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We describe a useful class of topological vectorspaces [1] V so that continuous compactly-supported V -valued
functions have integrals with respect to finite Borel measures. Rather than constructing integrals as limits
following [Bochner 1935], [Birkhoff 1935], et alia, we use the [Gelfand 1936]-[Pettis 1938] characterization of
integrals, which has good functorial properties and gives a forceful categorical reason for uniqueness. The
issue is existence.

A convenient property of topological vectorspaces guaranteeing existence of Gelfand-Pettis integrals is quasi-
completeness, discussed below. Hilbert, Banach, Fréchet, and LF spaces fall in this class, as do their weak-star
duals, and other spaces of mappings such as the strong operator topology on mappings between Hilbert spaces,
in addition to the uniform operator topology.

A compelling application of this integration theory is to holomorphic vector-valued functions, with well-
known application to the resolvents of operators on Hilbert and Banach spaces, as in [Dunford 1938] and
[Taylor 1938]. In these sources Liouville’s theorem on bounded entire C-valued functions is invoked to prove
that a bounded operator on a Hilbert or Banach spaces has non-empty spectrum. A more sophisticated
application is to meromorphically-continued Eisenstein series.

Another sort of application of holomorphic and meromorphic vector-valued functions is to generalized
functions, as in [Gelfand-Shilov 1964], studying holomorphically parametrized families of distributions. Many
distributions which are not classical functions appear naturally as residues or analytic continuations of
families of classical functions with a complex parameter.

A good theory of integration allows a natural treatment of convolutions of distributions with test functions,
and related operations.

Two basic auxiliary results are proven about bounded sets in topological vector spaces, the first attributed
in [Horvath 1966] to Dieudonné-Schwartz. This result also appears in [Bourbaki 1987], III.5. The second
is preparation to invoke a form of the Banach-Steinhaus theorem in situations where the Baire category
argument is not directly applicable.

1. Gelfand-Pettis integrals

Let V be a complex topological vectorspace. Let f be a measurable V -valued function on a measure space
X. A Gelfand-Pettis integral of f would be a vector If ∈ V so that,

λ(If ) =

∫
X

λ ◦ f (for all λ ∈ V ∗)

[1] All vectorspaces here are complex, or possibly real, as opposed to p-adic or other possibilities.
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Assuming that it exists and is unique, this vector If would be denoted by

If =

∫
X

f

By contrast to construction of integrals as limits of finite sums, this definition gives a property that no
reasonable notion of integral would lack, without asking how the property comes to be. Since this property
is an irreducible minimum, this definition of integral is called a weak integral.

Uniqueness of the integral is immediate when V ∗ separates points, as for locally convex spaces by Hahn-
Banach. Similarly, linearity of f → If follows when V ∗ separates points. Thus, the issue is existence.
[2]

The functions we integrate are relatively nice: compactly-supported and continuous, on measure spaces with
finite, positive, Borel measures. In this situation, all the C-valued integrals∫

X

λ ◦ f

exist for elementary reasons, being integrals of compactly-supported C-valued continuous functions on a
compact set with respect to a finite Borel measure.

The technical condition on the topological vectorspace V is that the convex hull of a compact set must have
compact closure. A more intuitive property which implies this property is quasi-completeness (and local

convexity), meaning that bounded Cauchy nets converge. [3] In all applications, when the compactness
of closures of convex hulls of compacts holds, it seems that the space is quasi-complete. Thus, while a
priori the condition of quasi-completeness is stronger than the compactness condition, no example of a strict
comparison seems immediate.

The hypotheses of the following theorem will be verified for Fréchet spaces and their weak star duals,
for example. In addition to Hilbert and Banach spaces, this includes Schwartz functions and tempered
distributions.

Further, the hypothesis will include LF-spaces and their weak ∗-duals. By definition, an LF space is a
countable ascending union of Fréchet spaces so that each Fréchet subspace is closed in the next, with the
finest possible topology on the union. These are strict inductive limits or strict colimits of Fréchet spaces.
This includes spaces of test functions. The weak ∗-duals of the LF spaces are also quasi-complete, so we can
integrate distribution-valued functions.

