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Among all linear operators on Hilbert spaces, the compact ones (defined below) are the simplest, and most
imitate the more familiar linear algebra of finite-dimensional operator theory. In addition, these are of
considerable practical value and importance. We prove a spectral theorem for self-adjoint operators with
minimal fuss. Thus, we do not invoke broader discussions of properties of spectra. We only need the Cauchy-
Schwarz-Bunyakowsky inequality and the definition of self-adjoint compact operator. It is true that various
points here admit great generalization, and receive definitive treatment only in such general setting.

• Compact operators: definition
• Clever expression for the operator norm
• Spectral Theorem for self-adjoint compact operators

1. Compact operators: definition

A set in a topological space is called pre-compact if its closure is compact. (Beware, sometimes this has a
more restrictive meaning.) A linear operator T : X → Y from a pre-Hilbert space X to a Hilbert space Y is
compact if it maps the unit ball in X to a pre-compact set in Y . Equivalently, T is compact if and only if
it maps bounded sequences in X to sequences in Y with convergent subsequences.

Such operators are the most amenable. Sources of such operators will be considered elsewhere. For the
moment we need only concentrate on the defining property, and its use in proof of the spectral theorem
below.

2. Clever expression for the operator norm

First is a little lemma, useful other places as well, which provides a necessary alternative expression for the
uniform norm

|T | = |T |unif = sup
|x|≤1

|Tx|

of a continuous linear operator T from a Hilbert space X to itself. For present purposes, we say that a
(continuous) linear operator T : X → X is self-adjoint if

〈Tx, y〉 = 〈x, Ty〉

for all x, y ∈ X.

[2.0.1] Lemma: For T a self-adjoint (continuous linear) operator on a pre-Hilbert space X

|T | = sup
|x|≤1

|〈Tx, x〉|

Proof: Let s be that supremum. By the Cauchy-Schwarz-Bunyakowsky inequality s ≤ |T |.

For any x, y ∈ X
2|〈Tx, y〉+ 〈Ty, x〉| = |〈T (x+ y), x+ y〉 − 〈T (x− y), x− y〉|

≤ |〈T (x+ y), x+ y〉|+ |〈T (x− y), x− y〉| ≤ s|x+ y|2 + s|x− y|2 = 2s(|x|2 + |y|2)
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Let y = t · Tx with t > 0. Using the self-adjointness of T ,

|µ̄〈Tx, y〉+ µ〈Ty, x〉| = |〈Tx, y〉|+ |〈Ty, x〉|

Dividing by 2,
|〈Tx, y〉|+ |〈Ty, x〉| ≤ s(|x|2 + |y|2)

Divide through by t and set t2 = |Tx|/|x| to minimize the right-hand side. This gives

|〈Tx, Tx〉|+ |〈T 2y, x〉| ≤ 2s|x||Tx|

and
2|〈Tx, Tx〉| ≤ 2s|x||Tx| ≤ 2s|x|2|T |

The smallest non-negative s for which this inequality is assured to hold for all x ∈ X is |T | itself. ///

3. Spectral theorem

Let T be a self-adjoint compact operator on a (non-zero) Hilbert space X. For complex λ, let Xλ be the
λ-eigenspace

Xλ = {x ∈ X : Tx = λx}

of T on X.

[3.0.1] Theorem:
• The completion of ⊕Xλ is all of X. That is, there is an orthonormal basis consisting of eigenvectors.
• The only possible accumulation point of the set of eigenvalues is 0, and if X is infinite-dimensional it is an
accumulation point.
• The eigenspaces Xλ are finite-dimensional.
• All the eigenvalues are real.
• One or the other of ±|T | is an eigenvalue of T

Proof: The last assertion is the most crucial technical point. To prove it, we use the fact that for self-adjoint
T we have

|T | = sup
|x|≤1

|〈Tx, x〉|

And note that because T is self-adjoint any value 〈Tx, x〉 is real. Then choose a sequence {xn} so that
|xn| ≤ 1 and |〈Tx, x〉| → |T |. Then, replacing it by a subsequence if necessary, the sequence 〈Tx, x〉 of real
numbers has a limit λ = ±|T |.

