
(October 26, 2017)

Harish-Chandra’s homomorphism, Verma modules

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ g̃arrett/

Representations of semi-simple Lie algebras for the impatient.

The Harish-Chandra homomorphism is due to [Harish-Chandra 1951]. Attention to universal modules
with highest weights is in ]Harish-Chandra 1951], [Cartier 1955], as well as [Verma 1968], [Bernstein-
Gelfand-Gelfand 1971a], [Bernstein-Gelfand-Gelfand 1971b], [Bernstein-Gelfand-Gelfand 1975]. See also
[Jantzen 1979].

[1] We treat sl(2) in as simple a style as possible, to highlight ideas. Then sl(3) to illustrate that certain
technical complications are harmless. One should be aware that some properties hold for sl(3) that become
more complicated or fail completely for sl(4) and larger algebras. See the Supplementary Remarks to chapter
7 of [Dixmier 1977].
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1. Highest weights for sl(2)

In the Lie algebra g = sl(2,R) of two-by-two real matrices with trace 0, let, as usual,

H =

(
1 0
0 −1

)
X =

(
0 1
0 0

)
Y =

(
0 0
1 0

)

In this Lie algebra, the Lie bracket is
[a, b] = ab− ba

We have
[H,X ] = 2X [H,Y ] = −2Y [X,Y ] = H

Sometimes X is called a raising operator and Y a lowering operator. These are also called creation

and annihilation operators.

A representation or g-module (π, V ) is a complex vectorspace V and π is a Lie algebra homomorphism

π : g → EndC(V )

where EndC(V ) has the Lie bracket
[A,B] = AB −BA

That is, π is R-linear, and
[π(a), π(b)] = π([a, b])

[1] The terminology Verma modules was apparently promulgated by Dixmier and Kostant in the 1960’s. For

exposition with further historical notes, see, for example, [Knapp 1986], [Knapp 1996], [Wallach 1988]. Even though

one might think that naming these modules after Harish-Chandra would have been more apt, one could argue that it

would have been ill-advised to name yet another thing a Harish-Chandra module, since this would fail to distinguish

the thing. By contrast, the terminology Verma module is unambiguous.
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When convenient the π is suppressed in notation, and parentheses are minimized. Thus, the action of x ∈ g

on v ∈ V is denoted
π(x)(v) = π(x)v = x · v = xv

For a finite-dimensional (as C-vectorspace) g-module V , for some complex number λ the operator H
necessarily has a non-zero λ-eigenspace V (λ) in V . Since [H,X ] = 2X , X has a predictable effect on
V (λ): for v in V (λ),

H(Xv) = (HX −XH)v +XHv = 2Xv +XHv = 2Xv +Xλv = (2 + λ)Xv

That is, Xv is in the 2+λ eigenspace V (λ+2) for H . By finite-dimensionality, in the sequence of eigenspaces

V (λ), V (λ+ 2), V (λ+ 4), V (λ+ 6), . . .

only finitely-many can be non-zero. That is, there is some λ ∈ C such that X annihilates V (λ). Call λ a
highest weight (even though in this simple setting it’s just a complex number), and any non-zero vector
in V (λ) (for highest weight λ) is a highest weight vector in V .

Similarly, the lowering operator Y maps an eigenspace V (µ) to V (µ−2). The easy half of Poincaré-Birkhoff-
Witt asserts that the monomials

Y a Hb Xc (non-negative integers a, b, c)

in U(g) span U(g). Thus, since X annihilates v, and since H acts by a scalar on v, the submodule U(g) · v
generated by a highest weight vector v is

U(g) · v = C[Y ] · C[H ] · C[X ] · v = C[Y ] · C[H ] · v = C[Y ] · v

Thus, the submodule generated by v has a C-basis consisting of vectors of the form

Y n · v

for integer n in some finite set.

Since Y n · v is either 0 or is a basis for the (λ − 2n)-eigenspace of H in U(g) · v, for each n there is some
constant c(n) such that (with v a highest weight vector with fixed weight λ) either Y n · v = 0 or

X · Y · Y nv = c(n) · Y nv

For example,
X · Y · v = ([X,Y ] + Y X)v = Hv + Y Xv = λv + Y · 0 = λv

and, using again the shifting of weights by Y and X ,

X · Y · Y v = ([X,Y ] + Y X)Y v = HY v + Y XY v = (λ − 2)Y v + Y (λv) = (2λ− 2) · Y v

X · Y · Y 2v = ([X,Y ] + Y X)Y 2v = HY v + Y XY 2v = (λ − 4)Y 2v + Y ((2λ− 2) · v) = (3λ− 6) · Y 2v

Generally, by induction,

X ·Y ·Y nv = ([X,Y ]+Y X)Y nv = HY nv+Y (XY nv) = (λ−2n)Y nv+Y ((nλ−n(n−1))·v) = (n+1)(λ−n)·Y nv

In particular, for finite-dimensional V , let v be a highest weight vector in V with weight (eigenvalue) λ, and
let n be the smallest positive integer such that Y nv = 0. Then, on one hand,

Y · Y n−1v = 0
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and, on the other hand, by the computation of the previous paragraph,

XY · Y n−1v = n(λ− (n− 1)) · Y n−1v

Thus, for finite-dimensional V with highest weight λ and C-basis

v, Y v, Y 2v, . . . , Y n−2v, Y n−1v

(i.e., the dimension of V is n) the highest weight is

λ = n− 1 = dimC V − 1

That is, the dimension n determines the highest weight λ = n−1. Further, the complete collection of weights
occurring is

λ, λ− 2, λ− 4, . . . , 2− λ, −λ

or, in other words, for U(g) · v of dimension n, the H-eigenvalues are

n− 1, n− 3, n− 5, . . . , 5− n, 3− n, −n

[1.0.1] Corollary: For an irreducible finite-dimensional representation of sl(2) the highest weight is a non-
negative integer. ///

[1.0.2] Remark: The preceding analysis does not construct any finite-dimensional irreducibles. On the
other hand, in fact it did not assume the irreducibility of the U(g)-module generated by a highest weight
vector v. Rather, the argument shows that a cyclic U(g)-module generated by a highest-weight vector is of
the form indicated.

[1.0.3] Remark: Since we are looking at R-linear (Lie algebra) maps of sl(2,R) to endomorphism algebras
of complex vector spaces, we may as well consider complex-linear representations of the complexification

sl(2,C) = sl(2,R)⊗R C

And the special unitary group SU(2) has the same complexified Lie algebra, sl(2,C). Thus, at the level of
sl(2) representations we are unable to distinguish SU(2) and SL(2,R). While on one hand this evidently loses
information, on the other hand it allows (by ignoring some awkward points) a discussion which simultaneously
addresses some common points of the two cases.

2. The Casimir element

For g = sl(2), with X,Y,H as above, we can define the Casimir operator [2]

Casimir operator = Ω =
1

2
H2 +XY + Y X ∈ U(g)

We will see that the Casimir operator is in the center of the universal enveloping algebra quite generally.
Schur’s Lemma (see the proof of the first corollary just below) assures that Ω acts by a scalar on an irreducible
representation of g. For g = sl(2) we determine this scalar. Therefore, the eigenvalues of Ω are invariants of
the isomorphism class of the irreducible. We will make essential use of this in proving complete reducibility
of finite-dimensional representations, for example.