In addition to the uniform operator topology on continuous linear maps from one Hilbert space or Banach
space to another, quasi-completeness holds for the strong and weak operator topologies. [4]

[1.0.1] Theorem: Let X be a locally compact Hausdorff topological space with a finite, positive, Borel
measure. Let V be a locally convex topological vectorspace in which the closure of the convex hull of a

[2] Lest there be any doubt, we do require that the integral of a V -valued function be a vector in the space V itself,

rather than in a larger space containing V , such as a double dual V ∗∗, for example. Some alternative discussions of

integration do allow integrals to exist in larger spaces.

[3] In topological vectorspaces which may not have countable local bases, quasi-completeness is more relevant than

‘plain’ completeness. For example, the weak ∗-dual of an infinite-dimensional Hilbert space is never complete, but is

always quasi-complete. This example is non-trivial, but helps illustrate the appropriateness of quasi-completeness.

[4] The strong and weak operator topologies, as opposed to the uniform norm topology, are the topologies on operators

found useful in representation theory.
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compact set is compact. It suffices that V be quasi-complete. Then continuous compactly-supported V -valued
functions f on X have Gelfand-Pettis integrals. Further,∫

X

f ∈ meas (X) ·
(

closure of convex hull of f(X)
)

(Proof later.)

[1.0.2] Remark: The conclusion that the integral of f lies in the closure of a convex hull, is a substitute
for the estimate of a C-valued integral by the integral of its absolute value.

2. Coproducts, colimits of topological vectorspaces

The intuitive idea of a topological vectorspace being an ascending union of subspaces is necessary, but must
be made precise. Spaces of test functions on Rn are obvious prototypes, being ascending unions of Fréchet
spaces without being Fréchet spaces themselves. [5]

[2.1] A categorical viewpoint Nested intersections are examples of limits, and limits are closed subobjects
of the corresponding products, while ascending unions are examples of colimits, and colimits are quotients (by

closed subobjects) of the corresponding coproducts. [6] Thus, proof of existence of products gets us half-way
to proof of existence of limits, and proof of existence of coproducts gets us half-way to existence of colimits.

In more detail: locally convex products of locally convex topological vector spaces are proved to exist by
constructing them as products of topological spaces, with the product topology, with scalar multiplication
and vector addition induced.

Given the existence of locally convex products, a limit of topological vector spaces Xα with compatibility
maps pαβ : Xα → Xβ is proven to exist by constructing it as the (closed) subobject Y of the product X of
the Xα consisting of x ∈ X meeting the compatibility conditions

pβ(x) = (pαβ ◦ pα)(x) (for all α < β, where p` is the projection X → X`)

Since local convexity is preserved by these constructions, these constructions do take place inside the category
of locally convex topological vector spaces.

[2.2] Coproducts and colimits Locally convex coproducts X of topological vector spaces Xα are

coproducts of the vector spaces Xα with the diamond topology, described as follows. [7] For a collection Uα
of convex neighborhoods of 0 in the Xα, let

U = convex hull in X of the union of jα(Uα) (with jα : Xα → X the αth canonical map)

[5] A countable ascending union of complete metric spaces, with each a proper closed subspace of the next, cannot

be complete metric, because it is presented as a countable union of nowhere-dense closed subsets, contradicting the

conclusion of the Baire Category Theorem.

[6] Categorical limits are often called projective limits, and colimits are often called inductive or direct limits. For

our purposes, the terms limit and colimit suffice.