Then
0 ≤ |Txn − λxn|2 = 〈Txn − λxn, Txn − λxn〉

= |Txn|2 − 2λ〈Txn, xn〉+ λ2|xn|2 ≤ λ2 − 2λ〈Txn, xn〉+ λ2

The right-hand side goes to 0. Invoking the compactness of T , we can replace xn by a subsequence so as
to be able to assume without loss of generality that Txn converges to some vector y. Then the previous
inequality shows that λxn converges to y. For λ = 0, we have |T | = 0, so T = 0. For λ 6= 0, λxn → y implies

xn → λ−1y

Thus, letting x = λ−1y, we have
Tx = λx
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and x is the desired eigenvector with eigenvalue ±|T |. ///

Now we use a sort of induction. Let Y be the completion of the sum of all the eigenspaces. Then Y is
T -stable. Let Z = Y ⊥. We claim that Z is also T -stable, and that on the Hilbert space Z the (restriction
of) T is a compact operator. Indeed, for z ∈ Z and y ∈ Y , we have

〈Tz, y〉 = 〈z, Ty〉 = 0

which proves stability easily. And the unit ball in Z is certainly a subset of the unit ball B in X, so is
mapped by T to a pre-compact set TB ∩Z in X. Since Z is closed in X, the intersection TB ∩Z of Z with
the pre-compact set TB is pre-compact. This proves that T restricted to Z = Y ⊥ is still compact. The
self-adjoint-ness is clear.

Let T1 be the restriction of T to Z. By construction, T1 has no eigenvalues on Z, since any such eigenvalue
would also be an eigenvalue of T on Z. But unless Z = {0} this would contradict the previous argument
which showed that ±|T1| is an eigenvalue on a non-zero Hilbert space. Thus, it must be that the completion
of the sum of the eigenspaces is all of X. ///

Before proceeding, note that in an infinite-dimensional Hilbert space Y a ball B of positive radius r > 0
is not pre-compact. Indeed, let {e1, e2, . . .} be a Hilbert space basis. Then {re1, re2, re3. . . .} is a sequence
with no convergent subsequence, because all these points are distance r

√
2 apart.

To prove that the eigenspaces are finite-dimensional, and that there are only finitely-many eigenvalues λ
with |λ| > ε for given ε > 0, let B be the unit ball in

Y =
∑
|λ|>ε

Xλ

Then the image of B by T contains the ball of radius ε in Y . Since T is compact, this ball must be
pre-compact, so it must be that Y is finite-dimensional. Thus, since the dimensions of the Xλ are positive
integers, there can be only finitely-many of them with |λ| > ε, and each must be finite-dimensional. It follows
that the only possible accumulation point of the set of eigenvalues is 0. Further, if X is infinite-dimensional,
0 must be an accumulation point. ///

Finally, we prove that all eigenvalues are real. Indeed, let x ∈ Xλ. Then

λ〈x, x〉 = 〈Tx, x〉 = 〈x, Tx〉 = 〈Tx, x〉

which implies that λ is real if x 6= 0. ///

4. Construction of compact operators

[4.0.1] Proposition: Uniform-norm limits of compact operators on Banach spaces are compact.

Proof: Let Tn → T in uniform operator norm, where the Tn are compact. Given ε > 0, let n be sufficiently
large such that |Tn − T | < ε/2. Since Tn(B) is pre-compact, there are finitely many points y1, . . . , yt such
that for any x ∈ B there is i such that |Tnx− yi| < ε/2. By the triangle inequality

|Tx− yi| ≤ |Tx− Tnx|+ |Tnx− yi| < ε

This proves that T (B) is covered by finitely many balls of radius ε. ///

[4.0.2] Remark: The σ-finiteness hypothesis in the following theorem is necessary to make Fubini’s theorem
work as expected.
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[4.0.3] Theorem: (Hilbert-Schmidt) Let X,µ and Y, ν be σ-finite measure spaces. Let K ∈ L2(X×Y, µ⊗ν).
Then the operator

T : L2(X,µ)→ L2(Y, ν)

defined by

Tf(y) =

∫
X

K(x, y) f(x) dµ(x)

is a compact operator.