[2] One might roughly imagine that this is a sort of Laplacian.
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[2.0.1] Proposition: The Casimir operator Ω = 1
2 H

2 +XY + Y X is in the center Z(g) of the enveloping
algebra U(g) of sl(2).

[2.0.2] Corollary: On an irreducible finite-dimensional representation V of g = sl(2) with highest weight
λ = dimC V − 1, the Casimir operator acts by the scalar

1

2
(dimC V )(dimC V − 1)

Proof: First, we prove that anything in the center of U(g) must act by a scalar on a finite-dimensional
irreducible V . Indeed, by irreducibility, any g-endomorphism is either 0 or is an isomorphism, since the
kernel and image, being g-subspaces, can only be V or 0. Thus, the g-endomorphism algebra E is a division
ring. And E is finite-dimensional over C, since V is finite-dimensional. The finite-dimensionality implies
that any element of E is algebraic over C. The algebraic closure of C implies that E = C. Thus, any central
element in U(g) acts by a scalar on an irreducible.

In the case of g = sl(2), we saw above that a finite-dimensional irreducible has a highest weight vector v
with eigenvalue λ equal to dimV − 1. Since Ω acts by a scalar, we can compute this scalar on the highest
weight vector.

Ωv = (
1

2
H2+XY +Y X) v = (

1

2
H2+[X,Y ]+Y X+Y X) v = (

1

2
H2+H+Y X+Y X) v = (

1

2
λ2+λ+0+0) v

as claimed. ///

Conceivably it is possible to prove the proposition by direct computation for the little algebra sl(2), since
we need only show that it commutes (in U(g) with H , X , and Y , but such an argument would fail to reveal
how the thing was found in the first place. So we may as well prove a version for sl(n). Indeed, the proof of
the following theorem applies to arbitrary semi-simple Lie algebras.

[2.0.3] Theorem: Let Eij be the n-by-n matrix with a 1 at the ijth position (ith row and jth column) and
0 at all other positions. Let Hi = Eii − Ei+1,i+1 for 1 ≤ i < n, and

H∗
i =

1

n
((n− i)E11 + (n− i)E22 + . . .+ (n− i)Eii − iEi+1,i+1 − . . .− iEnn)

The Casimir operator Ω in g = sl(n) defined by
∑

1≤i<n

HiH
∗
i +

∑

i6=j

Eij Eji

is in the center Z(g) of the enveloping algebra U(g) of g.

[2.0.4] Remark: The particular form of the expression for the Casimir operator is best explained by a yet
more general claim made in the course of the proof below. Note that in the case of sl(2), there is just a
single element H = H1, and

H∗ = H∗
1 =

1

2
H

giving the simple version for sl(2).

[2.0.5] Remark: The annoying constants arising in the expression for H∗
i can be dispatched entirely if we

tolerate [3] considering the Lie algebra gl(n) of all n-by-n complex matrices, rather than just trace zero ones.
In that case, the diagonal matrices have a simpler basis

Hi = Eii

[3] The Lie algebra g = gl(n) is not semi-simple, but only reductive, meaning, among other things, that the set of

brackets [x, y] = xy − yx for x, y ∈ g is not all of g. The pairing 〈x, y〉 = tr(xy) is no longer a constant multiple of

the Killing form. The Lie algebra is not spanned by images of sl(2). But it is still true that this pairing is invariant

under conjugation by GL(n,C), and behaves well with respect to the operation [x, y] in gl(n), so the argument that

a Casimiar operator is central would work in this case, too.
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and the dual basis is
H∗

i = Hi

Proof: Let {xi} be a C-basis for g = sl(n), with dual basis {x∗
i } with respect to the pairing

〈x, y〉 = tr(xy)

We claim that for any such choice the Casimir operator is

Ω =
∑

i

xi x
∗
i

Thus, in sl(2), with basis H,X, Y , the dual basis element H∗ for H is H∗ = 1
2H , for X it is X∗ = Y , and

for Y it is Y ∗ = X .

To approach the proof of this claim, first let V be any finite-dimensional C-vectorspace, with C-linear dual
V ∗. Let G be any group acting on V , denoted

g × v → gv

and let G act on the dual V ∗ as usual by [4]

(gλ)(v) = λ(g−1v)

Certainly G acts on the tensor product V ⊗ V ∗ by the C-linear extension of

g(v ⊗ λ) = gv ⊗ gλ

For a C-basis {vi} of V , let {λi} be the corresponding dual basis of V ∗. This has the property that for any
v ∈ V

v =
∑

i

λi(v) · vi

We claim that the expression
∑

i vi ⊗ λi ∈ V ⊗ V ∗ is independent of the choice of basis, and that, for any
g ∈ G, ∑

i

vi ⊗ λi =
∑

i

gvi ⊗ gλi

To see this, recall the natural isomorphism

V ⊗C V ∗ ≈ EndC(V )

by
(v ⊗ λ)(v′) = λ(v′) · v

By the very definition of dual basis, the endomorphism

∑

i

vi ⊗ λi

of V is the identity map on V , regardless of the choice of basis. And, in particular, it does commute with
the action of G on V . Thus, for v ∈ V and g ∈ G

(
∑

i

vi ⊗ λi

)
(v) = v = (g ◦ idV ◦ g−1)(v) =

∑

i

g · (vi ⊗ λi)(g
−1v)

[4] Contragredient or adjoint action.
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=
∑

i

g · λi(g
−1v) · vi =

(
∑

i

(gvi)⊗ (gλi

)
)(v)

proving the claim.

Next, a non-degenerate bilinear form 〈, 〉 on V gives a natural isomorphism v → λv of V with its dual V ∗,
by

λv(v
′) = 〈v′, v〉

If also the action of the group G is by isometries of 〈, 〉, that is, has the property that

〈gv′, gv〉 = 〈v, v′〉

for all v, v′ ∈ V , then the previous paragraph shows that

∑

i

vi ⊗ v∗i ∈ V ⊗ V

is independent of the choice of basis, and is G-invariant, where {v∗i } is the dual basis corresponding via 〈, 〉
to a given basis {vi} for V .

The conjugation invariance of trace
tr(gxg−1) = tr(x)

for g ∈ GL(n,C) shows that conjugation action of GL(nm,C) gives isometries of the pairing 〈x, y〉 = tr(xy):
for g ∈ GL(n,C) and x, y ∈ g = sl(n)

〈gxg−1, gyg−1〉 = tr(gxg−1 · gyg−1) = tr(gxyg−1) = tr(xy)

Thus, for any basis {vi} and dual basis {v∗i } with respect to trace,

∑

i

vi ⊗ v∗i ∈ V ⊗ V

is independent of the choice of basis and is GL(n,C)-invariant.

The tensor product V ⊗ V sits inside the tensor algebra

T (V ) = C⊕
⊕

n≥1

V ⊗ . . .⊗ V︸ ︷︷ ︸
n

Taking V = g, the enveloping algebra U(g) is a quotient of T (g) by the ideal generated by all expressions

[x, y]− (xy − yx). This ideal is stable under the action [5]

g × x → gxg−1

so this action descends to [6] the quotient U(g). Use the bilinear form 〈x, y〉 = tr(xy) on g to create a
GL(n,C)-invariant element ∑

i

xi ⊗ x∗
i ∈ T (g)

in g ⊗ g, where xi is a basis for g and the x∗
i are the dual basis. And, from above, this element does not

depend on the choice of basis. Under the quotient map to U(g) this tensor maps to

Ω =
∑

i

xi x
∗
i ∈ U(g)

[5] The Adjoint action.

