Proto-Quadratic-Reciprocity

```
Paul Garrett garrett@umn.edu https://www-users.cse.umn.edu/~garrett/
```


1. When is -1 a square $\bmod p$?

For p prime, $(\mathbb{Z} / p)^{\times}$is cyclic of order $p-1$. A square root of -1 would be of order 4 in that group. By Lagrange's theorem, it is necessary that $p=1 \bmod 4$ for this to be possible. The cyclicness shows that $p=1 \bmod 4$ is also sufficient.

2. Euler's criterion for squares mod p

Again, for p prime, $(\mathbb{Z} / p)^{\times}$is cyclic of order $p-1$. Thus, for odd p, non-zero $a \in \mathbb{Z} / p$ is a square if and only if $a^{\frac{p-1}{2}}=1 \bmod p$.

The quadratic symbol of $a \bmod p$ is

$$
\binom{a}{p}_{2}=\left\{\begin{array}{cc}
0 & \text { for } a=0 \bmod p \\
1 & \text { for } a \text { a non-zero square } \bmod p \\
-1 & \text { for } a \text { a non-zero non-square } \bmod p
\end{array}\right.
$$

Thus,

$$
\binom{a}{p}_{2}=a^{\frac{p-1}{2}} \bmod p
$$

The large exponent might seem to make this criterion useless in computations. However, using the square-and-multiply algorithm for computing powers, the total number of multiplications is only of the order of $\log p$.

3. When is -3 a square $\bmod p$?

It's easy to find $\sqrt{-3}$ appearing in a cyclotomic field: the third cyclotomic polynomial is merely quadratic:

$$
\Phi_{3}(x)=\frac{x^{3}-1}{x-1}=x^{2}+x+1
$$

so

$$
\omega=\frac{-1 \pm \sqrt{-3}}{2}
$$

Thus,

$$
\omega-\omega^{-1}=\sqrt{-3}
$$

Then, on one hand,

$$
\left(\omega-\omega^{-1}\right)^{p}=\omega^{p}+\omega^{-p} \quad(\bmod p \ldots \text { inner binomial coefficients are } 0 \bmod p)
$$

On the other hand, $\bmod p$,

$$
\left(\omega-\omega^{-1}\right)^{p}=(\sqrt{-3})^{p}=(-3)^{\frac{p-1}{2}} \cdot(\sqrt{-3})
$$

and (yes, we can divide $\bmod p$)

$$
\frac{\left(\omega-\omega^{-1}\right)^{p}}{\sqrt{-3}}=(-3)^{\frac{p-1}{2}}=\binom{-3}{p}_{2} \bmod p
$$

Thus, (with $p \neq 3$)

$$
\binom{-3}{p}_{2}=\frac{\omega^{p}-\omega^{-p}}{\sqrt{-3}}=\left\{\begin{array}{ll}
\frac{\omega-\omega^{-1}}{\sqrt{-3}} & \text { for } p=1 \bmod 3 \\
\frac{\omega^{-1}-\omega}{\sqrt{-3}} & \text { for } p=-1 \bmod 3
\end{array}=\left\{\begin{array}{cc}
1 & \text { for } p=1 \bmod 3 \\
-1 & \text { for } p=-1 \bmod 3
\end{array}\right.\right.
$$

From an elementary viewpoint, it is completely surprising that the outcome is periodic in p !

4. When is 2 a square $\bmod p$?

Of course, a primitive eighth root of unity ω is a zero of the eighth cyclotomic polynomial $\Phi_{8}(x)=\frac{x^{8}-1}{x^{4}-1}=$ $x^{4}+1$. Anticipating the irreducibility of this polyomial in $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$, the field extension $\mathbb{Q}(\omega)$ of \mathbb{Q} is of degree 4. Anticipating Galois theory, there should be an intermediate quadratic field. But we do not need to invoke that, because there is an appealing ad hoc device, demonstrating that intermediate quadratic field directly.
Namely, $\omega^{4}+1=0$ gives $\omega^{2}+\omega^{-2}=0$. The inverse-symmetry of this suggests looking for a lower-degree equation for $\alpha=\omega+\omega^{-1}$. As expected,

$$
\alpha^{2}=\left(\omega+\omega^{-1}\right)^{2}=\omega^{2}+2+\omega^{-2}=0+2=2
$$

With p an odd prime, on one hand,

$$
\left(\omega+\omega^{-1}\right)^{p}=\omega^{p}+\sum_{1 \leq k \leq p-1}\binom{p}{k} \omega^{p-k} \omega^{-k}+\omega^{-p}=\omega^{p}+\omega^{-p} \quad(\text { in } \mathbb{Z}[\omega] \bmod p \mathbb{Z}[\omega])
$$

On the other hand,

$$
\left.\left(\omega+\omega^{-1}\right)^{p}=(\sqrt{2})^{p}=2^{\frac{p-1}{2}} \cdot \sqrt{2} \quad \quad \text { (apparently in } \mathbb{Z}[\omega]\right)
$$

