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[0.1] Claim: Finite rings R (with 1, but not necessarily commutative) without (proper) zero-divisors are
division rings, in the sense that every non-zero element has a multiplicative inverse.

Proof: In general, in a ring R without proper zero-divisors, the maps x — xb and x — bz, for fixed non-zero
b, are injective: indeed, if xb = 2’b, then (z — 2')b = 0, so * — 2’ = 0. The same argument applies on the
other side.

In particular, for R finite, injectivity implies surjectivity.
Thus, for given 0 # b € R, there is € R such that bz = 1. In fact, since b(zb) = (bx)b=1-b=1b-1, by
cancellation we have also zb = 1, so x is a two-sided inverse to b. ///

In fact, the same proof mechanism shows:

[0.2] Claim: Finite rings R (not necessarily commutative) not necessarily with a 1, without proper zero-
divisors, do have a unit 1.

Proof: Again, for b # 0, multiplication operators x — xb and x — bz are injective, due to absence of zero
divisors. Finiteness of R implies surjectivity of these maps. Thus, given b, there is « such that bx = b. Then
b(ab) = (bx)b=1b-b. By cancelling, zb = b, so z also acts as a unit (for b) on the other side.

For any other ¢ € R, similarly, (cx)b = ¢(xb) = c¢-b, so cx = ¢. A similar argument shows that ¢ = x. Thus,
x is a unit in R, in the sense of behaving like 1. ///

[0.3] Remark: The truth of the latter claim is interesting, but, perhaps, of minor interest. Still, it gives:

[0.4] Example: For integer m > 1 and prime p not dividing m, the subring R of Z/mp, consisting of
multiples of m, can be verified to satisfy the hypothesis of this last claim, so has a unit, even though it does
not contain 1 mod mp. However, as soon as we see this, it’s maybe obvious via Sun-Ze’s theorem: there is
x mod mp with £ = 0 mod m and x = 1 mod p, which is the unit in R.

[0.5] Theorem: (Wedderburn 1905, Dickson, et al) Finite rings R without proper zero divisors are
commutative, that is, are fields.

Proof: Using the orbit-stabilizer theorem, consider the group R* acting on the set R* by conjugation
x — bxb~!. That is,

#RY =) #1

where G is the fixer/isotropy subgroup

1

Gwo = {g € R® 19%og T = 1‘0}

Let Z be the center of R. It is a finite commutative ring without zero-divisors, so is a finite field, with
cardinality ¢ for some prime power q.

Also, R, = G, U{0} is a subring of R: certainly R is a subgroup of R*, for general reasons, and, for
a,be Gy,
(a+b)x, = ax, +bxr, = xoa+ 2,0 = x,(a+b)
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Since R,, has no zero-divisors, it is a division ring. If we want to argue by induction, then, for non-central
%o, Ry, is a proper subring of R, so has lesser cardinality, so is a field. As an overfield of Z it has cardinality
g™ for some m. Since R is a vectorspace over R,_, it has cardinality (¢™)* for some k. That is, m|n.

In fact, a basic theory of module/vectorspaces over division rings is an easy extrapolation of vectorspaces
over fields, so this induction is not strictly needed.

The orbit-stabilizer identity is

q’ﬂ 1
"—1=#R* =1+4+...+1+ E
q

g—1 non—central z,

where the first sum is over central elements, and where m = m,_ depends on z,, and m|n, with m < n for
non-central x,.

Because ™ — 1 factors into cyclotomic polynomials z™ — 1 = [] dm ®,(z) as polynomials with integer

—1
1

coefficients. Thus, for m|n and m < n, the polynomial ®,,(x) divides the polynomial f; Since ®,, has

q"—1
qm—1°

integer coefficients, ¢" — 1 =[] ,,, ®a(q) as integers, and ®,,(q) divides the integer

From the orbit-stabilizer relation, ®,,(¢) divides ¢—1, if R is not commutative. To see that this is impossible,
use the geometry of the complex numbers. Namely,

D,(q) = H(q - 62’”’“/”) (product over k prime to n)
k

The complex-geometry fact is that, for such k, |¢ — 62”’“/”| > q — 1. Thus, the product, which is an integer,
is strictly larger than ¢ — 1, so cannot divide ¢ — 1.

So the center of R must be all of R. /]

[0.6] Example: In a more naive context, one surely might imagine that there’d be a finite-field analogue of
the Hamiltonian quaternions
H = {a+bi+cj+dk:a,b,cdeR}

with the coefficients in F,. Take p > 2 to avoid —1 = +1. Yes, such a ring exists, and for p > 2 is
non-commutative. However, since it is non-commutative, and finite, it must have 0-divisors, unlike H.