[6] Is well defined on . . .

6



Paul Garrett: Harish-Chandra, Verma (October 26, 2017)

Thus, since the element of T (g) was independent of basis and was GL(n,C)-invariant, its image is also. That
is, the Casimir element can be so expressed via any basis, and is invariant under the natural GL(n,C) action
on U(g)

Ω =
∑

i

xi x
∗
i =

∑

i

gxig
−1 gx∗

i g
−1 ∈ U(g)

In effect we take the derivative of the GL(n,C)-invariance relation to show that Ω is in the center of the
enveloping algebra, as follows. With g = eεz with ε small and z ∈ g, as complex n-by-n matrices

gxg−1 = x+ ε(zx− xz) +O(ε2)

Thus, using the GL(n,C)-invariance of Ω we have, modulo O(ε2),

∑

i

xi x
∗
i = Ω =

∑

i

gxig
−1 gx∗

i g
−1 =

∑

i

xi x
∗
i + ε

∑

i

(zxi − xiz)x
∗
i + ε

∑

i

xi (zx
∗
i − x∗

i z)

Thus,

0 =
∑

i

((zxi − xiz)x
∗
i + xi (zx

∗
i − x∗

i z))

Inside U(g), for any x, y, z ∈ g, we have

(zx− xz) y + x (zy − yz) = zxy − xzy + xzy − xyz = zxy − xyz = z(xy)− (xy)z

Therefore, applying this termwise to the previous equality,

0 = zΩ− Ω z

for all z ∈ g, which shows that Ω is in the center of the enveloping algebra U(g). ///

3. Complete reducibility

The following theorem is a very special case, and most of the features of the theorem are immediately
applicable more generally. The missing item would be sufficient detail about the Casimir operator on finite
dimensional representations of a more general Lie algebra g, so for the moment we content ourselves with
appearing to treat only sl(2).

[3.0.1] Theorem: Any finite-dimensional complex representation of sl(2) is a direct sum of irreducibles.

[3.0.2] Remark: The assertion of the theorem is that any finite-dimensional complex representation of sl(2)
is completely reducible.

Proof: General argument (at the end of this proof) leads one to consider the slightly odd-seeming situation
treated in the first part of the proof.

First, it is useful to observe that on a one-dimensional representation V of g the action of g is 0. Indeed,
the trace of any commutator ST − TS of endomorphisms on a finite-dimensional space is necessarily 0.
Since [H,X ] = 2X , [H,Y ] = −2Y , and [X,Y ] = H , every element of g = sl(2) is a (linear combination of)
commutators, so the trace of any element of g on a finite-dimensional representation is 0. In particular, the
image of g in the endomorphisms of a one-dimensional space must be 0.

Now consider the family of situations wherein V is a representation with a codimension-one subrepresenta-
tion. That is, by the previous paragraph, we have an exact sequence

0 → W → V → C → 0
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where the C is the one-dimensional representation of g. We claim that this splits, in the sense that there is
s : C → V such that

V = s(C)⊕W

We do induction on the dimension of W . If W is reducible, let U be a proper submodule. Then

0 → W/U → V/U → C → 0

is still exact, and dimW/U < dimW , so there is a section s : C → V/U . Let s(C) = W ′/U for a subspace
W ′ of V . Then we have another exact sequence of the same sort

0 → U → W ′ → C → 0

Since dimW ′ < dimW , the exact sequence splits, giving t : C → W ′ such that W ′ = U ⊕ t(C). Because
s(C) = W ′/U complemented W/U in V/U , and because t(C)∩U = 0 inside W ′, we find that t(C)∩W = 0.
That is,

V = W ⊕ t(C)

giving the induction step for the splitting for W reducible.

Still in the family of cases
0 → W → V → C → 0

we are left with the case of the induction step (on the dimension of W ) for W irreducible. Again, then g

acts by 0 on V/W , so g · V ⊂ W , and, thus, the Casimir Ω acts by 0 on V/W . On the other hand, we saw
earlier that the Casimir operator Ω acts by the scalar n(n − 1)/2 on an irreducible W of dimension n. If
dimW > 1 then this scalar is not 0. Thus, the U(g)-endomorphism

Ω : V → V

is non-zero on the codimension-one subspace W , and maps the whole space V to W (since Ω is 0 on V/W ).
That is, Ω has a non-trivial kernel on V , necessarily one-dimensional since Ω is a non-zero scalar on the
codimension-one subspace W . Since Ω commutes with U(g) this kernel is a subrepresentation of V , providing
the complement to W .

We ought not overlook the extreme case that the codimension-one irreducible W is one-dimensional. Again,
g = [g, g], so g · V = 0. Thus, for this two-dimensional V with a one-dimensional subrepresentation W , any
one-dimensional vector subspace U of V complementary to W gives V = U ⊕W , for trivial reasons.

This completes the induction (on dimW ) step for codimension one subrepresentations W .

Now consider an exact sequence of finite-dimensional g-modules

0 → W → V → V/W → 0

We will exhibit a g-complement to W in V as the kernel of a g-homomorphism V → W . To this end, put a
g-module structure [7] on HomC(V,W ) by

(x · f)(v) = x · f(v)− f(x · v)

[7] The computational verification that this is a Lie algebra representation is peculiar, but straightforward. First,

for x, y ∈ g and f a C-linear map V → W ,

(xy ·f))(v) = x((yf)(v))− (yf)(xv) = x(y f(v)−f(yv))− (y f)(xv)−f(yx v)) = xy f(v)−xf(yv)−y f(xv)+f(yx v))

Note that the middle two terms are symmetrical in x, y. Thus,

([x, y] f))(v) = xyf(v) + f(yxv)− yxf(v)− f(xyv) = [x, y]f(v)− f([x, y]v)
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for x ∈ g and f ∈ HomC(V,W ). Among the merely C-linear homomorphisms the U(g)-morphisms V → W

are exactly the ones which are annihilated by this action of g. [8] Consider, though, the (somewhat larger)
collection

B = {f ∈ HomC(V,W ) : f is a scalar on W}

and submodule
A = {f ∈ HomC(V,W ) : f is 0 on W}

And B is readily verified [9] to be a g-submodule of HomC(V,W ), as is A. The scalar by which f ∈ B acts
on W determines f modulo A, so the quotient of B by the U(g)-homomorphisms is at most one-dimensional.
On the other hand, among merely C-linear maps of V to W there certainly is one that is the identity on W ,
hence non-zero. Thus, the quotient B/A is exactly one-dimensional, and we have an exact sequence

0 → A → B → C → 0

where the one-dimensionality of the quotient C assures (as above) that it is a trivial g-module. Thus, from
above, there is a U(g)-homomorphism s : C → B such that

B = A⊕ s(C)

and take f ∈ s(C). Since f is not in A it is scalar on W but not 0 on W . Thus, adjust f by a constant to
make it be the identity on W . The fact that f is in the trivial g-module s(C) is that g ·f = 0, which (with the
action of g on endomorphisms) asserts exactly that f is a g-homomorphism. Thus, ker f is a g-submodule of
V . Because the modules are finite dimensional and f is the identity on W , the kernel of f is a complement
to W . ///

4. Verma modules for sl(2)

Given an eigenvalue λ ∈ C for H , we make the universal [10] U(g)-module Mnaive
λ (first in a naive

normalization, then, later, corrected) possessing a distinguished vector v 6= 0 such that [11]

Xv = 0 Hv = λv

and no other relations. Before giving a careful construction, we observe that, by Poincaré-Birkhoff-Witt,
Mnaive

λ will apparently have a C-vectorspace basis consisting of the infinite list v, Y v, Y 2v, . . ., since no power

[8] The annihilation condition x · f(v) − f(x · v) = 0 for x ∈ g and f an endomorphism immediately yields the

g-homomorphism condition x · f(v) = f(x · v).