[7] The product topology of locally convex topological vector spaces is unavoidably locally convex, whether the

product is in the category of locally convex topological vector spaces or in the larger category of not-necessarily-

locally-convex topological vector spaces. However, coproducts behave differently: the locally convex coproduct of

uncountably many locally convex spaces is not a coproduct in the larger category of not-necessarily-locally-convex

spaces. This already occurs with an uncountable coproduct of lines.
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The diamond topology has local basis at 0 consisting of such U . Thus, it is locally convex by construction.
(The closedness of points follows from the corresponding property of the Xα.) Thus, existence of a locallly
convex coproduct (of locally convex spaces) is assured by the construction. The locally convex colimit of the
Xα with compatibility maps jαβ : Xα → Xβ is the quotient of the locally convex coproduct X of the Xα by
the closure of the subobject Z spanned by vectors

jα(xα)− (jβ ◦ jαβ )(xα) (for all α < β and xα ∈ Xα)

Annihilation of these differences in the quotient forces the desired compatibility relations. Obviously,
quotients of locally convex spaces are locally convex.

[2.3] Strict colimits Let V be a locally convex topological vectorspace with subspaces

Vo ⊂ V1 ⊂ V2 ⊂ V3 ⊂ . . . (proper containments, Vi closed in Vi+1)

and

V =
⋃
i

Vi = colimiVi

Such V is a strict (locally convex) colimit or strict (locally convex) inductive limit of the Vi, strict
because Vi is closed in Vi+1. The fact that the collection of subspaces is countable and well-ordered is also a
special feature. We noted above that locally convex colimits exist.

Because of the strictness, we can show that each Vi injects to V , as follows. By Hahn-Banach and induction,
the identity map Ti : Vi → Vi extends compatibly to Tβ : V` → Vi for all `, then yielding a unique compatible
T : V → Vi. The compatibility

T ◦ ji = Ti = identity on Vi (with ji : Vi → V )

implies that ji is injective. Similarly, each Vi is closed in V , as follows. For v ∈ V but v 6∈ Vi, there is ` > i
such that v ∈ V`, and the quotient map

q` : V` −→ V`/Vi

is a map of topological vector spaces (since Vi is closed in V`) and does not map v to 0. Using Hahn-Banach
and well-ordering, q` extends to compatible maps qk : Vk → Vk/Vi for all k > i, and, thus, to a unique
compatible map q : V → V`/Vi. The compatibility assures that q(v) 6= 0. That is, v could not be in the
closure of Vi, or else it could not be mapped to something non-zero by a continuous topological vector space
map that maps Vi to {0}.

[2.3.1] Proposition: Assume that V is a locally convex strict colimit of a countable well-ordered collection
of closed subspaces Vi. A subset B of V is bounded if and only it lies inside some subspace Vi and is a
bounded subset of Vi.

Proof: Suppose B does not lie in any Vi. Then there is a sequence i1, i2, . . . of positive integers and xi`
in Vi` ∩ B with xi` not lying in Vi`−1. Using the simple nature of the indexing set and the simple inter-
relationships of the subspaces Vi,

V =
⋃
j

Vi`

In particular, without loss of generality, we may suppose that i` = `.

By the Hahn-Banach theorem and induction, using the closedness of Vi−1 in Vi, there are continuous linear
functionals λi on Vi’s such that λi(xi) = i and the restriction of λi to Vi−1 is λi−1, for example. Since V is
the colimit of the Vi, this collection of functionals exactly describes a unique compatible continuous linear
functional λ on V .
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But λ(B) is bounded since B is bounded and λ is continuous, which precludes the possibility that λ takes on
all positive integer values at the points xi of B. Thus, it could not have been that B failed to lie inside some
single Vi. The strictness of the colimit implies that B is bounded as a subset of Vi, proving one direction of
the equivalence. The other direction of the equivalence is less interesting. ///

[2.4] Equicontinuity on strict colimits Recall that a set E of continuous linear maps from one topological
vectorspace X to another topological vectorspace Y is equicontinuous when, for every neighborhood U of
0 in Y , there is a neighborhood N of 0 in X so that T (N) ⊂ U for every T ∈ E.

[2.4.1] Proposition: Let V be a strict colimit of a well-ordered countable collection of locally convex closed
subspaces Vi. Let Y be a locally convex topological vectorspace. Let E be a set of continuous linear maps
from V to Y . Then E is equicontinuous if and only if for each index i the collection of continuous linear
maps {T |Vi : T ∈ E} is equicontinuous.

