(September 7, 2013)

Meromorphic continuations of distributions

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

[This document is http://www.math.umn.edu/~garrett/m/fun/notes_2013-14/mero_contn.pdf]

We take for granted results about Gelfand-Pettis integrals and the Schwartz-Grothendieck ideas on holomorphic functions with values in quasi-complete locally-convex spaces, such as spaces of tempered distributions with the weak dual topology.

1.
$$u_s(x) = |x|^s$$

[1.1] Differentiation identity For $\operatorname{Re}(s) \geq 2$, the function $u_s(x) = |x|^s$ is twice-continuously-differentiable. In particular, with the usual Euclidean Laplacian Δ ,

$$\begin{aligned} \Delta |x|^s &= \sum_{i=1}^n \frac{\partial}{\partial x_i} \frac{s}{2} \cdot 2x_i \cdot (|x|^2)^{\frac{s}{2}-1} \\ &= \sum_{i=1}^n \left(\frac{s}{2} \cdot 2 \cdot (|x|^2)^{\frac{s}{2}-1} + \frac{s}{2} (\frac{s}{2}-1) \cdot (2x_i)^2 \cdot (|x|^2)^{\frac{s}{2}-2} \right) \\ &= ns \cdot |x|^{s-2} + s(s-2)|x|^{s-2} \\ &= s(s+n-2) \cdot |x|^{s-2} \end{aligned}$$

We see that n = 2 is anomalous, because the two linear factors become identical, and we ignore this case.

[1.2] Meromorphic continuation The identity $\Delta u_s = s(s+n-2) \cdot u_{s-2}$ at first holds for $\operatorname{Re}(s) \geq 2$, as an equality of continuous functions. At the same time, u_s analytically continues as an $L^1_{\operatorname{loc}}(\mathbb{R}^n)$ -valued function of s, therefore as a tempered distribution-valued function of s, to $\operatorname{Re}(s) > -n$. Thus, Δu_s exists as tempered distribution at least on $\operatorname{Re}(s) > -n$. Rewrite the identity as

$$u_{s-2} = \frac{\Delta u_s}{s(s+n-2)}$$

and replace s by s + 2:

$$u_s = \frac{\Delta u_{s+2}}{(s+2)(s+n)}$$

This expression makes sense of u_s as tempered distribution on $\operatorname{Re}(s) > -n - 2$ except for possible poles at s = -n and s = -2. For n > 2, in fact there is no pole at s = -2, because u_{-2} is locally integrable. Indeed, $\Delta u_0 = 0$, so $\Delta u_{s+2}/(s+2)$ is holomorphic at s = -2.

Repeat:

$$u_s = \frac{\Delta u_{s+2}/(s+2)}{s+n} = \frac{\Delta^2 u_{s+4}/(s+2)(s+4)}{(s+n)(s+n-2)}$$

The factors (s+2)(s+4) are indeed cancelled by the vanishing of $\Delta^2 u_2$ and $\Delta^2 u_4$, leaving possible poles at s = -n, -n-2. Continuing, u_s extends to a meromorphic tempered-distribution-valued function on \mathbb{C} , with poles at most at $s = -n, -n-2, -n-4, \ldots$

[1.3] Regularization and $\operatorname{Res}_{s=-n}u_s = \delta \times \operatorname{const}$ With $n \neq 2$, the first (rightmost) pole of u_s , at s = -n, is a multiple of Dirac δ at 0, seen as follows. Indeed, *locally* away from x = 0, we have the vanishing $\Delta u_{2-n}(x) = 0$, showing that the support of Δu_{2-n} is $\{0\}$, as expected.

With Gaussian $\gamma(x) = e^{-|x|^2}$, given Schwartz function f, the difference $f - f(0) \cdot \gamma$ vanishes at 0, so the integral for

$$u_s(f(x) - f(0) \cdot \gamma(x)) = \int_{\mathbb{R}^n} |x|^s \cdot (f(x) - f(0) \cdot \gamma(x)) dx$$

is absolutely convergent for $\operatorname{Re}(s) > -n - 1$, and is a holomorphic function of s in that half-plane. The identity principle assures that this analytic continuation correctly evaluates u_s on $f - f(0) \cdot \gamma$. In particular, there is no pole at s = -n. Thus,

$$\left(\operatorname{Res}_{s=-n}u_s\right)(f) = \left(\operatorname{Res}_{s=-n}u_s\right)(f-f(0)\cdot\gamma) + f(0)\cdot\left(\operatorname{Res}_{s=-n}u_s\right)(\gamma) = 0 + f(0)\cdot\left(\operatorname{Res}_{s=-n}u_s\right)(\gamma)$$