[9] For f ∈ B let c be the scalar by which it acts on W , take x ∈ g and w ∈ W and compute

(x · f)(w) = x · f(w) − f(x · w) = x · cw − cx · w = cx · w − cx · w = 0

Note that this does not assert that g annihilates f , only that g · f is 0 when restricted to W . And, since W is a

g-subspace of V , B is stable under the action of g.

[10] By standard elementary category-theoretic arguments, there exists at most one U(g)-module M generated by a

vector m 6= 0 with Xm = 0 and Hm = λ · m with given λ ∈ C, such that for any U(g)-module V generated by a

vector v 6= 0 with with Xv = 0 and Hv = λ · v, there exists a unique U(g)-homomorphism M → V taking m to v.

The pair (M,m) is unique up to unique isomorphism, as usual in these stories.

[11] With hindsight, this will be renormalized. Since the correct normalization can only be seen after an initial

computation is done, it seems reasonable to approach the computation honestly rather than inject an unguessable

normalization at the outset.
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of Y annihilates v. Then, [12] Verma modules yield all the finite-dimensional irreducibles as quotients, since
(by elementary linear algebra, above) every finite-dimensional representation has a highest weight vector.

We will determine the condition on λ such that Mnaive
λ admits a finite-dimensional quotient. [13]

More carefully, still in the innocent normalization, let Inaiveλ be the left U(g) ideal generated by H − λ and
by X , namely

Inaiveλ = U(g) · (H − λ) + U(g) ·X

and put

Mnaive
λ = U(g)/Inaiveλ

The distinguished (highest weight) vector in this model is

v = 1 + Inaiveλ

By construction, indeed, Xv = 0 and Hv = λv.

An equivalent construction having a different appearance is as follows. Let b be the (Borel) Lie subalgebra
C ·H + C ·X of g. Make C into a U(b)-module Cλ by

X · α = 0 H · α = λ · α

By Poincaré-Birkhoff-Witt, U(b) injects to U(g), and we may consider U(g) a right U(b)-module. Then
define

Mnaive
λ = U(g)⊗U(b) Cλ

Let n− = C · Y . Then U(n−) = C[Y ]. In either construction of Mnaive
λ Poincaré-Birkhoff-Witt shows that

the natural map

C[Y ] = U(n−) → Mnaive
λ

defined by

Y n → Y n · v (0 ≤ n ∈ Z)

is a U(n−)-isomorphism. In particular, Mnaive
λ has a C-vectorspace basis consisting of

Y n · v (0 ≤ n ∈ Z)

X X X X

Y Y Y

λλ−2λ−4

[4.0.1] Theorem: (Naive form) In the innocent normalization as above,

dimCHomU(g)(M
naive
µ ,Mnaive

λ ) =





1 (µ = λ)
1 (µ = −λ− 2 and 0 ≤ λ ∈ Z)
0 (otherwise)

[12] mildly ironically

[13] The later renormalization allows the question of morphisms among these modules and existence of finite-

dimensional quotients to be given in a more symmetrical and attractive form.
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Renormalize: The second point in the theorem suggests the proper normalization for a symmetrical result.
Instead of the naive forms above, let

Iλ = U(g) · (H − (λ− 1)) + U(g) ·X

Mλ = U(g)/Iλ

or, in terms of tensor products,
Mλ = U(g)⊗U(b) Cλ−1

Then we have

[4.0.2] Theorem:

dimCHomU(g)(Mµ,Mλ) =






1 (µ = λ)
1 (µ = −λ and 1 ≤ λ ∈ Z)
0 (otherwise)

And any non-zero homomorphism is injective.

Proof: In the proof, we use the naive normalization. With any U(g)-homomorphism f : Mnaive
µ → Mnaive

λ ,
the image of the highest-weight vector from Mµ must be an H-eigenvector annihilated by X . Since

[H,Y ] = −2Y , in Mnaive
λ , by an easy induction, [14]

H · Y nv = (λ− 2n) · Y nv

Thus, the various vectors Y nv have distinct eigenvalues λ− 2n. Thus, any image of an H-eigenvector must
be a multiple of one of these. Another induction [15] shows that

X · Y nv = n(λ− (n− 1)) · Y nv

For this to be zero λ = n − 1. That is, Mnaive
λ contains a vector annihilated by X other than multiples of

the highest weight vector if and only if λ is a non-negative integer.

Here (because we are in the universal U(g)-module with highest weight λ) the vector Y nv is not 0, has
weight λ− 2n, and X annihilates it if and only if λ = n− 1. That is, n = λ+ 1. Thus, Y nv has weight

weight Y nv = λ− 2n = λ− 2(λ+ 1) = −λ− 2

That is, there is a non-zero U(g)-homomorphism of Mnaive
−λ−2 to Mnaive

λ if and only if 0 ≤ λ ∈ Z.

For injectivity, use the fact that

Mnaive
λ = U(C · Y ) · v = U(n−) · v = C[Y ] · v

where v is the highest-weight vector. Let Y nv be the vector annihilated by X , as just above. Suppose
that the map of Mnaive

−λ−2 to Mnaive
λ sending the highest-weight vector of Mnaive

λ−2 to Y n were not injective. In
particular, suppose some f(Y ) · Y nv = 0 for f(Y ) ∈ C[Y ] = U(n−). Then

(f(Y )Y n) · v = 0

Since g(Y ) → g(Y ) ·v is a linear isomorphism of U(n−) to Mnaive
λ , necessarily f(Y )Y n = 0 in U(n−) = C[Y ],

so f(Y ) = 0. This proves the injectivity. ///

[14] This is the same computation as earlier, using the fact that XY · Y nv = [X, Y ] · Y nv + Y X · Y nv.

[15] Again the same computation as above in the discussion of highest weights, moving X across the Y s.

11
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[4.0.3] Remark: Since the symmetry in the naive normalization is

λ → −λ− 2

renormalize by replacing λ by λ+ c with suitable constant c. The symmetry

λ+ c → −(λ+ c)− 2

is
λ → −λ− 2c− 2

The prettiest outcome would be to have no constant appearing, take c = −1. This hindsight gives the revised
version of the theorem.

Now we can produce an irreducible quotient of Mλ for 1 ≤ λ ∈ Z. In fact, the above discussion makes clear
that Mλ/M−λ is finite dimensional, but there is a lighter and more broadly applicable argument:

[4.0.4] Lemma: Let M be a U(g) module in which every vector is a sum of H-eigenvectors. Let v be an
element of a U(g)-submodule of M . Let v =

∑
µ vµ where vµ is a µ-eigenvector for H (and the complex

numbers µ appearing in the sum are distinct). Then each vµ is also in N .

