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1 Classical Poisson summation

Let ¥ (y) = > and v, (y) = ¢ (zy). The classical Fourier transform of an
L'-function f on R is

Ff(x) = fla) = [R F(9) $(~ay) dy

The space of Schwartz functions § = S(R) on R is the space of smooth (i.e.,
infinitely-differentiable) functions f on R so that for all non-negative integers
m,n the value

Vi (f) 1= sup(1 + 2°)™ [ f")(2)]

is finite. The functions v, , form a countable collection of seminorms, with
respect to which S is complete. Thus, S is a (locally convex, separable) Frechet
space.

The space of test functions D(R) = C°(R) on R is the direct limit

CZ(R) == dirlim x C(K) = | ] C2(K)
K

where K ranges over compact subsets of R, and the maps in the direct limit
are the inclusions. Each space C°(K) has a (locally convex, separable) Frechet
space structure given by the countable collection of seminorms

pn(f) = sup |f) ()|
zeK
The inclusion maps are certainly continuous, and make C2°(K) a closed sub-
space of C°(K') for K C K'.

The space of distributions on R is the continuous dual D' = C°(R)’ of the
space of test functions D := C2°(R). The space of tempered distributions
on R is the continuous dual S’ of the space of Schwartz functions.

The space of all distributions is a module over the ring C$°(R) of all smooth
functions in the following way: for ¢ € C5°(R), for a distribution u, and for a
test function f, define

(pu)(f) := ulef)
where ¢f is the usual pointwise product.

One can check that the natural inclusion C*°(R) — S(R) is continuous, and
that the image is dense. Thus, the inclusion D — § induces a map S’ — D’



which is continuous in the weak star-topologies on these dual spaces. That
is, every tempered distribution is a ‘plain’ distribution: this is useful in some
situations where proof of uniqueness or non-existence of some sort of tempered
distribution proceeds most reasonably by proving the formally stronger assertion
about ‘plain’ distributions.

The Fourier transform maps S continuously to itself, with inverse given by
the inverse transform

f@) = [ ) vt dy
R
Therefore, for a tempered distribution u we can define a Fourier transform by

(Fu)(falf) := u(f)

Note that the space of test functions is not mapped to itself by Fourier transform
(compact support is not preserved), so we cannot reasonably define a Fourier

transform on ‘plain’ distributions.

This is a suitable generalization of Fourier transform of a Schwartz function,
in the following sense. To a Schwartz function ¢ we associate a distribution wu,,
defined by

uelf) = [ (o) fla)da

The asserted compatibility is that
Fug) = ury

This follows from the equality

[ ¢@ 1@tz = [ o@)fa)da

The support spt(u) of a distribution u is the smallest closed set C so that
for f € C(R) with spt(f) N C = ¢ we have u(f) = 0. We claim that the
distributions with support consisting of a single point {z¢} are the finite linear

combinations of (distributional) derivatives 69(6701) of the Dirac delta function d,,
at xg. (The latter is defined by

Ou (f) = f(o)

and also
S (f) = £ (o)

are the derivatives.) Proof: omitted for now
The additive group R acts on & and on D by the regular representation

Ryf(z) = f(z+9)



This action is continuous. The natural duality gives the (continuous) dual or
contragredient representation on 8’ and D' by

(Ryu)(f) == u(Ry-1f)

We have two fundamental identities regarding this regular representation
and Fourier transforms (for f € S):

(sz)A: Y. f

(by direct computation). From these and from the definition of Fourier trans-
form for tempered distributions, the same identities must hold for tempered
distributions, as well.

Now let @ be a collection of smooth functions on R having common zero set
Z. Let u be a distribution such that pu = 0 for all p € &. We claim that

spt(u) C Z

Proof: omitted for now

Refining a special case of the previous result, suppose that ® is a subset of
C%°(R) having a single point as common zero set. Without loss of generality,
we suppose that this single point is 0. Let Oy be the ring of germs of smooth
functions at 0, and let m be its unique maximal ideal, consisting of smooth
functions vanishing at 0. Suppose that the image in Oy of the ideal generated
by ® in C$°(R) is m™. That is, we suppose that all functions in ® vanish at 0 to
order at least n, and every germ of a smooth function at 0 vanishing to order at
least n is a linear combination over Oy of elements of ®. Let u be a distribution
so that ou = 0 for all ¢ € ®. Then u is a complex linear combination of
30, .., 6(()”71). Proof: omitted for now

Now consider the two tempered distributions

u(f) =Y f(n)

nez

o(f) = fn)

nez

The Poisson summation formula asserts that
U=

We will isolate properties possessed by both u and v, and then prove that there
is a unique tempered distribution with these properties.
Certainly u(v, f) = u(f) for n € Z, and u(R, f) = u(f) for n € Z. Thus,

Ypu = u Ryu=u for all n € Z.



The two identities above which ‘intertwine’ the Fourier transform and the reg-
ular represe%tation imply that v has the same properties. Further, letting
v(x) ;= e~ ™", we have ¥ = v, and so

Now we prove that the space of tempered distributions w such that
Ypw = w Ryw =w for all n € Z.

is one-dimensional over C. This, together with the evaluation of both « and v
on v, will prove the Poisson summation formula. The common zero set of the
collection

®={Y,—-1:neZ}

is Z, so any ‘plain’ distribution w annihilated by multiplication by all ¢,, — 1
must be supported on Z. Let ¢ € C°(R) be such that spt(¢) NZ = {0} and
» = 1 on some neighborhood of 0. Then spt(¢pw) = 0. Further, since the 1, — 1
generate the whole maximal ideal in the ring of germs of smooth functions at 0,
we conclude that pw is a constant multiple of dg. By use of a partition of unity
to ‘localize’ the issue, we find that

w:Z Cn O,

for some constants ¢,. The ‘translation invariance’ of w implies that all the
constants ¢, must be the same. Thus, there is a constant ¢ so that

w:cZ5n

This is the desired uniqueness (one-dimensionality) assertion.



