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The spectral theory for normal compact operators on Hilbert spaces, and basic properties of Gelfand-Pettis
integrals of vector-valued functions, have immediate application: uniqueness of invariant (Haar) measure on
compact abelian groups A, and then proof that

L2(A) = completion of
⊕

χ:A→C×

C · χ

where χ runs over continuous characters of A, that is, continuous group homomorphisms A → C×. These
characters arise as simultaneous eigenfunctions for the integral operators

Tϕ : f −→
∫
A

ϕ(y) f(x+ y) dy (for ϕ ∈ Coc (A) and f ∈ L2(A))

normalized to χ(0) = 1, writing A additively. This gives another approach to the L2 theory of Fourier series
on circles or products of circles, as well as harmonic analysis on the p-adic integers Zp, and more exotic items
such as solenoids A/Q, where A is the adele group.

1. Approximate identities on topological groups

[1.1] Topological groups As expected, a topological group G is a group with a topology, such that the
group operation G×G→ G and the inversion G→ G are continuous. An only-implicit requirement is that
G be locally compact, and Hausdorff. Usually G is required to be countably based, to avoid product-measure
pathologies. [1]

[1.2] Invariant integrals on topological groups We want an integral f →
∫
G
f(g) dg on f ∈ Coc (G),

with the right invariance ∫
G

f(gh) dg =

∫
G

f(g) dg

An invariant measure/integral is called a Haar measure/integral. For abelian G, writing the group operation
additively, the invariance condition ∫

G

f(g + h) dg =

∫
G

f(g) dg

[1] Perhaps oddly, this definition of topological group excludes infinite-dimensional topological vectorspaces, even

though they are (abelian!) groups and have topologies. However, local compactness or its lack is decisive, so infinite-

dimensional topological vectorspaces merit separate treatment. To some degree, the two cases, topological groups

and topological vectorspaces, can be subsumed in a common treatment, of uniform spaces. Nevertheless, the issue of

local compactness or not is pervasive.
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is insensitive to left-right issues. [2] We take existence of a Haar integral for granted, and prove uniqueness
below.

[1.3] Continuity of translation action The right translation action of G on any space of functions on G
is

(Rgf)(x) = f(xg) (for x, g ∈ G)

The right invariance of the measure/integral immediately gives the invariance of the L2 norm, for example:

|Rgf |2L2 =

∫
G

|f(xg)|2 dx =

∫
G

|f(x)|2 dx = |f |2L2

[1.3.1] Claim: The map G× L2(G)→ L2(G) by g × f → Rgf is continuous.

Proof: Fix f ∈ L2(G), and take ε > 0. Using Urysohn, there is ϕ ∈ Coc (G) such that |f − ϕ|L2 < ε: first
approximate f by simple functions and then approximate these simple functions by continuous ones, via
Urysohn. Since ϕ is compactly supported, ϕ is uniformly continuous: for all ε′ > 0, there is a neighborhood
N of e ∈ G such that |ϕ(xh)− ϕ(x)| < ε′ for all h ∈ N , for all x ∈ G. For g ∈ N ,

|Rgf − f |L2 ≤ |Rgf −Rgϕ|L2 + |Rgϕ− ϕ|L2 + |ϕ− f |L2

≤ |f − ϕ|L2 + ε′ ·meas (sptϕ) + |ϕ− f |L2 = ε+ ε′ ·meas (sptϕ) + ε

Given ε and ϕ, shrink N so that ε′ ≤ meas (sptϕ), so |Rgf − f |L2 < 3ε for g ∈ N . ///

[1.3.2] Remark: In fact, the crux of the argument is the continuity of the action on Coc (G), with its strict
colimit (LF-space) topology.

[1.4] Approximate identities and Urysohn’s lemma For present purposes, an approximate identity
{ϕi} on a topological group G is a sequence of non-negative ϕi ∈ Coc (G) whose supports shrink to {e}, where
e is the identity in G, in the sense that, given a neighborhood N of e, there is io such that for all i ≥ io the
support of ϕi is inside N . Further, given a (right) Haar integral, normalize∫

G

ϕi(g) dg = 1

[1.4.1] Claim: There exists an approximate identity on a topological group G.