Proof: Given a neighborhood U of 0 in Y , shrink U if necessary so that U is convex and balanced. For
each index i, let Ni be a convex, balanced neighborhood of 0 in Vi so that T (Ni) ⊂ U for all T ∈ E. Let
N be the convex hull of the union of the Ni. By the convexity of N , still T (N) ⊂ U for all T ∈ E. By
the construction of the diamond topology, N is an open neighborhood of 0 in the coproduct, hence in the
colimit, giving the equicontinuity of E. The other direction of the implication is easy. ///

3. Ubiquity of quasi-complete spaces

This section shows that quasi-completeness is preserved by various important constructions on topological
vector spaces, so that most topological vector spaces of interest are quasi-complete. Thus, the theorem on
Gelfand-Pettis integrals applies to all these.

Again, a topological vectorspace is quasi-complete if every bounded Cauchy net is convergent. Note that
without the assumption that there is a countable local basis (at 0) it is necessary to consider nets rather
than simply sequences. Since many spaces of interest occurring as weak star duals certainly fail to be locally
countable, this distinction is not frivolous.

Certainly Fréchet spaces (hence Hilbert and Banach spaces) are quasi-complete, since in the case of a metric

space quasi-completeness and ordinary completeness are identical. [8]

It is clear that closed subspaces of quasi-complete spaces are quasi-complete. Products (with product
topology) and finite sums of quasi-complete spaces are quasi-complete.

[3.0.1] Proposition: A strict colimit of a countable collection of closed quasi-complete spaces is quasi-
complete.

Proof: We saw that bounded subsets of such colimits are exactly the bounded subsets of the limitands.
Thus, bounded Cauchy nets in the colimit must be bounded Cauchy nets in one of the closed subspaces.
Each of these is assumed quasi-complete, so the colimit is quasi-complete. ///

As a consequence of the proposition, spaces of test functions are quasi-complete, since they are such colimits
of the Fréchet spaces of spaces of test functions with prescribed compact support.

Let Homo(X,Y ) be the space of continuous linear functions from a topological vectorspace X to another
topological vectorspace Y . Give Homo(X,Y ) the topology induced by the seminorms px,U where x ∈ X and
U is a convex, balanced neighborhood of 0 in Y , defined by

px,U (T ) = inf {t > 0 : Tx ∈ tU} (for T ∈ Homo(X,Y ))

[8] That sequential completeness implies completeness for metric spaces is an interesting foundational exercise.
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[3.0.2] Remark: In the case that X and Y are Hilbert spaces, this construction gives the strong operator
topology on Homo(X,Y ). Replacing the topology on the Hilbert space Y by its weak topology, the
construction gives Homo(X,Y ) the weak operator topology. That the collection of continuous linear operators
is the same in both cases is a consequence of the Banach-Steinhaus theorem, which also plays a role in the
following result.

[3.0.3] Theorem: When X is a Fréchet space or LF space, and when Y is quasi-complete, the space
Homo(X,Y ), with the topology induced by the seminorms px,U where x ∈ X and U is a convex, balanced
neighborhood of 0 in Y , is quasi-complete.

[3.0.4] Remark: In fact, the starkest hypothesis on Homo(X,Y ) is simply that it support the conclusion
of the Banach-Steinhaus theorem. That is, a subset E of Homo(X,Y ) so that the set of all images

Ex = {Tx : T ∈ E}

is bounded (in Y ) for all x ∈ X is necessarily equicontinuous. When X is a Fréchet space, this is true (by
the usual Banach-Steinhaus theorem) for any Y . Further, by the result above on bounded subsets of special
sorts of colimits, we see that the same conclusion holds for X such a colimit.

