The Small Wedderburn Theorem

Paul Garrett garrett@umn.edu https://www-users.cse.umn.edu/ garrett/
[0.1] Claim: Finite rings R (with 1, but not necessarily commutative) without (proper) zero-divisors are division rings, in the sense that every non-zero element has a multiplicative inverse.

Proof: In general, in a ring R without proper zero-divisors, the maps $x \rightarrow x b$ and $x \rightarrow b x$, for fixed non-zero b, are injective: indeed, if $x b=x^{\prime} b$, then $\left(x-x^{\prime}\right) b=0$, so $x-x^{\prime}=0$. The same argument applies on the other side.

In particular, for R finite, injectivity implies surjectivity.
Thus, for given $0 \neq b \in R$, there is $x \in R$ such that $b x=1$. In fact, since $b(x b)=(b x) b=1 \cdot b=b \cdot 1$, by cancellation we have also $x b=1$, so x is a two-sided inverse to b.

In fact, the same proof mechanism shows:
[0.2] Claim: Finite rings R (not necessarily commutative) not necessarily with a 1, without proper zerodivisors, do have a unit 1.

Proof: Again, for $b \neq 0$, multiplication operators $x \rightarrow x b$ and $x \rightarrow b x$ are injective, due to absence of zero divisors. Finiteness of R implies surjectivity of these maps. Thus, given b, there is x such that $b x=b$. Then $b(x b)=(b x) b=b \cdot b$. By cancelling, $x b=b$, so x also acts as a unit (for b) on the other side.

For any other $c \in R$, similarly, $(c x) b=c(x b)=c \cdot b$, so $c x=c$. A similar argument shows that $x c=x$. Thus, x is a unit in R, in the sense of behaving like 1 .
[0.3] Remark: The truth of the latter claim is interesting, but, perhaps, of minor interest. Still, it gives:
[0.4] Example: For integer $m>1$ and prime p not dividing m, the subring R of $\mathbb{Z} / m p$, consisting of multiples of m, can be verified to satisfy the hypothesis of this last claim, so has a unit, even though it does not contain $1 \bmod m p$. However, as soon as we see this, it's maybe obvious via Sun-Ze's theorem: there is $x \bmod m p$ with $x=0 \bmod m$ and $x=1 \bmod p$, which is the unit in R.
[0.5] Theorem: (Wedderburn 1905, Dickson, et al) Finite rings R without proper zero divisors are commutative, that is, are fields.

Proof: Using the orbit-stabilizer theorem, consider the group R^{\times}acting on the set R^{\times}by conjugation $x \rightarrow b x b^{-1}$. That is,

$$
\# R^{\times}=\sum_{x_{o}} \frac{\# R^{\times}}{\# G_{x_{o}}}
$$

where $G_{x_{o}}$ is the fixer/isotropy subgroup

$$
G_{x_{o}}=\left\{g \in R^{\times}: g x_{o} g^{-1}=x_{o}\right\}
$$

Let Z be the center of R. It is a finite commutative ring without zero-divisors, so is a finite field, with cardinality q for some prime power q.

Also, $R_{x_{o}}=G_{x_{o}} \cup\{0\}$ is a subring of R : certainly $R_{x_{o}}^{\times}$is a subgroup of R^{\times}, for general reasons, and, for $a, b \in G_{x_{o}}$,

$$
(a+b) x_{o}=a x_{o}+b x_{o}=x_{o} a+x_{o} b=x_{o}(a+b)
$$

Since $R_{x_{o}}$ has no zero-divisors, it is a division ring. If we want to argue by induction, then, for non-central $x_{o}, R_{x_{o}}$ is a proper subring of R, so has lesser cardinality, so is a field. As an overfield of Z it has cardinality q^{m} for some m. Since R is a vectorspace over $R_{x_{o}}$, it has cardinality $\left(q^{m}\right)^{k}$ for some k. That is, $m \mid n$.

In fact, a basic theory of module/vectorspaces over division rings is an easy extrapolation of vectorspaces over fields, so this induction is not strictly needed.

The orbit-stabilizer identity is

$$
q^{n}-1=\# R^{\times}=\underbrace{1+\ldots+1}_{q-1}+\sum_{\text {non-central } x_{o}} \frac{q^{n}-1}{q^{m}-1}
$$

where the first sum is over central elements, and where $m=m_{x_{o}}$ depends on x_{o}, and $m \mid n$, with $m<n$ for non-central x_{o}.

Because $x^{m}-1$ factors into cyclotomic polynomials $x^{m}-1=\prod_{d \mid m} \Phi_{d}(x)$ as polynomials with integer coefficients. Thus, for $m \mid n$ and $m<n$, the polynomial $\Phi_{n}(x)$ divides the polynomial $\frac{x^{n}-1}{x^{m}-1}$. Since Φ_{n} has integer coefficients, $q^{m}-1=\prod_{d \mid m} \Phi_{d}(q)$ as integers, and $\Phi_{n}(q)$ divides the integer $\frac{q^{n}-1}{q^{m}-1}$.
From the orbit-stabilizer relation, $\Phi_{n}(q)$ divides $q-1$, if R is not commutative. To see that this is impossible, use the geometry of the complex numbers. Namely,

$$
\Phi_{n}(q)=\prod_{k}\left(q-e^{2 \pi i k / n}\right) \quad(\text { product over } k \text { prime to } n)
$$

The complex-geometry fact is that, for such $k,\left|q-e^{2 \pi i k / n}\right|>q-1$. Thus, the product, which is an integer, is strictly larger than $q-1$, so cannot divide $q-1$.

So the center of R must be all of R.
[0.6] Example: In a more naive context, one surely might imagine that there'd be a finite-field analogue of the Hamiltonian quaternions

$$
\mathbb{H}=\{a+b i+c j+d k: a, b, c, d \in \mathbb{R}\}
$$

with the coefficients in \mathbb{F}_{p}. Take $p>2$ to avoid $-1=+1$. Yes, such a ring exists, and for $p>2$ is non-commutative. However, since it is non-commutative, and finite, it must have 0 -divisors, unlike \mathbb{H}.