Proof: Let Ni be a countable local basis at e ∈ G, ordered so that Ni ⊃ Ni+1, and with compact closures.
Invoke Urysohn to produce functions ψi identically 1 on Ni+1 and identically 0 off Ni, taking values between
0 and 1. Then normalize ϕi = ψi/

∫
G
ψi. ///

[1.5] Integral-operator action of Co
c (G) on functions Let ϕ ∈ Coc (G) act on functions by

(ϕ · f)(x) =

∫
G

ϕ(g) · f(xg) dg

[2] For non-abelian groups, it is easy to have a right-invariant measure/integral that is not quite left-invariant. For

example, G = {
(
a b

0 1

)
} with a ∈ R× and b ∈ R has right-invariant measure da db

|a| , but left-invariant measure da db
|a|2 .
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Anticipating that continuous, compactly-supported vector-valued Gelfand-Pettis integrals behave well, we
can write the action more tersely as

ϕ · f =

∫
G

ϕ(g) ·Rgf dg (vector-valued integral)

[1.5.1] Claim: For f in a locally convex space V of functions on G, and for approximate identity ϕi,

ϕi · f −→ f

Proof: Given f and a neighborhood U in V , take a small-enough neighborhood N of e such that Rgf−f ∈ U
for g ∈ N . Take io large enough so that for i ≥ io the support of ϕi is inside N . Then

ϕi · f − f =

∫
N

ϕi(g)Rgf dg − f =

∫
N

ϕi(g) (Rgf − f) dg (since
∫
G
ϕi = 1)

The measure ϕi(g) dg is a positive, regular Borel measure, with total mass 1. The function g → Rgf − f
on sptϕi ⊂ N is a continuous, compactly-supported V -valued function. The fundamental estimate for
Gelfand-Pettis integrals is that ∫

X

F ∈ closure of convex hull of F (X)

when X has total measure 1 and F is a continuous, compactly-supported vector-valued function on X. Thus,
ϕi · f − f is in the closure of the convex hull of all the images Rgf − f for g ∈ N .

Since V is locally convex, without loss of generality U is convex. Further, we can arrange that all the images
Rgf − f lie in a smaller convex open U ′ and U ′+U ′ ⊂ U . Thus, the closure of the convex hull of the images
Rgf − f is inside U . ///

[1.5.2] Remark: We will see later that the best hypothesis for V -valued compactly-supported continuous
functions to admit Gelfand-Pettis integrals is that V be locally convex and quasi-complete.

[1.6] Convolution We do not need to define convolution of Coc (G) functions, but, rather, discover what
kind of product on such functions is compatible with repeated application of the integral operators. That
is, for ϕ,ψ ∈ Coc (G), we want

(ϕ ∗ ψ) · f = ϕ ·
(
ψ · f

)
It hardly matters what topological vector space f lies in, whether or not it is a space of functions on G, since
the same identity should hold regardless.

Compute directly, using the fact that continuous operators commute with Gelfand-Pettis integrals, and, of
course, scalars commute with all linear operators:

ϕ ·
(
ψ · f

)
=

∫
G

ϕ(g)Rg

∫
G

ψ(h)Rh f dh dg =

∫
G

∫
G

ϕ(g)ψ(h)Rg Rh f dh dg =

∫
G

∫
G

ϕ(g)ψ(h)Rgh f dh dg

At this point, there are two possible courses of action, either replace g by gh−1, or h by g−1h. Both choices
are completely reasonable, but in the non-commutative case the appearances are different. Let’s replace g
by gh−1, assuming that dg refers to a right invariant measure on G:

ϕ ·
(
ψ · f

)
=

∫
G

∫
G

ϕ(gh−1)ψ(h)Rg f dh dg =

∫
G

(∫
G

ϕ(gh−1)ψ(h) dh
)
Rgf dg =

(∫
G

ϕ(gh−1)ψ(h) dh
)
· f
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That is, we have proven

[1.6.1] Proposition: The convolution

(ϕ ∗ ψ)(g) =

∫
G

ϕ(gh−1)ψ(h) dh

gives the associativity

(ϕ ∗ ψ) · f = ϕ ·
(
ψ · f

)
(for all f ∈ L2(G))

This applies to all continuous representations of G on reasonable topological vector spaces. ///

2. Uniqueness of invariant measure

Translation-invariant measures on topological groups are Haar measures.