Proof: Let

v′µ =



∏

ν 6=µ

(H − ν)


 · v ∈ C[H ] · v ⊂ N

Then

v′µ =



∏

ν 6=µ

(µ− ν)


 · vµ

and the leading constant is not 1. ///

[4.0.5] Theorem: For arbitrary λ ∈ C, the Verma module Mλ has a unique maximal proper submodule Iλ,
and Iλ does not contain the highest weight vector vλ of Mλ. Thus, Mλ has a unique irreducible quotient,
Mλ/Iλ, the image of vλ in this quotient is non-zero, and (therefore) this quotient has highest weight λ− 1.
[16]

Proof: First, no proper submodule can contain the highest weight vector v, because v generates the whole
module. Further, no proper submodule can contain a linear combination

cv +
∑

i

ci vi

with vi of other weights λi 6= λ, or else v lies in that submodule (by the lemma), and this vector would
generate the whole module. Therefore, no sum of proper submodules contains v. Thus, the sum Iλ of all
proper submodules does not contain v, so is proper. That is, Iλ is the unique maximal proper submodule.
The kernel of any mapping to an irreducible must be maximal proper, so Mλ/Iλ is the unique irreducible
quotient. Since the image of the highest weight vector from Mλ is not 0, it generates the quotient, and
certainly still has the highest weight λ− 1. ///

[4.0.6] Remark: This proof of uniqueness of irreducible quotient applies to all Verma modules, not just
with 1 ≤ λ ∈ Z.

[4.0.7] Remark: The theme of unique irreducible quotient of naturally constructed and parametrized object
recurs in many genres of representation theory. The present instance is surely one of the simplest.

[16] This is the normalized version.

12



Paul Garrett: Harish-Chandra, Verma (October 26, 2017)

If λ ≥ 1 say λ is dominant. If λ ∈ Z say λ is integral.

[4.0.8] Corollary: For dominant integral λ, the unique irreducible quotient of the Verma module Mλ is
finite dimensional. ///

Proof: For sl(2), the finite-dimensionality is visible from the explicit information we have about the
dimensions of the H-eigenspaces in Mλ. That is, for λ dominant integral, the weights of Mλ are

weights Mλ = λ− 1, λ− 3, . . . , 3− λ, 1− λ, −1− λ, −3− λ, . . .

and each such weight-space has dimension exactly 1. The weights of M−λ are

weights M−λ = −λ− 1, −λ− 3, . . .

with dimensions 1. Thus, in Mλ/M−λ the weight spaces with weights

−λ− 1, −λ− 3, . . .

cancel out, leaving exactly

weights Mλ/M−λ = λ− 1, λ− 3, . . . , 3− λ, 1− λ

which is visibly finite-dimensional. ///

[4.0.9] Remark: Part of the point is that the weight λ uniquely determines the isomorphism class of an
irreducible with highest weight λ− 1.

[4.0.10] Remark: The question of the multiplicities of the weight spaces, that is, the dimension of various
eigenspaces of H in an irreducible finite-dimensional representation with highest weight λ− 1, is trivial here.
Specifically, the only non-trivial weight spaces are those with H-eigenvalue between λ−1 and 1−λ inclusive,
of the same parity as λ− 1, and these are 1-dimensional.

[4.0.11] Remark: An important question is the decomposition of tensor products of finite-dimensional
irreducibles, or, more extravagantly, of Mλ ⊗C Mµ.

5. Harish-Chandra homomorphism for sl(2)

The goal here is to understand the center Z(g) of the universal enveloping algebra U(g) of g = sl(2).

By Poincaré-Birkhoff-Witt the universal enveloping algebra U(g) of g = sl(2) has a basis of monomials

Y a Hb Xc

Let ρ be a representation of g with highest weight λ, with (non-zero) highest weight vector v. In this small
example, we take this to mean that Hv = λ · v, with λ ∈ C. On one hand, a monomial in U(g) as above acts
on the highest weight vector v by annihilating it if any X actually occurs. And elements of of C[H ] ⊂ U(g)
act on v by the (multiplicative extension of) the highest weight.

We claim that if a sum of monomials Y aHbXc is in the center Z(g) of U(g), then in each monomial occuring
in the sum Y cannot occur unless X also occurs.

Using this claim (cast as the lemma just below), and using the fact (a form [17] of Schur’s lemma) that the
center Z(g) acts by scalars on an irreducible of g, we can compute the eigenvalues of elements z ∈ Z(g)

[17] A version of Schur’s lemma that applies to not necessarily finite-dimensional irreducibles, due to [Dixmier 1977],

is as follows. By Poincaré-Birkhoff-Witt, the C-dimension of U(g) is countable, so the dimension of an irreducible is

countable. Then the dimension of the endomorphisms of an irreducible is countable, because the image of each of

countably many basis elements is determined by countably many coefficients (in terms of that basis). As usual, the

endomorphism algebra of an irreducible is a division ring. Since C is algebraically closed, if the endomorphism ring

of an irreducible is strictly larger than C, then it contains t transcendental over C. But then the uncountably-many

endomorphisms 1/(t−α) for α ∈ C are linearly independent over C, contradiction. Thus, the endomorphism algebra

of an irreducible cannot be larger than C itself.
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on an irreducible with highest weight by evaluating z on the highest weight vector, and (by the claim) the
values depend only upon the effect of H on v.

[5.0.1] Lemma: If a linear combination z of monomials (as above) lies in Z(g) then in every monomial
where Y occurs X occurs also.

Proof: Each such monomial is an eigenvector for adH (actually, its extension [18] to U(g)), with eigenvalue

−2a+ 2c

Because (adH)z = 0, for each monomial occurring in the expression for z

−2a+ 2c = 0

since these monomials are linearly independent (by Poincaré-Birkhoff-Witt). That is, if Y appearsX appears.
///

[5.0.2] Corollary: The eigenvalues of elements of the center Z(g) of the enveloping algebra U(g) of g on an
irreducible representation V of g with a highest weight λ are completely determined by λ.

Proof: By Schur’s lemma, an element z of the center Z(g) acts on an irreducible by a scalar c(z). To
determine the scalar it suffices to compute zv for a highest weight vector. By the lemma, for z ∈ Z(g),
expressed as a sum of monomials as above, every monomial not in C[H ] has X occuring in it, and so
annihilates v. Any monomial

M = Hb

acts on the highest weight vector v by the scalar

λb

Thus, with

z =
∑

i

ciH
bi + (terms with X appearing)

we have

zv =

(
∑

i

ci · λ
bi

)
· v

That is, the constant c(z) such that zv = c(z) · v is completely determined by λ. ///

More can be said in the direction of the previous lemma and corollary. Let

I = U(g) ·X

be the left ideal in U(g) generated by X . By Poincaré-Birkhoff-Witt, we know that this consists exactly of
all linear combinations of monomials, as above, in which X appears.

[5.0.3] Lemma: I ∩ C[H ] = 0 (where by Poincaré-Birkhoff-Witt C[H ] injects into U(g)).