Proof: Let E = {Ti : i ∈ I} be a bounded Cauchy net in Homo(X,Y ), where I is a directed set. Of course,
attempt to define the limit of the net by

Tx = lim
i
Tix

For x ∈ X the evaluation map S → Sx from Homo(X,Y ) to Y is continuous. In fact, the topology on
Homo(X,Y ) is the coarsest with this property. Therefore, by the quasi-completeness of Y , for each fixed
x ∈ X the net Tix in Y is bounded and Cauchy, so converges to an element of Y suggestively denoted Tx.

To prove linearity of T , fix x1, x2 in X, a, b ∈ C and fix a neighborhood Uo of 0 in Y . Since T is in the
closure of E, for any open neighborhood N of 0 in Homo(X,Y ), there exists

Ti ∈ E ∩ (T +N)

In particular, for any neighborhood U of 0 in Y , take

N = {S ∈ Homo(X,Y ) : S(ax1 + bx2) ∈ U, S(x1) ∈ U, S(x2) ∈ U}

Then
T (ax1 + bx2)− aT (x1)− bT (x2)

= (T (ax1 + bx2)− aT (x1)− bT (x2))− (Ti(ax1 + bx2)− aTi(x1)− bTi(x2))

since Ti is linear. The latter expression is

T (ax1 + bx2)− (ax1 + bx2) + a(T (x1)− Ti(x1) + b(T (x2)− Ti(x2)

∈ U + aU + bU

By choosing U small enough so that
U + aU + bU ⊂ Uo

we find that
T (ax1 + bx2)− aT (x1)− bT (x2) ∈ Uo

Since this is true for every neighborhood Uo of 0 in Y ,

T (ax1 + bx2)− aT (x1)− bT (x2) = 0
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which proves linearity.

To prove continuity of the limit operator T , we must first be sure that E is equicontinuous. For each x ∈ Xj ,
the set {Tix : i ∈ I} is bounded in Y , so by Banach-Steinhaus {Ti : i ∈ I} is an equicontinuous set of linear
maps from Xi to Y . (Each Xi is Fréchet.) From the result of the previous section on equicontinuous subsets
of LF spaces, E itself is equicontinuous.

Fix a neighborhood U of 0 in Y . Invoking the equicontinuity of E, let N be a small enough neighborhood of
0 in X so that T (N) ⊂ U for all T ∈ E. Let x ∈ N . Choose an index i sufficiently large so that Tx−Tix ∈ U ,
vis the definition of the topology on Homo(X,Y ). Then

Tx ∈ U + Tix ⊂ U + U

The usual rewriting, replacing U by U ′ such that U ′ + U ′ ⊂ U , shows that T is continuous. ///

4. Totally bounded sets in topological vectorspaces

The point of this section is the last corollary, that convex hulls of compact sets in Fréchet spaces have compact
closures. This is the key point for existence of Gelfand-Pettis integrals.

In preparation, we review the relatively elementary notion of totally bounded subset of a metric space, as well
as the subtler notion of totally bounded subset of a topological vectorspace.

A subset E of a complete metric space X is totally bounded if, for every ε > 0 there is a covering of E by
finitely-many open balls of radius ε. The property of total boundedness in a metric space is generally stronger
than mere boundedness. It is immediate that any subset of a totally bounded set is totally bounded.

[4.0.1] Proposition: A subset of a complete metric space has compact closure if and only if it is totally
bounded.

Proof: Certainly if a set has compact closure then it admits a finite covering by open balls of arbitrarily
small (positive) radius.

On the other hand, suppose that a set E is totally bounded in a complete metric space X. To show that E
has compact closure it suffices to show that any sequence {xi} in E has a Cauchy subsequence.

We choose such a subsequence as follows. Cover E by finitely-many open balls of radius 1. In at least one
of these balls there are infinitely-many elements from the sequence. Pick such a ball B1, and let i1 be the
smallest index so that xi1 lies in this ball.

The set E ∩B1 is still totally bounded (and contains infinitely-many elements from the sequence). Cover it
by finitely-many open balls of radius 1/2, and choose a ball B2 with infinitely-many elements of the sequence
lying in E ∩ B1 ∩ B2. Choose the index i2 to be the smallest one so that both i2 > i1 and so that xi2 lies
inside E ∩B1 ∩B2.