We do not prove existence of a translation-invariant measure here, but only uniqueness.

The space Coc (G) is a strict colimit of subspaces Coc (E) where E ranges over compact subsets of G. Recall
that the Riesz-Kakutani-Markov theorem identifies the continuous dual of Coc (G) as regular Borel measures.

[2.0.1] Theorem: Let G be a (countably-based, locally compact, Hausdorff) topological group. Then there
is a unique G-invariant element of the dual space Coc (G)∗ up to constant multiples, and it is Haar measure

f −→
∫
G

f(g) dg

[2.0.2] Remark: For simplicity, we assume G is abelian, although we write the group operation
multiplicatively rather than additively.

Proof: For an approximate identity ϕi in Coc (G) and f ∈ Coc (G), we have seen that

ϕi · f =

∫
G

ϕi(h)Rhf dh −→ f

Let u be an invariant functional on Coc (G). By the continuity of u,

u(f) = u
(

lim
i
g →

∫
G

ϕi(h) f(gh) dh
)

= lim
i
u

(
g →

∫
G

ϕi(h) f(gh) dh

)
= u

(
g →

∫
G

f(h)ϕi(g
−1h) dh

)
by replacing h by g−1h. By properties of Gelfand-Pettis integrals, and since f and ϕi are compactly-
supported continuous functions, the integrand is a compactly-supported V -valued function, and we can
move the functional u inside the integral: the above becomes∫

G

f(h)u
(
g → ϕi(g

−1h)
)
dh

With notation ϕ̌i(x) = ϕi(x
−1), using the abelian-ness of G and the translation-invariance of u, we have

u(f) = . . . = lim
i

∫
G

f(h)u
(
g → ϕ̌i(h

−1g)
)
dh = lim

i

∫
G

f(h)u (g → ϕ̌i(g)) dh = lim
i
u(ϕ̌i) ·

∫
G

f(h) dh

By assumption the latter expressions approach u(f) as i→∞. For f so that the latter integral is non-zero,
we see that the limit of the u(ϕ̌i) exists, and that u(f) is a constant multiple of the indicated integral with
Haar measure. ///
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3. Simultaneous eigenfunctions for integral operators

Now the abelian-ness and compactness of G will both be used in an essential fashion: the integral operators
f → ϕ · f will form an adjoint-closed commutative ring of Hilbert-Schmidt operators on L2(G).

[3.1] On compact groups integral operators are Hilbert-Schmidt This is straightforward: for
ϕ ∈ Coc (G) and f ∈ L2(G),

(ϕ · f)(g) =

∫
G

ϕ(h) f(gh) dh =

∫
G

ϕ(g−1h) f(h) dh

That is, the operator f → ϕ · f has integral kernel K(g, h) = ϕ(g−1h). Since ϕ is continuous on a compact
space G, K is a continuous function on a finite-measure space G × G, so is in L2(G × G), thus giving a
Hilbert-Schmidt operator. Thus, these operators are compact. The spectral theory of self-adjoint compact
operators applies to those that are self-adjoint, giving orthogonal bases of corresponding eigenvectors.

[3.2] Integral operators on abelian groups commute This is another direct computation: use the

two-sided invariance of the Haar measure, and the invariance of Haar measure under inversion [3] on the
group:

(ϕ ∗ ψ)(g) =

∫
G

ϕ(gh−1)ψ(h) dh =

∫
G

ϕ(h−1)ψ(hg) dh =

∫
G

ϕ(h)ψ(h−1g) dh

=

∫
G

ϕ(h)ψ(gh−1) dh = (ψ ∗ ϕ)(g)

[3.3] Stability under adjoints Let R be the ring of integral operators on L2(G) containing all operators
Tϕ : f → ϕ · f for ϕ ∈ Coc (G). We already have

Tϕ ◦ Tψ = Tϕ∗ψ

Adjoints are readily determined: for f, F ∈ L2(G), successively replace g by h−1g, interchange order of
integration, and replace h by gh = hg, using abelian-ness:

〈Tϕf, F 〉 =

∫
G

∫
G

ϕ(g) f(hg)F (h) dg dh =

∫
G

∫
G

ϕ(h−1g) f(g)F (h) dg dh

=

∫
G

∫
G

ϕ(h−1) f(g)F (gh) dh dg =

∫
G

∫
G

f(g)ϕ(h−1)F (gh) dh dg

Thus, letting ϕ̌(h) = ϕ(h−1),
T ∗ϕ = Tϕ̌

and R is a commutative ring of compact operators closed under adjoints.