Proof: We grant ourselves that, for orthonormal bases ϕα for L2(X) and ψβ for L2(Y ), the collection of
functions ϕα(x)ψβ(y) is an orthonormal basis for L2(X × Y ). This plausible result is non-trivial, needing
Fubini’s theorem and the σ-finiteness. Thus,

K(x, y) =
∑
ij

cij ϕi(x) ψj(y)

with complex cij , where we should not initially presume that the index set is countable. The square-
integrability asserts that ∑

ij

|cij |2 = |K|2L2(X×Y ) <∞

In particular, this implies that the indexing sets can be taken to be countable, since an uncountable sum of
positive reals cannot converge. Then, given f ∈ L2(X), the image Tf is in L2(Y ), since

Tf(y) =
∑
ij

cij〈f, ϕi〉ψj(y)

whose L2(Y ) norm is easily estimated by

|Tf |22 ≤
∑
ij

|cij |2|〈f, ϕi〉|2 |ψj |22 ≤ |f |22
∑
ij

|cij |2 |ϕi|22 |ψj |22 = |f |22
∑
ij

|cij |2 = |f |22 · |K|2L2(X×Y )

We claim that we can write

K(x, y) =
∑
i

ϕi(x)Tϕi(y)

Indeed, the inner product in L2(X × Y ) of the right-hand side against any ϕi(x)ψj(y) agrees with the inner
product of the latter against K(x, y). In particular, with the coefficients cij from above, we see that

Tϕi =
∑
j

cij ψj

Since
∑
ij |cij |2 converges,

lim
i
|Tϕi|2 = lim

i
|cij |2 = 0

In fact, for the same reason,

lim
n

∑
i>n

|Tϕi|2 = lim
n

∑
i>n

|cij |2 = 0

This fact is essential just below.

Truncate the kernel K by

Kn(x, y) =
∑

1≤i≤n

ϕi(x)Tϕi(y)
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These give the obvious finite-rank operators

Tnf(y) =

∫
X

Kn(x, y) f(x) dx

Granting that any n-dimensional subspace of a Hilbert space is isomorphic to Cn, with all open balls pre-
compact, these operators are compact. We claim that they approach T in operator norm. Indeed, let
g =

∑
i ciϕi be in L2(X). Then

(T − Tn)g(y) =
∑
i>n

bi Tϕi(y)

and by the triangle inequality and Cauchy-Schwarz-Bunyakowsky inequality

|(T − Tn)g(y)| ≤
∑
i>n

|bi|2 |Tϕi|2 ≤

(∑
i>n

|bi|2
)1/2 (∑

i>n

|Tϕi|22

)1/2

≤ |g|2 ·

(∑
i>n

|Tϕi|22

)1/2

As observed in the previous paragraph,

lim
n

∑
i>n

|Tϕi|22 = 0

Thus, |T − Tn| → 0. ///

[4.0.4] Remark: Given the σ-finiteness of the measure spaces, the argument above is correct whether K is
measurable with respect to the product sigma-algebra or only with respect to the completion.

5. Limits of finite-rank operators

A continuous linear operator is of finite rank if its image is finite-dimensional. Note that a finite-rank
operator is compact, since all balls are pre-compact in a finite-dimensional Banach space.

[5.0.1] Theorem: A compact operator T : X → Y with Y a Hilbert space is a uniform operator norm limit
of finite rank operators, and conversely.

Proof: The converse is a special case of the previous theorem that operator norm limits of compact operators
are compact (even in Banach spaces), since finite-rank operators are compact.

Let B be the closed unit ball in X. Since T (B) is pre-compact it is totally bounded, so for given ε > 0
cover T (B) by open balls of radius ε centered at points y1, . . . , yn. Let p be the orthogonal projection to the
finite-dimensional subspace F spanned by the yi and define Tε = p ◦T . Note that for any y ∈ Y and for any
yi

|p(y)− yi| ≤ |y − yi|

since y = p(y) + y′ with y′ orthogonal to all yi. For x in X with |x| ≤ 1, by construction there is yi such
that |Tx− yi| < ε. Then

|Tx− Tεx| ≤ |Tx− yi|+ |Tεx− yi| < ε+ ε

Thus, TεT in operator norm as ε→ 0. ///

[5.0.2] Remark: The conclusion of the previous theorem is known to be false in Banach spaces, although the
only example known to this author (Per Enflo, Acta Math., vol. 130, 1973) is rather complicated. Certainly
the previous argument using orthogonal projections cannot be employed.

[5.0.3] Remark: In the proof above that Hilbert-Schmidt operators are compact, we needed the fact that
finite-dimensional subspaces of Hilbert spaces are linearly homeomorphic to Cn with its usual topology. In
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fact, it is true that any finite dimensional topological vector space is linearly homeomorphic to Cn. That
is, we need not assume that the space is a Hilbert space, a Banach space, a Frechet space, locally convex,
or anything else. However, the general argument is most reasonably a by-product of the development of
the general theory of topological vector spaces, and is best delayed until we do that. Thus, we give more
elementary and immediate proofs that apply to Hilbert and Banach spaces, despite the fact that these
hypotheses are needlessly strong.

