Mapping subrings of \mathbb{Q} to \mathbb{Z} / N ?

Paul Garrett garrett@umn.edu https://www-users.cse.umn.edu/~garrett/

MathStackExchange question 4858256 asked why/whether something like

$$
\frac{1}{3}-\frac{1}{4}=\frac{1}{12} \quad(\text { in } \mathbb{Q})
$$

implies

$$
3^{-1}-4^{-1}=12^{-1} \quad(\text { in } \mathbb{Z} / 17)
$$

The equality of rational numbers is certainly a compelling heuristic for the corresponding equality mod 17 . But, at an elementary level, that is not a proof. Yes, the same sort of argument

$$
\frac{1}{3}-\frac{1}{4}=\frac{4}{12}-\frac{3}{12}=\frac{4-3}{12}=\frac{1}{12}
$$

where "putting everything over a common denominator" is multiplying through by 12 , immediately gives a proof of the mod-17 assertion:

$$
3^{-1}-4^{-1}=12^{-1} \cdot(4-3)=12^{-1} \bmod 17
$$

But the identity in \mathbb{Q} does not immediately, literally imply the corresponding identity mod 17 , at a completely elementary level. But, with slightly less elementary considerations about localization, the identity in \mathbb{Q} really does immediately give the identity in $\mathbb{Z} / 17$!

1. Localization

Let R be a commutative ring with 1, with no (proper) 0-divisors. For present purposes, a multiplicative subset S of R is a subset closed under multiplication, containing 1 , and not containing 0 . Since R has no 0 -divisors, it imbeds in its field of fractions K, and the localization $S^{-1} R$ of R can be described in a simpler fashion than the general case, as a subring of K : unsurprisingly,

$$
S^{-1} R=\left\{\frac{r}{s}: s \in S, r \in R\right\} \subset K
$$

Analogously, for a (proper, non-zero) ideal I of R, the localization $S^{-1} I$ is

$$
S^{-1} I=\left\{\frac{i}{s}: s \in S, i \in R\right\} \subset S^{-1} R
$$

The latter is an ideal of $S^{-1} R$: it is an abelian group, because

$$
\frac{i}{s}+\frac{i^{\prime}}{s^{\prime}}=\frac{s^{\prime} i+s i^{\prime}}{s s^{\prime}} \quad\left(\text { and } s^{\prime} i, s i^{\prime} \in I \text { because } I\right. \text { is an ideal) }
$$

and it is closed under multiplication by $S^{-1} R$:

$$
\frac{r}{s} \cdot \frac{i}{s^{\prime}}=\frac{r i}{s s^{\prime}} \quad(\text { and } r i \in I \text { because } I \text { is an ideal) }
$$

There is a natural commutative diagram

[1.1] Claim: When the image of S in R / I lies inside the units $(R / I)^{\times}$, the map $\varphi: R / I \longrightarrow S^{-1} R / S^{-1} I$ is an isomorphism.

Proof: (of claim) First, the injectivity. For $\varphi(r+I)=0$, it must be that $r=i / s$ for some $i \in I$ and $s \in S$. In R, this is equivalent to $s \cdot r=i$. Since s is has an inverse $t \bmod I$, this is equivalent to $r=t \cdot i \in I$.

For surjectivity: given r / s, find $r^{\prime} \in R$ such that $r / s-r \in S^{-1} I$. For an inverse t of $s \bmod I$,

$$
\frac{r}{s}-t \cdot r=\frac{r-s t \cdot r}{s}=\frac{r(1-s t)}{s}
$$

Since $1-s t \in I$, which is an ideal, that last expression is in $S^{-1} I$.
[1.2] Corollary: Under the previous condition on I and S, any identity in $S^{-1} R$ gives the corresponding identity in R / I.

Proof: Since $R / I \longrightarrow S^{-1} R / S^{-1} I$ is an isomorphism, there is a composite homomorphism

$$
S^{-1} R \longrightarrow S^{-1} R / S^{-1} I \longrightarrow R / S
$$

Any equality in $S^{-1} R$ maps forward to a corresponding equality in R / I.
[1.3] Corollary: Any algebraic identity in \mathbb{Q} maps forward to the corresponding identity in \mathbb{Z} / N, for every N relatively prime to all the denominators of the fractions in that identity.
[1.4] Corollary: For b prime to N, the image of the rational number a / b in \mathbb{Z} / N is $a b^{-1} \bmod N$.
Proof: The point is about b^{-1}. The equation $b \cdot c=1$ maps forward to the same equation mod N, so the image of the inverse of b in \mathbb{Q} maps to the inverse of b in \mathbb{Z} / N.
[1.5] Corollary: The identity $\frac{1}{3}-\frac{1}{4}=\frac{1}{12}$ in \mathbb{Q} implies $3^{-1}-4^{-1}=12^{-1}$ in \mathbb{Z} / N for all N prime to 2,3 .