[3.4] Simultaneous eigenspaces for commuting operators

The numerical notion of eigenvalue is insufficient for a family of linear operators such as the Tϕ.

[3] One way to prove that Haar measure on an abelian group is invariant under inversion is to observe that

f →
∫
G f(g−1) dg is a translation-invariant functional on Coc (G), so, by uniqueness of Haar measure, is a multiple of

Haar measure...
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A commutative ring R of linear operators on a vector space V behaves well with respect to eigenspaces.
Namely, given T 6= 0 in R and eigenvalue λ for T , every operator S ∈ R stabilizes the λth eigenspace Vλ of
T : for v ∈ Vλ,

T (Sv) = (TS)v = (ST )v = S(Tv) = S(λv) = λ · Sv

For v 6= 0 a simultaneous eigenvector for all operators in R, let Tv = µ(T ) · v for eigenvalue µ(T ). It is
immediate that T → µ(T ) is a ring homomorphism µ : R→ C:

µ(S + T )v = (S + T )v = Sv + Tv = µ(S)v + µ(T )v =
(
µ(S) + µ(T )

)
v

and
µ(ST )v = (ST )v = S(Tv) = S(µ(T )v) = µ(T ) · Sv = µ(T )µ(S)v = µ(S)µ(T )v

[3.5] Decomposition by compact operators

[3.5.1] Theorem: A Hilbert space V with an adjoint-closed, commutative C-algebra R of compact operators
is the completed direct sum

V = (completion of)
( ⊕

0 6=µ:R→C
Vµ

)
⊕ V0 (summed over C-algebra homomorphisms µ)

of simultaneous eigenspaces

Vµ = {v ∈ V : Tv = µ(T ) · v for all T ∈ R}

For µ 6= 0 the eigenspace Vµ is finite-dimensional. The 0-eigenspace may be trivial, finite-dimensional, or
infinite-dimensional.

Proof: Note that, since R is adjoint-closed and commutative, every operator T ∈ R can be written as a
linear combination of self-adjoint operators from R:

T =
T + T ∗

2
+ i · T − T

∗

2i

Let W be the completion of the sum of all simultaneous eigenspaces. Certainly it is R-stable. As usual, the
orthogonal complement W⊥ is stable under R: for w ∈W , v ∈W⊥, and T ∈ R,

〈Tv,w〉 = 〈v, T ∗w〉 = 0

Suppose W were not all of V . The restrictions of elements of R to W are still compact operators, and the
C-algebra of restrictions is closed under adjoints on W . Since W is not contained in the 0-eigenspace of R,
there is at least one T ∈ R with non-zero restriction to W . Without loss of generality, T = T ∗, and T has a
finite-dimensional eigenspace Wλ ⊂W , by the spectral theory for compact self-adjoint operators.

Since it commutes with T , the whole algebra R stabilizes the finite-dimensional Wλ. If there is T2 ∈ R whose
restriction to Wλ is not a scalar operator, without loss of generality T2 = T ∗2 , and there is an eigenspace
{0} 6= Wλ2 ⊂Wλ of T2 and strictly smaller than Wλ. Continue. Since Wλ is finite-dimensional, a descending
chain of subspaces must terminate in finitely-many steps. Thus, there is a non-zero subspace of Wλ which
is a simultaneous eigenspace for all R. This contradicts the assumption that W was orthogonal to all
simultaneous eigenspaces but non-zero, proving that W = {0}. ///

[3.6] Triviality of 0-eigenspace

The decomposition by an adjoint-closed commutative ring of compact operators is very general. For the
action of Coc (G) on L2(G) for compact abelian G, the decomposition is non-degenerate, meaning that there
is no 0-eigenspace:
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[3.6.1] Corollary: For compact abelian G,

L2(G) = (completion of)
⊕

06=µ:R→C
L2(G)µ (summed over non-zero C-algebra homomorphisms µ)

of simultaneous eigenspaces

Vµ = {v ∈ V : Tv = µ(T ) · v for all T ∈ R}

All eigenspaces Vµ are finite-dimensional. The 0-eigenspace is trivial.