Since $f(0) = \delta(f)$, the residue is a constant multiple of δ , with constant

$$\operatorname{Res}_{s=-n} \int_{\mathbb{R}^n} |x|^s \, e^{-|x|^2} \, dx = |S^{n-1}| \cdot \operatorname{Res}_{s=-n} \int_0^\infty t^s \, e^{-t^2} \, t^{n-1} \, dt = |S^{n-1}| \cdot \frac{1}{2} \operatorname{Res}_{s=-n} \int_0^\infty t^{\frac{s+n}{2}} \, e^{-t} \, \frac{dt}{t}$$
$$= |S^{n-1}| \cdot \frac{1}{2} \operatorname{Res}_{s=-n} \int_0^\infty t^{\frac{s+n}{2}} \, e^{-t} \, \frac{dt}{t} = |S^{n-1}| \cdot \frac{1}{2} \operatorname{Res}_{s=-n} \cdot \Gamma(\frac{s+n}{2})$$
$$= |S^{n-1}| \cdot \frac{1}{2} \operatorname{Res}_{s=-n} \frac{2}{s+n} = |S^{n-1}| = \text{natural measure of } S^{n-1}$$

[1.4] Solving $\Delta u = \delta$ The distribution-valued function $(s+n)u_s$ takes value $\operatorname{Res}_{s=-n}u_s$ at s=-n. By the identity principle, the equality

$$\Delta u_{s+2} = (s+2) \cdot (s+n)u_s$$

also holds at s = -n, so

$$\Delta \frac{1}{|x|^{n-2}} = \Delta u_{-n+2} = (-n+2) \cdot |S^{n-1}| \cdot \delta \qquad \text{(distributionally)}$$

2. Rational Dirac comb
$$u_s = \sum_{rac{p}{q}} rac{1}{q^s} \cdot \delta_{p/q}$$

The usual $Dirac \ comb$ is

Dirac comb =
$$\sum_{n \in \mathbb{Z}} \delta_n$$

A slightly more complicated comb consisting of a weighted linear combination of Dirac δ at rational numbers is

$$u_s = \sum_{0 < \frac{p}{q} \le 1} \frac{1}{q^s} \cdot \delta_{p/q}$$
 (fraction p/q in lowest terms)

viewed as on the circle $\mathbb{T} = \mathbb{R}/\mathbb{Z}$. For $\operatorname{Re}(s) > 2$ this gives a distribution on \mathbb{T} .

[2.1] Rewriting without lowest-terms condition As often happens, the fraction-in-lowest-terms condition can be understood in terms of a similar object without the condition: noting that $\delta_{pd/qd} = \delta_{p/q}$,

$$\zeta(s) \cdot u_s = \sum_{d \ge 1} \frac{1}{d^s} \cdot \sum_{q \ge 1} \left(\frac{1}{q^s} \sum_{0$$

Replacing qd by q and pd by p, this is

$$= \sum_{q=1}^{\infty} \frac{1}{q^s} \sum_{d|q} \sum_{0$$

Denote the latter by v_s , so $\zeta(s) \cdot u_s = v_s$.

[2.2] Fourier expansion For $\operatorname{Re}(s) > 2$, the n^{th} Fourier coefficient of v_s is

$$\widehat{v}_s(n) = v_s(e^{-2\pi i nx}) = \sum_{q=1}^{\infty} \frac{1}{q^s} \sum_{0$$

The function $p \to e^{-2\pi i n \frac{p}{q}}$ is a character on \mathbb{Z}/q , non-trivial unless q|n, so the sum over p is 0 unless q|n, in which case it is q. Thus,

$$\widehat{v}_s(n) = \sum_{q \ge 1, q \mid n} \frac{1}{q^{s-1}}$$

Denoting the sum of α^{th} powers of positive divisors of n by $\sigma_{\alpha}(n)$,

$$\widehat{v}_s(n) = \begin{cases} \sigma_{1-s}(n) & (\text{for } n \neq 0) \\ \zeta(s-1) & (\text{for } n=0) \end{cases}$$

and

$$\widehat{u}_s(n) = \begin{cases} \frac{\sigma_{1-s}(n)}{\zeta(s)} & (\text{for } n \neq 0) \\ \\ \frac{\zeta(s-1)}{\zeta(s)} & (\text{for } n = 0) \end{cases}$$

Even the crudest estimate $\sigma_{\alpha}(n) \leq |n| \cdot |n|^{\alpha}$ demonstrates the polynomial grown of coefficients of \hat{u}_s , so u_s meromorphically continues as a distribution on \mathbb{T} .

The pole of $\zeta(s)$ at s = 1, makes all Fourier coefficients of u_s vanish at s = 1, since the functional equation of $\zeta(s)$ gives

$$\begin{split} \zeta(0) \ &= \ \frac{\pi^{-\frac{s}{2}} \,\Gamma(\frac{s}{2}) \,\zeta(s)}{\pi^{-\frac{s}{2}} \,\Gamma(\frac{s}{2})} \Big|_{s=0} \ &= \ \frac{\pi^{-\frac{1-s}{2}} \,\Gamma(\frac{1-s}{2}) \,\zeta(1-s)}{\pi^{-\frac{s}{2}} \,\Gamma(\frac{s}{2})} \Big|_{s=0} \ &= \ \pi^{-\frac{1}{2}} \cdot \Gamma(\frac{1}{2}) \cdot \frac{\zeta(1-s)}{\Gamma(\frac{s}{2})} \Big|_{s=0} \\ &= \ \frac{1}{\frac{(1-s)-1} + (\text{holomorphic at } s=0)}{\frac{2}{s} + (\text{holomorphic at } s=0)} \Big|_{s=0} \ &= \ -\frac{1}{2} \end{split}$$

That is, after analytic continuation,

 $u_1 = 0$