Proof: For x ∈ I we have xv = 0 for all highest-weight vectors v in all finite-dimensional irreducibles of g.
On the other hand, for h ∈ C[H ], we have hv = (λh)v (where we extend H → λ to an algebra homomorphism
λ : C[H ] → C). Thus, since there exists a finite-dimensional irreducible representation of g with highest

[18] As usual, on g the operator adH is just bracketing with H . For example, (adH)(X) = HX − XH = 2X,

adH(H) = [H,H ] = 0, and adH(Y ) = −2Y . The extension of adH is as a derivation, meaning (adH)(xy) =

(adH(x))y + x(adH(y)) for x, y ∈ U(g). Thus, for example, adH(Xc) = 2cXc.
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weight λ for every dominant integral [19] λ, we have λh = 0 for all dominant integral λ. Since h is really a
polynomial P (H) in H , the vanishing λh = 0 is the assertion that P (λ) = 0 for 0 ≤ λ ∈ Z. A polynomial in
one variable with infinitely many zeros must be identically zero. ///

[5.0.4] Lemma: Z(g) ⊂ C[H ] + I

Proof: This is a restatement of the first lemma above: writing z ∈ Z(g) as a sum of monomials in our
current style, in each such monomial, if Y occurs then X occurs. That is, if the monomial is not already in
C[H ] then it is in I. ///

Thus, the sum C[H ] + I is direct. Let

γo = projection of Z(g) to the C[H ] summand

Study of intertwining operators among Verma modules (as above) [20] led Harish-Chandra to renormalize

this. [21] Define a linear map σ : C ·H → C[H ] by

σ(H) = H − 1

where 1 is the 1 in U(g). [22] Extend σ by multiplicativity to an associative algebra homomorphism

σ : C[H ] → C[H ]

That is, for a polynomial P (H) in H ,
σP (H) = P (H − 1)

Then define the Harish-Chandra homomorphism [23]

γ = σ ◦ γo : Z(g) → C[H ] = U(C ·H)

Especially as a prototype for later, more complicated, examples, we consider the map H → −H in a more
structured manner. That is, define the Weyl group [24]

W = { permutation matrices in GL(2,C) = {

(
1 0
0 1

)
,

(
0 1
1 cr0

)
, }

Conjugation [25] by w ∈ W stabilizes g = sl(2), and behaves well with respect to the Lie bracket in g for
obvious reasons, namely, for x, y ∈ g

[wxw−1, wyw−1] = wxw−1 · wyw−1 − wyw−1 · wxw−1 = w(xy − yx)w−1 = w[x, y]w−1

[19] Again, in this simple situation λ dominant integral means that 0 ≤ λ(H) ∈ Z. We were originally using λ to

denote the image λ(H) ∈ C, which does completely determine the algebra homomorphism λ : C[H ] → C denoted by

the same symbol.

[20] Yes, Harish-Chandra’s 1951 study of intertwining operators among Verma modules occurred 15 years before

Verma’s 1966 Yale thesis.

[21] Recall from above that in the naive normalization it was Mnaive
−λ−2 that had a non-trivial homomorphism to Mnaive

λ

for λ dominant integral, motivating Harish-Chandra’s renormalization replacing (in this little example) λ by λ− 1.

[22] It bears repeating that this 1 appears because it is half of the 2 that appears in [H,X] = 2X, and also appears in

the naive computation of homomorphisms of Verma modules among each other, above. Thus, this renormalization

will be somewhat more involved in larger examples.

[23] Yes, in this presentation it is not clear how much this depends on all the choices made.

[24] In this example we will not attempt to delineate what data are needed to specify the Weyl group.

[25] This conjugation action is Ad adjoint action, but we do not need to contemplate this.
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In particular, the non-trivial element of W interchanges X and Y , and maps H → −H .

[5.0.5] Theorem: The Harish-Chandra map γ above is an isomorphism of Z(g) to the subalgebra C[H ]W

of the universal enveloping algebra C[H ] of the Cartan subalgebra [26] C ·H invariant under the Weyl group

Proof: First, prove that γ is multiplicative. Since σ is defined to be multiplicative, it suffices to prove that
the original projection map γo is multiplicative. Let I be the left ideal generated by X , as above. Let γo
also denote the projection from the whole of I +C[H ] to C[H ]. Thus, for any u ∈ C[H ] + I, the image γo(u)
is the unique element of U(h) such that

u− γou ∈ I

For z, z′ ∈ Z(g)

zz′ − γo(z)γo(z
′) = z(z′ − γoz

′) + γo(z
′)(z − γoz)

where we use the fact that C[H ] is commutative to interchange γo(z) and γo(z
′). The right-hand side is in

the ideal I, so

γo(zz
′) = γo(z) · γo(z

′)

as claimed.

Weyl group invariance. Next, prove that the image of γ is inside C[H ]W , that is, is invariant under

H → −H . It suffices to evaluate these polynomials on λ dominant integral, that is, on 0 ≤ λ ∈ Z. [27] Let
Mλ be the Verma module for λ, that is, the universal g-module with highest weight λ−1, with highest-weight
vector v. Since the ideal I annihilates v, z acts on v by its projection to C[H ], namely γo(z), which by the
definition of Mλ acts on v by

γo(z)(λ− 1) = (polynomial γo(z) evaluated at λ− 1)

Since v generates Mλ and z is in the center of U(g), z acts on all of Mλ by the same scalar.

From the study of intertwining operators among Verma modules above, for λ dominant integral [28] there
exists a non-zero intertwining operator

M−λ → Mλ

So the scalar by which z acts on M−λ is the same as that by which z acts on Mλ. The scalar by which z acts
on M−λ is the left-hand side of the desired equality, and the scalar by which it acts on Mλ is the right-hand
side. This proves the Weyl group invariance of elements in the image of the Harish-Chandra map γ.

Surjectivity. For sl(2), with h = C ·H , the Weyl group acts on U(h) = C[H ] by sending H → −H. Thus,
the invariants are the polynomials in H2. Recall from above that the un-normalized Harish-Chandra map
γo is the composite

Z(g) ⊂ U(h)⊕ U(g) ·X → U(h)

Thus, rewriting the Casimir element

Ω =
1

2
H2 +XY + Y X =

1

2
H2 +H + 2Y X

so that it is a sum of an element of U(h) and an element in the ideal U(g)X generated by X , we see that

γo(Ω) =
1

2
H2 +H

[26] For the moment, one can take C ·H as the definition of Cartan subalgebra.

[27] Polynomials with coefficients in C in one variable are uniquely determined by their values at positive integers.

[28] Again, this condition is 0 < λ ∈ Z.
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Then σ(H) = H − 1 sends this to

γ(Ω) = (σ ◦ γo)(Ω) = σ(
1

2
H2 +H) =

1

2
(H − 1)2 + (H − 1) =

1

2
H2 −H +

1

2
+H − 1 =

1

2
H2 −

1

2

Thus, 2γ(Ω) + 1 = H2, so γ(Z(g)) includes all of

U(h)W = C[H ]W = C[H2]

That is, the Harish-Chandra map is surjective.

Injectivity. [29] Since g ⊕ C injects to U(g), the renormalizing algebra homomorphism σ is an algebra
injection. Thus, it suffices to show that γo is injective. Keep in mind that γo is composition

Z(g) ⊂ U(h)⊕ U(g)X → U(h)

where the last map is the projection along the direct sum. Thus, on a highest weight vector v in a any
representation, and for any z ∈ Z(g),

z · v = γo(z) · v

since the component of z in the left ideal U(g)X annihilates v. From above, all finite dimensional irreducibles
for sl(2) have a highest weight vector, so γo(z) = 0 for z ∈ Z(g) implies that z acts by 0 on any finite
dimensional irreducible. By complete reducibility of arbitrary finite-dimensional representations of g, this
implies that z acts by 0 on every finite dimensional representation of g.