Proof: Given 0 6= f ∈ L2(G), let ϕi be an approximate identity in Coc (G). Since ϕi · f → f in L2(G),
certainly ϕi · f 6= 0 for large-enough i. Thus, f is not in the simultaneous 0-eigenspace. ///

[3.6.2] Remark: In fact, we can do better: all non-trivial eigenspaces are one-dimensional, as we see in the
next section.

4. Simultaneous eigenvectors are characters

For L2(G) for compact abelian G, a sharper conclusion is possible.

One sense of character is a continuous group homomorphism χ : G→ C×. Thus, characters are in Co(G).

[4.0.1] Corollary: For compact abelian G,

L2(G) = (completion of)
⊕

χ:G→C×

C · χ (characters χ)

The one-dimensional spaces C ·χ are the simultaneous eigenspaces for the integral-operator action of Coc (G).

Proof: That each χ is a simultaneous eigenvector is easy:

(ϕ · χ)(g) =

∫
G

ϕ(h)χ(gh) dh =

∫
G

ϕ(h)χ(g)χ(h) dh =
(∫

G

ϕ(h)χ(h) dh
)
· χ(g)

It is less obvious that every simultaneous eigenvector is of this form. But it is almost immediate that the
translation operators

(Tgf)(h) = f(hg) (for g, h ∈ G)

commute each other and with the integral operators:

(ϕ ◦ Tg)f(x) = ϕ · (x→ f(xg)) =

∫
G

ϕ(h) · f(xhg) dh =

∫
G

ϕ(h) · f(xgh) dh

= Tg

(
x→

∫
G

ϕ(h) · f(xh) dh
)

= (Tg ◦ ϕ)f(x)

The operators Tg are unitary, by changing variables:

〈Tgf, TgF 〉 =

∫
G

f(hg)F (hg) dh =

∫
G

f(h)F (h) dh = 〈f, F 〉

Thus, each of the finite-dimensional Coc (G)-eigenspaces decomposes into simultaneous eigenspaces for the
translation operators. The eigenvalues χ : G → C× are group homomorphisms to complex numbers: for
eigenfunction f ,

χ(gh)f = Tghf = Tg(Thf) = Tg(χ(h) · f) = Tg(χ(h) · f) = χ(h) · Tgf = χ(h)χ(g)f = χ(g)χ(h)f
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From the unitariness,
χ(g)χ(g)〈f, f〉 = 〈Tgf, Tgf〉 = 〈f, f〉

so |χ(g)| = 1. These characters are continuous, by continuity of the translation action: for eigenfunction f ,

(χ(g)− χ(h))f = Tgf − Thf −→ 0 (as g → h, by continuity)

For f in the χ-eigenspace,

f(g) = (Tgf)(1) = χ(g) · f(1) = f(1) · χ(g)

That is, f is a scalar multiple of χ, the scalar being f(1). Last, the action of Coc (G) does distinguish
characters. Indeed, just above we computed that

Tϕ · χ′ =
(∫

G

ϕ(h)χ′(h) dh
)
· χ′

In particular,

Tχ · χ′ =
(∫

G

χ(h)χ′(h) dh
)
· χ′

Changing variables in the integral by replacing h by hg, the integral is∫
G

χ(h)χ′(h) dh = χ(g)χ′(g) ·
∫
G

χ(h)χ′(h) dh

Since χ = χ−1, for χ 6= χ′ the operator Tχ acts by 0 on χ′, while Tχ acts by a non-zero scalar on χ itself. That
is, Coc (G) distinguishes characters. That is, each Coc (G) contains a single translation-operator eigenspace,
which is of the form C · χ for a character χ. ///

[4.0.2] Remark: The compact operators reduced to the finite-dimensional situation.
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