Proceeding inductively, suppose that indices i1 < . . . < in have been chosen, and balls Bi of radius 1/i, so
that

xi ∈ E ∩B1 ∩B2 ∩ . . . ∩Bi
Then cover E∩B1∩. . .∩Bn by finitely-many balls of radius 1/(n+1) and choose one, call it Bn+1, containing
infinitely-many elements of the sequence. Let in+1 be the first index so that in+1 > in and so that

xn+1 ∈ E ∩B1 ∩ . . . ∩Bn+1

Then for m < n we have

d(xim , xin) ≤ 1

m
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so this subsequence is Cauchy. ///

In a topological vectorspace V , a subset E is totally bounded if, for every neighborhood U of 0 there is a
finite subset F of V so that

E ⊂ F + U

Here the notation F + U means, as usual,

F + U =
⋃
v∈F

v + U = {v + u : v ∈ F, u ∈ U}

[4.0.2] Remark: In a topological vectorspace whose topology is given by a translation-invariant metric, a
subset is totally bounded in this topological vectorspace sense if and only if it is totally bounded in the metric
space sense, from the definitions.

[4.0.3] Lemma: In a topological vectorspace the convex hull of a finite set is compact.

Proof: Let the finite set be F = {x1, . . . , xn}. Let σ be the compact set

σ = {(c1, . . . , cn) ∈ Rn :
∑
i

ci = 1, 0 ≤ ci ≤ 1, for all i} ⊂ Rn

Then the convex hull of F is the continuous image of σ under the map

(c1, . . . , cn)→
∑
i

cixi

so is compact. ///

[4.0.4] Proposition: A totally bounded subset E of a locally convex topological vectorspace V has totally
bounded convex hull.

Proof: Let U be a neighborhood of 0 in V . Let U1 be a convex neighborhood of 0 so that U1 + U1 ⊂ U .
Then for some finite subset F we have E ⊂ F + U1, by the total boundedness. Let K be the convex hull
of F , which by the previous result is compact. Then E ⊂ K + U1, and the latter set is convex, as observed
earlier. Therefore, the convex hull H of E lies inside K + U1. Since K is compact, it is totally bounded, so
can be covered by a finite union Φ + U1 of translates of U1. Thus, since U1 + U1 ⊂ U ,

H ⊂ (Φ + U1) + U1 ⊂ Φ + U

Thus, H lies inside this finite union of translates of U . This holds for any open U containing 0, so H is
totally bounded. ///

[4.0.5] Corollary: In a Fréchet space, the closure of the convex hull of a compact set is compact.

Proof: A compact set in a Fréchet space (or in any complete metric space) is totally bounded, as recalled
above. By the previous result, the convex hull of a totally bounded set in a Fréchet space (or in any locally
convex space) is totally bounded. Thus, this convex hull has compact closure, since totally bounded sets in
complete metric spaces have compact closure. ///
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5. Quasi-completeness and convex hulls of compacts

Again, a topological vectorspace X is quasi-complete if every bounded Cauchy net converges.

The following proof borrows an idea from the proof of the Banach-Alaoglu theorem. It reduces the general
case to the case of Fréchet spaces, treated in the previous section.

[5.0.1] Proposition: In a quasi-complete locally convex topological vectorspace X, the closure C of the
convex hull H of a compact set K is compact.

Proof: Since X is locally convex, by the Hahn-Banach theorem its topology is given by a collection of
seminorms v. For each seminorm v, let Xv be the completion of the quotient

X/{x ∈ X : v(x) = 0}

with respect to the metric that v induces on the latter quotient. Thus, Xv is a Fréchet space. (Indeed, the
latter quotient is the largest quotient of X on which v induces a metric rather than merely a pseudometric.
And, in fact, Xv is Banach, but we don’t use this.) Consider

Z =
∏
v

Xv (with product topology)

with the natural injection j : X → Z, and with projection pv to the vth factor.

