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[0.1] Claim: Finite rings R (with 1, but not necessarily commutative) without (proper) zero-divisors are
division rings, in the sense that every non-zero element has a multiplicative inverse.

Proof: In general, in a ring R without proper zero-divisors, the maps x→ xb and x→ bx, for fixed non-zero
b, are injective: indeed, if xb = x′b, then (x − x′)b = 0, so x − x′ = 0. The same argument applies on the
other side.

In particular, for R finite, injectivity implies surjectivity.

Thus, for given 0 6= b ∈ R, there is x ∈ R such that bx = 1. In fact, since b(xb) = (bx)b = 1 · b = b · 1, by
cancellation we have also xb = 1, so x is a two-sided inverse to b. ///

In fact, the same proof mechanism shows:

[0.2] Claim: Finite rings R (not necessarily commutative) not necessarily with a 1, without proper zero-
divisors, do have a unit 1.

Proof: Again, for b 6= 0, multiplication operators x → xb and x → bx are injective, due to absence of zero
divisors. Finiteness of R implies surjectivity of these maps. Thus, given b, there is x such that bx = b. Then
b(xb) = (bx)b = b · b. By cancelling, xb = b, so x also acts as a unit (for b) on the other side.

For any other c ∈ R, similarly, (cx)b = c(xb) = c · b, so cx = c. A similar argument shows that xc = x. Thus,
x is a unit in R, in the sense of behaving like 1. ///

[0.3] Remark: The truth of the latter claim is interesting, but, perhaps, of minor interest. Still, it gives:

[0.4] Example: For integer m > 1 and prime p not dividing m, the subring R of Z/mp, consisting of
multiples of m, can be verified to satisfy the hypothesis of this last claim, so has a unit, even though it does
not contain 1 mod mp. However, as soon as we see this, it’s maybe obvious via Sun-Ze’s theorem: there is
x mod mp with x = 0 mod m and x = 1 mod p, which is the unit in R.

[0.5] Theorem: (Wedderburn 1905, Dickson, et al) Finite rings R without proper zero divisors are
commutative, that is, are fields.

Proof: Using the orbit-stabilizer theorem, consider the group R× acting on the set R× by conjugation
x→ bxb−1. That is,

#R× =
∑
xo

#R×

#Gxo

where Gxo is the fixer/isotropy subgroup

Gxo = {g ∈ R× : gxog
−1 = xo}

Let Z be the center of R. It is a finite commutative ring without zero-divisors, so is a finite field, with
cardinality q for some prime power q.

Also, Rxo
= Gxo

∪ {0} is a subring of R: certainly R×xo
is a subgroup of R×, for general reasons, and, for

a, b ∈ Gxo ,

(a + b)xo = axo + bxo = xoa + xob = xo(a + b)
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Since Rxo has no zero-divisors, it is a division ring. If we want to argue by induction, then, for non-central
xo, Rxo is a proper subring of R, so has lesser cardinality, so is a field. As an overfield of Z it has cardinality
qm for some m. Since R is a vectorspace over Rxo

, it has cardinality (qm)k for some k. That is, m|n.

In fact, a basic theory of module/vectorspaces over division rings is an easy extrapolation of vectorspaces
over fields, so this induction is not strictly needed.

The orbit-stabilizer identity is

qn − 1 = #R× = 1 + . . . + 1︸ ︷︷ ︸
q−1

+
∑

non−central xo

qn − 1

qm − 1

where the first sum is over central elements, and where m = mxo depends on xo, and m|n, with m < n for
non-central xo.

Because xm − 1 factors into cyclotomic polynomials xm − 1 =
∏
d|m Φd(x) as polynomials with integer

coefficients. Thus, for m|n and m < n, the polynomial Φn(x) divides the polynomial xn−1
xm−1 . Since Φn has

integer coefficients, qm − 1 =
∏
d|m Φd(q) as integers, and Φn(q) divides the integer qn−1

qm−1 .

From the orbit-stabilizer relation, Φn(q) divides q−1, if R is not commutative. To see that this is impossible,
use the geometry of the complex numbers. Namely,

Φn(q) =
∏
k

(q − e2πik/n) (product over k prime to n)

The complex-geometry fact is that, for such k, |q− e2πik/n| > q− 1. Thus, the product, which is an integer,
is strictly larger than q − 1, so cannot divide q − 1.

So the center of R must be all of R. ///

[0.6] Example: In a more naive context, one surely might imagine that there’d be a finite-field analogue of
the Hamiltonian quaternions

H = {a + bi + cj + dk : a, b, c, d ∈ R}

with the coefficients in Fp. Take p > 2 to avoid −1 = +1. Yes, such a ring exists, and for p > 2 is
non-commutative. However, since it is non-commutative, and finite, it must have 0-divisors, unlike H.
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