We will extract enough finite-dimensional representations from the adjoint action of g on U(g) itself to be

able to prove that an element u ∈ U(g) [30] acting trivially on all these representations is 0.

Let
T i(g) = g⊗ . . .⊗ g︸ ︷︷ ︸

i

be the degree i part of the tensor algebra of g, and

Un(g) = image in U(g) of ⊕0≤i≤n T i(g)

the degree ≤ n part [31] of the universal enveloping algebra U(g). Let x ∈ g act on v ∈ U(g) by [32]

x · v = xv − vx

Note that for v a monomial
v = X1X2 . . .Xn

we have [33]

x · v = xv − vx = [x,X1]X2 . . . Xn +X1[x,X2]X3 . . . Xn + . . .+X1 . . . [x,Xn−1]Xn +X1 . . . Xn− 1[x,Xn]

This action stabilizes each Un(g), so gives a well-defined action of g on the quotient

Fn = Un(g)/Un−1(g)

[29] This part of the argument follows [Knapp 1996].

[30] It turns out that there is no great advantage to assuming that u is in the center of U(g).

[31] Since the elements xy − yx − [x, y] generating the kernel of the quotient map from the tensor algebra to the

enveloping algebra are not homogeneous, the image in U(g) of Tn(g) is not closed under multiplication.

[32] This is the extension to U(g) of the adjoint action of g on itself.

[33] By a typical telescoping effect.
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In the latter quotient, we can rearrange factors in a given monomial. Thus, with a+ b+ c = n,

x · Y aHbXc = a[x, Y ]Y a−1HbXc + Y a[x,H ]Hb−1Xc + Y aHb[x,X ]Xc−1 mod Un−1(g)

EDIT: ... complete this argument...

///

6. Highest weights for sl(3)

α

β ρ = α+β

std

Now consider g = sl(3), the trace-zero 3-by-3 matrices. [34] Let

Hα =




1
−1

0


 Hβ =




0
1

−1


 Hα+β =




1
0

−1




[34] Which, for our purposes, may as well be complex, since we will only consider representations as complex-linear

endomorphisms of complex vector spaces.
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Xα =




0 1

0
0



 Xβ =




0

0 1
0



 Xα+β =




0 1

0
0





Yα =




0
1 0

0


 Yβ =




0
0
1 0


 Yα+β =




0
0

1 0




These are nicely related to each other via Lie brackets. For example,

[Hα, Xα] = 2Xα [Hβ , Xβ] = 2Xβ [Hα, Xβ] = −Xβ [Hβ, Xα] = −Xα

[Hα, Yα] = −2Yα [Hβ , Yβ ] = −2Yβ [Hα, Yβ ] = Yβ [Hβ , Yα] = Yα

[Xα, Xβ ] = Xα+β [Yα, Yβ ] = −Yα+β Hα +Hβ = Hα+β

[Xα, Yα] = Hα [Xβ , Yβ ] = Hβ [Xα+β , Yα+β ] = Hα+β = Hα +Hβ

(The sign in [Yα, Yβ ] = −Yα+β is harmless.) To organize these relations, think in terms of the eigenspaces

on g for Hα and Hβ . Let h = C ·Hα + C ·Hβ ⊂ g. [35] From a linear map

λ : h → C

we obtain an algebra homomorphism of the (commutative) subalgebra [36]

λ : C[Hα, Hβ ] ≈ U(h) → C

Of course, the pair (λHα, λHβ) of complex numbers determines λ completely. Call such λ a weight (or

root, if one wants, when the ambient vector space is g). Let gλ be the λ-eigenspace [37] in g itself. We
distinguish two important weights α and β such that for all H ∈ h

HXα = α(H) ·Xα

HXβ = β(H) ·Xα

namely,

α(Hα) = 2 α(Hβ) = −1

β(Hα) = −1 β(Hβ) = 2

Then
α eigenspace = C ·Xα = gα
β eigenspace = C ·Xβ = gβ

(α + β) eigenspace = C ·Xα+β = gα+β

−α eigenspace = C · Yα = g−α

−β eigenspace = C · Yβ = g−β

−(α+ β) eigenspace = C · Yα+β = g−α−β

0 eigenspace = C ·Hα + C ·Hβ = g0

[35] Since Hα+β = Hα +Hβ any eigenvector for both Hα and Hβ will be an eigenvector for Hα+β .

[36] Poincaré-Birkhoff-Witt implies that the universal enveloping algebra of a Lie subalgebra injects to the universal

enveloping algebra of the larger Lie algebra.

[37] Also called λ-rootspace because it is in g. It is an instance of a weight space.
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The list of eigenvalues is the list of roots of g (with respect to h = C ·Hα +C ·Hβ). The positive simple

roots are [38] α and β. [39] The other positive (non-simple) root is α + β. The negative roots are the
negatives of the positive ones. A useful elementary structural fact is that

[gλ, gµ] ⊂ gλ+µ

which allows us to anticipate the vanishing of many Lie brackets without re-doing matrix computations. The
proof in this context is direct: hx− xh = λx and hy − yh = µy imply that

[h, [x, y]] = h[x, y]− [x, y]h = h(xy − yx)− (xy − yx)h = hxy − hyx− xyh+ yxh

= [h, x]y + xhy − [h, y]x− yhx− xyh+ yxh = [h, x]y + x[h, y]− [h, y]x− y[h, x]

= [[h, x], y] + [x, [h, y]] = [λx, y] + [x, µy] = (λ+ µ) · [x, y]

Let U(g) be the universal enveloping algebra of g. Consider finite-dimensional U(g) modules V . Since
[Hα, Hβ ] = 0, and by the finite-dimensionality, there is at least one eigenvector v 6= 0 for both Hα and Hβ .
Let λ : h → C be the eigenvalue (weight) of v. Since [Hα, Xα] = 2Xα and [Hβ, Xα] = −Xα

Hα · (Xα · v) = ([Hα, Xα] +XαHα) · v = (2Xα +XαHα) · v = (α(Hα) ·Xα +XαHα) · v

= α(Hα) ·Xαv +Xα(λ(Hα) · v) = α(Hα) ·Xαv + λ(Hα) ·Xαv = (α + λ)(Hα) ·Xαv

Hβ · (Xα · v) = ([Hβ , Xα] +XαHβ) · v = (−Hβ ·Xα +XαHβ) · v = (α(Hβ) ·Xα +XαHβ) · v

= α(Hβ) ·Xαv +Xα(λ(Hβ) · v) = α(Hβ) ·Xαv + λ(Hβ) ·Xαv = (α+ λ)(Hβ) ·Xαv

Similarly, [40]

Hα · (Xβ · v) = (β + λ)(Hα) ·Xβv

Hβ · (Xβ · v) = (β + λ)(Hβ) ·Xβv

and
Hα · (Xα+β · v) = (α+ β + λ)(Hα) ·Xβv

Hβ · (Xα+β · v) = (α+ β + λ)(Hβ) ·Xβv

Indeed, with just a little hindsight, we see that we have, for any H ∈ h = C ·Hα + C ·Hβ ,

H · (Xα · v) = (α+ λ)(H) ·Xαv

H · (Xβ · v) = (β + λ)(H) ·Xβv

H · (Xα+β · v) = (α+ β + λ)(H) ·Xα+βv

By finite-dimensionality, there is an eigenvector v 6= 0 for Hα and Hβ which is annihilated by Xα, Xβ, and
Xα+β . This v is a highest-weight vector in V .