Thus,

$$
\omega^{p}+\omega^{-p}=2^{\frac{p-1}{2}} \cdot \sqrt{2} \quad(\text { in } \mathbb{Z}[\omega])
$$

and the same equality certainly holds in $\mathbb{Z}[\omega] / p \mathbb{Z}[\omega]$. Since $\operatorname{gcd}(2, p)=1, \sqrt{2}$ is invertible in the latter quotient ring, so divide through by $\sqrt{2}$:

$$
\binom{2}{p}_{2}=2^{\frac{p-1}{2}} \bmod p=\frac{\omega^{p}+\omega^{-p}}{\sqrt{2}} \bmod p= \begin{cases}\frac{\omega+\omega^{-1}}{\sqrt{2}} & \text { for } p=1 \bmod 8 \\ \frac{\omega^{3}+\omega^{-3}}{\sqrt{2}} & \text { for } p=3 \bmod 8 \\ \frac{\omega^{5}+\omega^{-5}}{\sqrt{2}} & \text { for } p=5 \bmod 8 \\ \frac{\omega^{7}+\omega^{-7}}{\sqrt{2}} & \text { for } p=7 \bmod 8\end{cases}
$$

The latter really is the explanatory answer. For specific numerical outcomes, a little computation gives

$$
\binom{2}{p}_{2}=\left\{\begin{array}{cl}
1 & \text { for } p=1,7 \bmod 8 \\
-1 & \text { for } p=3,5 \bmod 8
\end{array}\right.
$$

5. When is 5 a square $\bmod p$?

The appearance of $\sqrt{5}$ in cyclotomic fields is slightly less obvious, from an elementary viewpoint, than $\sqrt{2}$ and $\sqrt{-3}$. Still, it is iconic: a primitive fifth root of unity ω satisfies

$$
0=\frac{\omega^{5}-1}{\omega-1}=\omega^{4}+\omega^{3}+\omega^{2}+\omega+1
$$

The standard device to exploit front-to-back symmetry of that polynomial is to divide the latter equation by ω^{2}, and let $\alpha=\omega+\omega^{-1}$, so

$$
0=\omega^{2}+\omega+1+\omega^{-1}+\omega^{-2}=\left(\alpha^{2}-2\right)+\alpha+1=\alpha^{2}+\alpha-1
$$

Then

$$
\alpha=\frac{-1 \pm \sqrt{1+4}}{2}=\frac{-1 \pm \sqrt{5}}{2}
$$

By the way, taking the choice of sign to give a positive real number, this gives

$$
2 \cos 70^{\circ}=\frac{\sqrt{5}-1}{2}
$$

For purposes of computing $\binom{5}{p}_{2}$, rearrange the expression for α to $2 \alpha+1=\sqrt{5}$, which is

$$
\sqrt{5}=2 \omega+1+2 \omega^{-1}
$$

Then, for odd prime $p \neq 5, \bmod p$,

$$
\binom{5}{p}_{2}=5^{\frac{p-1}{2}}==\left(2 \omega^{2}+1+2 \omega^{-2}\right)^{p-1} \quad(\bmod p, \text { in } \mathbb{Z}[\omega])
$$

To be able to use the divisibility-by- p of the inner binomial/multinomial coefficients $\binom{p}{i}$, multiply through by $\sqrt{5}$, a unit $\bmod p$:

$$
\sqrt{5}\binom{5}{p}_{2}=\left(2 \omega+1+2 \omega^{-1}\right)^{p}=(2 \omega)^{p}+1^{p}+\left(2 \omega^{-1}\right)^{p} \quad(\bmod p, \text { in } \mathbb{Z}[\omega])
$$

By Fermat's Little Theorem, $2^{p}=2 \bmod p$, so this is

$$
\binom{5}{p}_{2}=\frac{2 \omega^{p}+1+2 \omega^{-p}}{\sqrt{5}}
$$

Already the qualitative point is clear, that the quadratic symbol is periodic in p mod 5 . Numerically,

$$
\binom{5}{p}_{2}=\left\{\begin{array}{llll}
\frac{2 \omega+1+2 \omega^{-1}}{\sqrt{5}}= & \frac{\sqrt{5}}{\sqrt{5}} & =1 & \text { for } p=1 \bmod 5 \\
\frac{2 \omega^{2}+1+2 \omega^{-2}}{\sqrt{5}} & = & = & \text { for } p=2 \bmod 5 \\
\frac{2 \omega^{3}+1+2 \omega^{-3}}{\sqrt{5}} & =\frac{2 \omega^{-2}+1+2 \omega^{2}}{\sqrt{5}} & =-1 & \text { for } p=3 \bmod 5 \\
\frac{2 \omega^{4}+1+2 \omega^{-4}}{\sqrt{5}} & =\frac{2 \omega+1+2 \omega^{-1}}{\sqrt{5}} & =1 & \text { for } p=4 \bmod 5
\end{array}\right.
$$

