(
−
∑
k≥1

zk pk

k

)
=
∏
k≥1

exp
(
− zk pk

k

)
=
∏
k≥1

∑
`≥0

(−zk pk/k)`

`!

=
∑
j≥0

zj
∑

`1+2`2+...=j

(−p1/1)`1

`1!
(−p2/2)`2

`2!
(−p3/3)`3

`3!
· · · (−pn/n)`n

`n!
. . .

Equating the coefficients of zj in the latter and in
∑

j(−1)j sj zj expresses the elementary symmetric function
s` in terms of sums-of-powers pj :

(−1)j sj =
∑

`1+2`2+...=j

(−p1/1)`1

`1!
(−p2/2)`2

`2!
(−p3/3)`3

`3!
· · · (−pn/n)`n

`n!
. . .

Since `i ≥ 1, the right-hand side of the latter is smaller than it might otherwise appear, namely, the formula
for sj it terminates at the jth term:

(−1)j sj =
∑

`1+2`2+...+j`j=j

(−p1/1)`1

`1!
(−p2/2)`2

`2!
(−p3/3)`3

`3!
· · · (−pj/j)`j

`j !

This expresses the elementary symmetric functions in terms of the symmetric power sums. Note that their
is a clear limitation on the integers appearing in denominators.

[1] Girard’s priority is mentioned in http://en.wikipedia.org/wiki/Newton%27s identity
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In the opposite direction, while we already know on general principles that the symmetric power sums are
expressible in terms of the elementary symmetric functions, a variant of the above argument gives a formulaic
expression, as follows. Again, the point is the device by which to recover the formula, not the formula itself.

From the intermediate result (above)

∑
0≤j≤n

(−1)j sj zj =
∏

i

(1− zxi) = exp
(
−
∑
k≥1

zk pk

k

)
move the exp to the left-hand side, as a logarithm:

log
( ∑

0≤j≤n

(−1)j sj zj
)

= −
∑
k≥1

zk pk

k

Moving the sign to the other side,

− log
(
1−

∑
1≤j≤n

(−1)j−1 sj zj
)

=
∑
k≥1

zk pk

k

Expand the logarithm on the left-hand side:∑
`≥1

(
s1z − s2z

2 + . . . + (−1)n−1snzn
)`

/ `

=
∑
`≥1

∑
k1+k2,+...+kn=`

zk1+2k2+...+nkn
1
`

(
`

k1 k2 . . . kn

)
sk1
1 (−s2)k2 . . .

(
(−1)n−1sn

)kn

=
∑

k1,k2,...,kn

zk1+2k2+...+nkn
1

k1 + k2 + . . . + kn

(
k1 + k2 + . . . + kn

k1 k2 . . . kn

)
sk1
1 (−s2)k2 . . .

(
(−1)n−1sn

)kn

=
∑
k≥1

zk
∑

k1+2k2+...+nkn=k

(k1 + k2 + . . . + kn − 1)!
k1! k2! . . . kn!

sk1
1 (−s2)k2 . . .

(
(−1)n−1sn

)kn

Equating coefficients of zk,

∑
k1+2k2+...+nkn=k

(k1 + k2 + . . . + kn − 1)!
k1! k2! . . . kn!

sk1
1 (−s2)k2 . . .

(
(−1)n−1sn

)kn =
pk

k
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