(January 11, 2013)

Introduction to Levi-Sobolev spaces

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

[This document is http://www.math.umn.edu/~garrett/m/fun/notes_2012-13/03b_intro_blevi.pdf]

The simplest case of a Levi-Sobolev *imbedding theorem* asserts that the +1-index Levi-Sobolev space $H^1[a, b]$ (below) is inside $C^o[a, b]$. This is a corollary of a Levi-Sobolev *inequality* asserting that the $C^o[a, b]$ norm is *dominated* by the $H^1[a, b]$ norm. All that is used is the fundamental theorem of calculus and the Cauchy-Schwarz-Bunyakowsky inequality. The point is that there is a large *Hilbert-space* $H^1[a, b]$ (below) inside the *Banach* space $C^o[a, b]$.

Let

$$L^{2}[a,b] =$$
completion of $C^{o}[a,b]$ with respect to $|f|_{L^{2}} = \left(\int_{a}^{b} |f(t)|^{2} dt\right)^{1/2}$

The +1-index Levi-Sobolev space [1] $H^1[a, b]$ is

 $H^{1}[a,b] = \text{completion of } C^{1}[a,b] \text{ with respect to } |f|_{H^{1}} = \left(|f|^{2}_{L^{2}[a,b]} + |f'|^{2}_{L^{2}[a,b]}\right)^{1/2}$

[1.0.1] Theorem: (Levi-Sobolev inequality) On $C^1[a, b]$, the $H^1[a, b]$ -norm dominates the $C^o[a, b]$ -norm. That is, there is a constant C depending only on a, b such that $|f|_{C^o[a, b]} \leq C \cdot |f|_{H^1[a, b]}$ for every $f \in C^1[a, b]$.

Proof: For $a \le x \le y \le b$, for $f \in C^1[a, b]$, the fundamental theorem of calculus gives

$$|f(y) - f(x)| = \left| \int_{x}^{y} f'(t) dt \right| \leq \int_{x}^{y} |f'(t)| dt \leq \left(\int_{x}^{y} |f'(t)|^{2} dt \right)^{1/2} \cdot \left(\int_{x}^{y} 1 dt \right)^{1/2}$$
$$\leq |f'|_{L^{2}} \cdot |x - y|^{\frac{1}{2}} \leq |f'|_{L^{2}} \cdot |a - b|^{\frac{1}{2}}$$

Using the continuity of $f \in C^1[a, b]$, let $y \in [a, b]$ be such that $|f(y)| = \min_x |f(x)|$. Using the previous inequality,

$$\begin{split} |f(x)| &\leq |f(y)| + |f(x) - f(y)| \leq \frac{\int_{a}^{b} |f(t)| \, dt}{|a - b|} + |f(x) - f(y)| \leq \frac{\int_{a}^{b} |f| \cdot 1}{|a - b|} + |f'|_{L^{2}} \cdot |a - b|^{\frac{1}{2}} \\ &\leq \frac{|f|_{L^{2}}^{\frac{1}{2}} \cdot |a - b|^{\frac{1}{2}}}{|a - b|} + |f'|_{L^{2}} \cdot |a - b|^{\frac{1}{2}} = \frac{|f|_{L^{2}}^{\frac{1}{2}}}{|a - b|^{\frac{1}{2}}} + |f'|_{L^{2}} \cdot |a - b|^{\frac{1}{2}} \leq \left(|f|_{L^{2}} + |f'|_{L^{2}}\right) \cdot \left(|a - b|^{-\frac{1}{2}} + |a - b|^{\frac{1}{2}}\right) \\ &\leq 2(|f|^{2} + |f'|^{2})^{1/2} \cdot \left(|a - b|^{-\frac{1}{2}} + |a - b|^{\frac{1}{2}}\right) = |f|_{H^{1}} \cdot 2\left(|a - b|^{-\frac{1}{2}} + |a - b|^{\frac{1}{2}}\right) \end{split}$$

Thus, on $C^1[a, b]$ the H^1 norm dominates the C^o -norm.

[1.0.2] Corollary: (Levi-Sobolev imbedding) $H^1[a,b] \subset C^o[a,b]$.

Proof: Since $H^1[a, b]$ is the H^1 -norm completion of $C^1[a, b]$, every $f \in H^1[a, b]$ is an H^1 -limit of functions $f_n \in C^1[a, b]$. That is, $|f - f_n|_{H^1[a, b]} \to 0$. Since the H^1 -norm dominates the C^o -norm, $|f - f_n|_{C^o[a, b]} \to 0$. A C^o limit of continuous functions is continuous, so f is continuous. ///

[1.0.3] Corollary: (of proof of theorem) $|f(x) - f(y)| \le |f'|_{L^2} \cdot |x - y|^{\frac{1}{2}}$ for $f \in H^1[a, b]$. ///

^{[1] ...} also denoted $W^{1,2}[a,b]$, where the superscript 2 refers to L^2 , rather than L^p . Beppo Levi noted the importance of taking Hilbert space completion with respect to this norm in 1906. Sobolev's work was in the mid-1930's.

[1.0.4] Remark: That is, once we know that $H^1[a,b] \subset C^o[a,b]$, the proof of the theorem gives a stronger conclusion than mere continuity, although not as strong as differentiability.