## Girard-Newton identities for symmetric functions

## Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/garrett/

Albert Girard (1629), and, later, Isaac Newton (1666), expressed the elementary symmetric functions ${ }^{[1]}$

$$
s_{j}=\sum_{i_{1}<i_{2}<\ldots<i_{j}} x_{i_{1}} x_{i_{2}} \ldots x_{i_{j}}
$$

in terms of symmetric power sum functions

$$
p_{j}=x_{1}^{j}+\ldots+x_{n}^{j}
$$

where $x_{1}, \ldots, x_{n}$ are indeterminates.
Basic properties of exp and $\log$, either as convergent or formal power series, produce the relation. Thus, consider

$$
\prod_{i}\left(1-z x_{i}\right)=\exp \sum_{i} \log \left(1-z x_{i}\right)
$$

with an indeterminate $z$, and evaluate this in the two obvious ways. First, of course, the left-hand side essentially defines the elementary symmetric functions:

$$
\prod_{i}\left(1-z x_{i}\right)=\sum_{j}(-1)^{j} s_{j} z^{j}
$$

On the right-hand side, use the power series for $l o g$, interchange order of summation, use the fact that exp converts sums to products, and expand exp: this will inevitably produce the relation. Indeed, the point is not the specific formula, but the device by which to recover it. We have

$$
\begin{gathered}
\exp \left(-\sum_{i} \sum_{n \geq 1} \frac{z^{n} x_{i}^{n}}{n}\right)=\exp \left(-\sum_{k \geq 1} \frac{z^{k} p_{k}}{k}\right)=\prod_{k \geq 1} \exp \left(-\frac{z^{k} p_{k}}{k}\right)=\prod_{k \geq 1} \sum_{\ell \geq 0} \frac{\left(-z^{k} p_{k} / k\right)^{\ell}}{\ell!} \\
=\sum_{j \geq 0} z^{j} \sum_{\ell_{1}+2 \ell_{2}+\ldots=j} \frac{\left(-p_{1} / 1\right)^{\ell_{1}}}{\ell_{1}!} \frac{\left(-p_{2} / 2\right)^{\ell_{2}}}{\ell_{2}!} \frac{\left(-p_{3} / 3\right)^{\ell_{3}}}{\ell_{3}!} \cdots \frac{\left(-p_{n} / n\right)^{\ell_{n}}}{\ell_{n}!} \cdots
\end{gathered}
$$

Equating the coefficients of $z^{j}$ in the latter and in $\sum_{j}(-1)^{j} s_{j} z^{j}$ expresses the elementary symmetric function $s_{\ell}$ in terms of sums-of-powers $p_{j}$ :

$$
(-1)^{j} s_{j}=\sum_{\ell_{1}+2 \ell_{2}+\ldots=j} \frac{\left(-p_{1} / 1\right)^{\ell_{1}}}{\ell_{1}!} \frac{\left(-p_{2} / 2\right)^{\ell_{2}}}{\ell_{2}!} \frac{\left(-p_{3} / 3\right)^{\ell_{3}}}{\ell_{3}!} \cdots \frac{\left(-p_{n} / n\right)^{\ell_{n}}}{\ell_{n}!} \ldots
$$

Since $\ell_{i} \geq 1$, the right-hand side of the latter is smaller than it might otherwise appear, namely, the formula for $s_{j}$ it terminates at the $j^{\text {th }}$ term:

$$
(-1)^{j} s_{j}=\sum_{\ell_{1}+2 \ell_{2}+\ldots+j \ell_{j}=j} \frac{\left(-p_{1} / 1\right)^{\ell_{1}}}{\ell_{1}!} \frac{\left(-p_{2} / 2\right)^{\ell_{2}}}{\ell_{2}!} \frac{\left(-p_{3} / 3\right)^{\ell_{3}}}{\ell_{3}!} \cdots \frac{\left(-p_{j} / j\right)^{\ell_{j}}}{\ell_{j}!}
$$

This expresses the elementary symmetric functions in terms of the symmetric power sums. Note that their is a clear limitation on the integers appearing in denominators.
[1] Girard's priority is mentioned in http://en.wikipedia.org/wiki/Newton\'s_identity

In the opposite direction, while we already know on general principles that the symmetric power sums are expressible in terms of the elementary symmetric functions, a variant of the above argument gives a formulaic expression, as follows. Again, the point is the device by which to recover the formula, not the formula itself.

From the intermediate result (above)

$$
\sum_{0 \leq j \leq n}(-1)^{j} s_{j} z^{j}=\prod_{i}\left(1-z x_{i}\right)=\exp \left(-\sum_{k \geq 1} \frac{z^{k} p_{k}}{k}\right)
$$

move the exp to the left-hand side, as a logarithm:

$$
\log \left(\sum_{0 \leq j \leq n}(-1)^{j} s_{j} z^{j}\right)=-\sum_{k \geq 1} \frac{z^{k} p_{k}}{k}
$$

Moving the sign to the other side,

$$
-\log \left(1-\sum_{1 \leq j \leq n}(-1)^{j-1} s_{j} z^{j}\right)=\sum_{k \geq 1} \frac{z^{k} p_{k}}{k}
$$

Expand the logarithm on the left-hand side:

$$
\begin{gathered}
\sum_{\ell \geq 1}\left(s_{1} z-s_{2} z^{2}+\ldots+(-1)^{n-1} s_{n} z^{n}\right)^{\ell} / \ell \\
=\sum_{\ell \geq 1} \sum_{k_{1}+k_{2},+\ldots+k_{n}=\ell} z^{k_{1}+2 k_{2}+\ldots+n k_{n}} \frac{1}{\ell}\left(\begin{array}{c}
\ell \\
\left.k_{1} \begin{array}{c}
k_{2} \ldots k_{n}
\end{array}\right) s_{1}^{k_{1}}\left(-s_{2}\right)^{k_{2}} \ldots\left((-1)^{n-1} s_{n}\right)^{k_{n}} \\
=\sum_{k_{1}, k_{2}, \ldots, k_{n}} z^{k_{1}+2 k_{2}+\ldots+n k_{n}} \frac{1}{k_{1}+k_{2}+\ldots+k_{n}}\binom{k_{1}+k_{2}+\ldots+k_{n}}{k_{1} k_{2} \ldots k_{n}} s_{1}^{k_{1}}\left(-s_{2}\right)^{k_{2}} \ldots\left((-1)^{n-1} s_{n}\right)^{k_{n}} \\
=\sum_{k \geq 1} z^{k} \sum_{k_{1}+2 k_{2}+\ldots+n k_{n}=k} \frac{\left(k_{1}+k_{2}+\ldots+k_{n}-1\right)!}{k_{1}!k_{2}!\ldots k_{n}!} s_{1}^{k_{1}}\left(-s_{2}\right)^{k_{2}} \ldots\left((-1)^{n-1} s_{n}\right)^{k_{n}}
\end{array} .\right.
\end{gathered}
$$

Equating coefficients of $z^{k}$,

$$
\sum_{k_{1}+2 k_{2}+\ldots+n k_{n}=k} \frac{\left(k_{1}+k_{2}+\ldots+k_{n}-1\right)!}{k_{1}!k_{2}!\ldots k_{n}!} s_{1}^{k_{1}}\left(-s_{2}\right)^{k_{2}} \ldots\left((-1)^{n-1} s_{n}\right)^{k_{n}}=\frac{p_{k}}{k}
$$

