(January 22, 2024)

The Small Wedderburn Theorem

Paul Garrett garrett@umn.edu https://www-users.cse.umn.edu/~garrett/

[0.1] Claim: Finite rings R (with 1, but not necessarily commutative) without (proper) zero-divisors are *division rings*, in the sense that every non-zero element has a multiplicative inverse.

Proof: In general, in a ring R without proper zero-divisors, the maps $x \to xb$ and $x \to bx$, for fixed non-zero b, are *injective*: indeed, if xb = x'b, then (x - x')b = 0, so x - x' = 0. The same argument applies on the other side.

In particular, for R finite, injectivity implies surjectivity.

Thus, for given $0 \neq b \in R$, there is $x \in R$ such that bx = 1. In fact, since $b(xb) = (bx)b = 1 \cdot b = b \cdot 1$, by cancellation we have also xb = 1, so x is a two-sided inverse to b. ///

In fact, the same proof mechanism shows:

[0.2] Claim: Finite rings R (not necessarily commutative) not necessarily with a 1, without proper zerodivisors, do have a unit 1.

Proof: Again, for $b \neq 0$, multiplication operators $x \to xb$ and $x \to bx$ are injective, due to absence of zero divisors. Finiteness of R implies surjectivity of these maps. Thus, given b, there is x such that bx = b. Then $b(xb) = (bx)b = b \cdot b$. By cancelling, xb = b, so x also acts as a unit (for b) on the other side.

For any other $c \in R$, similarly, $(cx)b = c(xb) = c \cdot b$, so cx = c. A similar argument shows that xc = x. Thus, x is a unit in R, in the sense of behaving like 1. ///

[0.3] Remark: The truth of the latter claim is interesting, but, perhaps, of minor interest. Still, it gives:

[0.4] Example: For integer m > 1 and prime p not dividing m, the subring R of \mathbb{Z}/mp , consisting of multiples of m, can be verified to satisfy the hypothesis of this last claim, so has a unit, even though it does not contain 1 mod mp. However, as soon as we see this, it's maybe obvious via Sun-Ze's theorem: there is $x \mod mp$ with $x = 0 \mod m$ and $x = 1 \mod p$, which is the unit in R.

[0.5] Theorem: (Wedderburn 1905, Dickson, et al) Finite rings R without proper zero divisors are *commutative*, that is, are *fields*.

Proof: Using the orbit-stabilizer theorem, consider the group R^{\times} acting on the set R^{\times} by conjugation $x \to bxb^{-1}$. That is,

$$\#R^{\times} = \sum_{x_o} \frac{\#R^{\times}}{\#G_{x_o}}$$

where G_{x_o} is the fixer/isotropy subgroup

$$G_{x_o} = \{ g \in R^{\times} : gx_o g^{-1} = x_o \}$$

Let Z be the center of R. It is a finite commutative ring without zero-divisors, so is a finite *field*, with cardinality q for some prime power q.

Also, $R_{x_o} = G_{x_o} \cup \{0\}$ is a subring of R: certainly $R_{x_o}^{\times}$ is a subgroup of R^{\times} , for general reasons, and, for $a, b \in G_{x_o}$,

$$(a+b)x_o = ax_o + bx_o = x_oa + x_ob = x_o(a+b)$$

Since R_{x_o} has no zero-divisors, it is a division ring. If we want to argue by induction, then, for non-central x_o , R_{x_o} is a proper subring of R, so has lesser cardinality, so is a field. As an overfield of Z it has cardinality q^m for some m. Since R is a vectorspace over R_{x_o} , it has cardinality $(q^m)^k$ for some k. That is, m|n.

In fact, a basic theory of module/vectorspaces over division rings is an easy extrapolation of vectorspaces over fields, so this induction is not strictly needed.

The orbit-stabilizer identity is

$$q^{n} - 1 = \# R^{\times} = \underbrace{1 + \ldots + 1}_{q-1} + \sum_{\text{non-central } x_{o}} \frac{q^{n} - 1}{q^{m} - 1}$$

where the first sum is over central elements, and where $m = m_{x_o}$ depends on x_o , and m|n, with m < n for non-central x_o .

Because $x^m - 1$ factors into cyclotomic polynomials $x^m - 1 = \prod_{d|m} \Phi_d(x)$ as polynomials with integer coefficients. Thus, for m|n and m < n, the polynomial $\Phi_n(x)$ divides the polynomial $\frac{x^n-1}{x^m-1}$. Since Φ_n has integer coefficients, $q^m - 1 = \prod_{d|m} \Phi_d(q)$ as integers, and $\Phi_n(q)$ divides the integer $\frac{q^n-1}{q^m-1}$.

From the orbit-stabilizer relation, $\Phi_n(q)$ divides q-1, if R is not commutative. To see that this is impossible, use the geometry of the complex numbers. Namely,

$$\Phi_n(q) = \prod_k (q - e^{2\pi i k/n})$$
 (product over k prime to n)

The complex-geometry fact is that, for such k, $|q - e^{2\pi i k/n}| > q - 1$. Thus, the product, which is an integer, is strictly larger than q - 1, so cannot divide q - 1.

So the center of R must be all of R.

[0.6] Example: In a more naive context, one surely might imagine that there'd be a finite-field analogue of the Hamiltonian quaternions

$$\mathbb{H} = \{a + bi + cj + dk : a, b, c, d \in \mathbb{R}\}$$

with the coefficients in \mathbb{F}_p . Take p > 2 to avoid -1 = +1. Yes, such a ring exists, and for p > 2 is non-commutative. However, since it is non-commutative, and *finite*, it must have 0-divisors, unlike \mathbb{H} .