By construction, and by definition of the topology given by the seminorms, j is a homeomorphism to its
image. That is, X is homeomorphic to the subset jX of Z, given the subspace topology.

The image pvjK is compact, being a continuous image of a compact subset of X. Since Xv is Fréchet, the
convex hull Hv of pvjK has compact closure Cv. The convex hull jH of jK is contained in the product∏
v Hv of the convex hulls Hv of the projections pvjK. By Tychonoff’s theorem, the product

∏
v Cv is

compact.

Since jC is contained in the compact set
∏
v Cv, to prove that the closure jC of jH in jX is compact, it

suffices to prove that jC is closed in Z. Since jC is a subset of the compact set
∏
v Cv, it is totally bounded

and so is certainly bounded (in Z, hence in X ≈ jX). By the quasi-completeness, any Cauchy net in jC
converges to a point in jC. Since any point in the closure of jC in Z has a Cauchy net in jC converging to
it, jC is closed in Z. This finishes the proof that quasi-completeness implies the compactness of closures of
compact hulls of compacta. ///

6. Existence of integrals

Now we will prove existence of integrals: assume that in the topological vectorspace V convex hulls of
compacta have compact closures, and prove the existence of Gelfand-Pettis integrals

∫
X
f of continuous

compactly-supported V -valued functions f for meas (X) < +∞. Further, we prove that the desired integral
lies in the (by hypothesis) compact set(

closure of convex hull of f(X)
)
· meas (X)

Proof: To simplify, divide by a constant to make X have total measure 1. We may assume that X is
compact since the support of f is compact. Let H be the closure of the convex hull of f(X) in V , compact
by hypothesis. We will show that there is an integral of f inside H.
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For a finite subset L of V ∗, let

VL = {v ∈ V : λv =

∫
X

λ ◦ f, ∀λ ∈ L}

And let
IL = H ∩ VL

Since H is compact and VL is closed, IL is compact. Certainly

IL ∩ IL′ = IL∪L′

for two finite subsets L,L′ of V ∗. Thus, if we prove that all the IL are non-empty, then it will follow that
the intersection of all these compact sets IL is non-empty. (This is the so-called finite intersection property.)
That is, we will have existence of the integral.

To prove that each IL is non-empty for finite subsets L of V ∗, choose an ordering λ1, . . . , λn of the elements
of L. Make a continuous linear mapping Λ = ΛL from V to Rn by

Λ(v) = (λ1v, . . . , λnv)

Since this map is continuous, the image Λ(f(X)) is compact in Rn.

For a finite set L of functionals, the integral

y = yL =

∫
X

Λf(x) dµ(x)

is readily defined by component-wise integration. Suppose that this point y is in the convex hull of Λ(f(X)).
Since ΛL is linear, y = ΛLv for some v in the convex hull of f(X). Then

ΛLv = y = (. . . ,

∫
λif(x) dµ(X), . . .)

Thus, the point v lies in IL as desired. Granting that y lies in the convex hull of ΛL(f(x)), we are done.

To prove that y = yL as above lies in the convex hull of ΛL(f(X)), suppose not. From the lemma below,
in a finite-dimensional space the convex hull of a compact set is still compact, without having to take
closure. Thus, invoking also the finite-dimensional case of the Hahn-Banach theorem, there would be a
linear functional η on Rn so that ηy > ηz for all z in this convex hull. That is, letting y = (y1, . . . , yn), there
would be real c1, . . . , cn so that for all (z1, . . . , zn) in the convex hull∑

i

cizi <
∑

ciyi

In particular, for all x ∈ X ∑
i

ciλi(f(x)) <
∑
i

ciyi

Integration of both sides of this over X preserves ordering, giving the absurd∑
i

ciyi <
∑
i

ciyi

Thus, y does lie in this convex hull. ///

[6.0.1] Lemma: The convex hull of a compact set K in Rn is compact. In particular, we have compactness
without taking closure.
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Proof: We first claim that, for a set E in Rn and for any x a point in the convex hull of E, there are n+ 1
points x0, x1, . . . , xn in E of which x is a convex combination.