[5.0.4] Lemma: Let W be a finite-dimensional subspace of a pre-Hilbert space V . Let w1, . . . , wn be a
C-basis of W . Then the continuous linear bijection

ϕ : Cn →W

by

ϕ(z1, . . . , zn) =
∑
i

zi · wi

is a homeomorphism. And W is closed.

Proof: Because vector addition and scalar multiplication are continuous, the map ϕ is continuous. It is
obviously linear, and since the wi are linearly independent it is an injection.

Let v1, . . . , vn be an orthonormal basis for W . Consider the continuous linear functionals

λi(v) = 〈v, vi〉

As intended, we have λi(vj) = 0 for i 6= j, and λi(vi) = 1. Define continuous linear ψ : W → Cn by

ψ(v) = (λ1(v), . . . , λn(v))

The inverse map to ψ is continuous, because vector addition and scalar multiplication are continuous. Thus,
ψ is a linear homeomorphism W ≈ Cn.

Generally, we can use Gram-Schmidt to create an orthonormal basis vi from a given basis wi. Let e1, . . . , en
be the standard basis of Cn. Let fi = ψ(wi) be the inverse images in Cn of the wi. Let A : Cn → Cn be a
linear homeomorphism Cn → Cn sending ei to fi, that is, Aei = fi. Then

ϕ = ψ−1 ◦A : Cn →W

since both ϕ and ψ−1 ◦A send ei to wi. Both ψ and A are linear homeomorphisms, so the composition ϕ is
also.

Since Cn is a complete metric space, so is its homeomorphic image W , so W is necessarily closed. ///

Now we give a somewhat different proof of the uniqueness of topology on finite-dimensional normed
spaces, using the Hahn-Banach theorem. Again, we anticipate that invocation of Hahn-Banach is actually
unnecessary, since the same conclusion will be reached (later) without any assumption of local convexity.
The only difference in the proof is the method of proving existence of sufficiently many linear functionals.

[5.0.5] Lemma: Let W be a finite-dimensional subspace of a normed space V . Let w1, . . . , wn be a C-basis
of W . Then the continuous linear bijection

ϕ : Cn →W

by

ϕ(z1, . . . , zn) =
∑
i

zi · wi
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is a homeomorphism. And W is closed.

Proof: Let v1 be a non-zero vector in W , and from Hahn-Banach let λ1 be a continuous linear functional
on W such that λ1(v1) = 1. By the (algebraic) isomorphism theorem

image λ1 ≈W/ kerλ1

so dimW/ kerλ1 = 1. Take v2 6= 0 in kerλ1 and continuous linear functional λ2 such that λ2(v2) = 1.
Replace v1 by v1 − λ2(v1)v2. Then still λ1(v1) = 1 and also λ2(v1) = 0. Thus, λ1 and λ2 are linearly
independent, and

(λ1, λ2) : W → C2

is a surjection. Choose v3 6= 0 in kerλ1 ∩ kerλ2, and λ3 such that λ3(v3) = 1. Replace v1 by v1 − λ3(v1)v3
and v2 by v2 − λ3(v2)v3. Continue similarly until⋂

kerλi = {0}

Then we obtain a basis v1, . . . , vn for W and an continuous linear isomorphism

ψ = (λ1, . . . , λn) : W → Cn

that takes vi to the standard basis element ei of Cn. On the other hand, the continuity of scalar multiplication
and vector addition assures that the inverse map is continuous. Thus, ψ is a continuous isomorphism.

Now let fi = ψ(wi), and let A be a (continuous) linear isomorphism Cn → Cn such that Aei = fi. Then
ϕ = ψ−1 ◦A is a continuous linear isomorphism.

Finally, since W is linearly homeomorphic to Cn, which is complete, any finite-dimensional subspace of a
normed space is closed. ///

[5.0.6] Remark: The proof for normed spaces works in any topological vector space in which Hahn-
Banach holds. We will see later that this is so for all locally convex spaces. Nevertheless, as we will see,
this hypothesis is unnecessary, since finite-dimensional subspaces of arbitrary topological vector spaces are
linearly homeomorphic to Cn.
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