By induction, to prove the claim it suffices to consider a convex combination v = c1v1 + . . .+cNvN of vectors
vi with N > n + 1 and show that v is actually a convex combination of N − 1 of the vi. Further, we can
suppose without loss of generality that all the coefficients ci are non-zero.

Define a linear map

L : RN −→ Rn × R by L(x1, . . . , xN ) −→ (
∑
i

xivi,
∑
i

xi)

By dimension-counting, since N > n+ 1 the kernel of L must be non-trivial. Let (x1, . . . , xN ) be a non-zero
vector in the kernel.

Since ci > 0 for every index, and since there are only finitely-many indices altogether, there is a constant c
so that |cxi| ≤ ci for every index i, and so that cxio = cio for at least one index io. Then

v = v − 0 =
∑
i

civi − c ·
∑

xivi =
∑
i

(ci − cxi)vi

Since
∑
i xi = 0 this is still a convex combination, and since cxio = cio at least one coefficient has become

zero. This is the induction, which proves the claim.

Using the previous claim, a point v in the convex hull of K is actually a convex combination covo+ . . .+cnvn
of n + 1 points vo, . . . , vn of K. Let σ be the compact set (co, . . . , cn) with 0 ≤ ci ≤ 1 and

∑
i ci = 1. The

convex hull of K is the image of the compact set

σ ×Kn+1

under the continuous map

L : (co, . . . , cn)× (vo, v1, . . . , vn) −→
∑
i

civi

so is compact. This proves the lemma, finishing the proof of the theorem. ///

7. Historical notes and references

Most investigation and use of integration of vector-valued functions is in the context of Banach-space-valued
functions. Nevertheless, the idea of [Gelfand 1936] extended and developed by [Pettis 1938] immediately
suggests a viewpoint not confined to the Banach-space case. A hint appears in [Rudin 1991].

This is in contrast to many of the more detailed studies and comparisons of varying notions of integral
specific to the Banach-space case, such as [Bochner 1935]. A variety of developmental episodes and results
in the Banach-space-valued case is surveyed in [Hildebrandt 1953]. Proofs and application of many of these
results are given in [Hille-Phillips 1957]. (The first edition, authored by Hille alone, is sparser in this regard.)
See also [Brooks 1969] to understand the viewpoint of those times.

One of the few exceptions to the apparent limitation to the Banach-space case is [Phillips 1940]. However, it
seems that in the United States after the Second World War consideration of anything fancier than Banach
spaces was not popular.

The present pursuit of the issue of quasi-completeness (and compactness of the closure of the convex hull of
a compact set) was motivated originally by the discussion in [Rudin 1991], although the latter does not make
clear that this condition is fulfilled in more than Fréchet spaces, and does not mention quasi-completeness.
Imagining that these ideas must be applicable to distributions, one might cast about for means to prove
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the compactness condition, eventually hitting upon the hypothesis of quasi-completeness in conjunction
with ideas from the proof of the Banach-Alaoglu theorem. Indeed, in [Bourbaki 1987] it is shown (by
apparently different methods) that quasi-completeness implies this compactness condition, although there
the application to vector-valued integrals is not mentioned. [Schaeffer-Wolff 1999] is a very readable account
of further important ideas in topological vector spaces.

The fact that a bounded subset of a countable strict inductive limit of closed subspaces must actually
be a bounded subset of one of the subspaces, easy to prove once conceived, is attributed to Dieudonne
and Schwartz in [Horvath 1966]. See also [Bourbaki 1987], III.5 for this result. Pathological behavior of
uncountable colimits was evidently first exposed in [Douady 1963].

Evidently quotients of quasi-complete spaces (by closed subspaces, of course) may fail to be quasi-complete:
see [Bourbaki 1987], IV.63 exercise 10 for a construction.
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