Poincaré-Birkhoff-Witt says that the monomials

Y a
α Y b

β Y c
α+β H

d
α He

β X
f
α Xg

β X
h
α+β

[38] In addition to the choice of abelian subalgebra h with respect to which to decompose, there are additional choices

needed to determine positive roots. For the moment, we will not worry about this.

[39] Our indexing of Xα, Xβ , Xα+β , Yα, Yβ , and Yα+β in terms of α and β makes perfect sense insofar as the

subscript tells in what weight-space in g they lie. The indexing for Hα and Hβ is best explained by the subsequent

discussion, though at least we can say that [Xα, Yα] = Hα.

[40] One might note that the way we’ve written these identities the redundancy of separate consideration of Hα and

Hβ becomes visible. Still, it is convenient to have named these elements of h ⊂ g.
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(with non-negative integers a, b, c, d, e, f, g, h) are a C-basis for U(g), so, given a highest-weight vector v in
V , the U(g) submodule generated by v is spanned by vectors

{Y a
α Y b

β Y c
α+β v : a, b, c ≥ 0}

The weight (eigenvalue) of Y a
α Y

b
βY

c
α+βv is

weight
(
Y a
α Y b

β Y c
α+β v

)
= (weight v)− a · α− b · β − c(α+ β) = (weight v)− (a+ c) · α− (b + c) · β

Thus, by finite-dimensionality, both a + c and b + c are bounded, and therefore only finitely-many of these
vectors can be non-zero. [41]

At this point we exploit the fact that the triples Hα, Xα, Yα and Hβ , Xβ, Yβ are copies of the corresponding

basis elements for sl(2), for which we have decisive computational results. [42] In particular, let a be the
least non-negative integer such that Y a

α v 6= 0 but Y a+1
α v = 0. Let λ = (λHα, λHβ) be the weight of v. Then

[43]

0 = Xα · 0 = Xα · Y a+1
α v = ([Xα, Yα] + YαXα = 0pt2pt) · Y a

α v = (Hα + YαXα) · Y
a
α v

= (λHα − 2a) · Y a
α v + Yα(Xα · Yα Y a−1

α v)

Do an induction to re-express Xα · Y a
α v by moving the Xα across the Yαs

XαYαv = [Xα, Yα]v + YαXαv = Hαv + 0 = λHα · v

XαY
2
α = (XαYα)Yαv = (Hα + YαXα)Yαv = (λHα − 2)Yαv + Yα(λHα · v) = (2λHα − 2)Yαv

XαY
3
α = (XαYα)Y

2
α v = HαY

2
α v + Yα(XαY

2
α v) = (λHα − 2 · 2)Y 2

α v + Yα((2λHα − 2) · v) = (3λHα − 6)Y 2
α v

XαY
4
α = (XαYα)Y

3
α v = HαY

3
α v + Yα(XαY

3
α v) = (λHα − 6)Y 3

αv + Yα((3λHα − 6) · v) = (4λHα − 12)Y 3
αv

Generally, by induction,

XαY
ℓ
αv = ℓ

(
λHα − (ℓ − 1)

)
Y ℓ−1
α v

Thus, for Y a+1
α v = 0 and Y a

α v 6= 0 it must be that

λHα − a = 0

This is a duplicate of the sl(2) computation.

Similarly, let b be the smallest positive integer such that Y b+1
β v = 0 but Y b

β v 6= 0. Then (using Xβ in the
role of Xα in the previous computation)

λHβ − b = 0

That is, the highest weight λ has
(λHα, λHβ) = (a, b)

and thus is completely determined by the structural constants 0 ≤ a ∈ Z and 0 ≤ b ∈ Z. [44]

[41] At this point we cannot presume any linear independence that does not follow from eigenvalue (weight)

considerations. When we look at the free module with specified highest weight, we can presume linear independence

from the corresponding linear independence in U(g), from Poincaré-Birkhoff-Witt.

[42] The marvel is that a systematic exploitation of this is adequate to understand so much about representation

theory of larger Lie algebras. Perhaps one demystification is that it is exactly the semi-simple Lie algebras, whose

exemplar sl(3) we consider here, that yield to this sort of analysis.

[43] This is a reprise of the argument for sl(2), with notation trivially adapted to the present context.

[44] The argument so far shows that these integrality and positivity conditions are necessary for existence of a finite-

dimensional representation with highest weight (a, b).
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[6.0.1] Remark: It seems difficult to do much further in this primitive context. The next section recasts
these ideas into a more effective and useful form.

7. Verma modules for sl(3)

As done earlier for sl(2), we consider the universal U(g)-module with a highest-weight vector v with eigenvalue

λ : h → C. As above, λ is completely determined by its values λHα, λHβ .
[45] We carry out the discussion

first in a naive normalization, and then renormalize when we see how better to describe the symmetries
which become visible.

There are two constructions. First, given complex numbers λHα and λHβ , let I
naive
λ be the left ideal in U(g)

generated by Xα, Xβ, Xα+β , and Hα − λHα and Hβ − λHβ . Let

Mnaive
λ = U(g)/Inaiveλ

Or let b be the Borel subalgebra of g generated by Hα, Hβ , Xα, Xβ , and Xα+β , with one-dimensional
representation Cλ of b on C with Xα, Xβ , and Xα+β acting by 0, and Hα acting by λHα and Hβ acting by
λHβ . Then define

Mnaive
λ = U(g)⊗U(b) Cλ

The image of 1 in the first construction, or, equivalently, the image of 1 ⊗ 1 in the second construction, is
the highest weight vector v 6= 0 (annihilated by Xα, Xβ , and Xα+β). In either construction, it is clear that,
by Poincaré-Birkhoff-Witt, the vectors

Y a
α Y b

β Y c
α+β v

are a basis for Mnaive
λ , with weights

λ− aα− bβ − c(α+ β)

[7.0.1] Proto-Theorem: Let λ be a weight. For 0 ≤ a ∈ Z

HomU(g)(M
naive
λ−(a+1)α,M

naive
λ ) 6= 0 if and only if λHα = a

Similarly, for 0 ≤ b ∈ Z,

HomU(g)(M
naive
λ−(b+1)β ,M

naive
λ ) 6= 0 if and only if λHβ = b

Proof: Let v be a highest-weight vector in Mnaive
λ . From our observations of the consequences of Poincaré-

Birkhoff-Witt, the only way a weight λ − (a + 1)α occurs is as Y a+1
α v. The computation of the previous

section shows that XαY
a+1
α v = 0 if and only if λHα = a. The assertion for β follows similarly. What

remains is to check that Xβ and Xα+β also annihilate Y a+1
α v if Xα does (and, similarly, that Xα and Xα+β

annihilate Y b+1
β v if Xβ does).

Now [Xα, Yβ ] = 0 since there are no (α− β)-weight elements in g, that is, since

gα−β = 0

This is good, since, in other words, Xβ and Yα commute, and

Xβ · Y a+1
α v = Y a+1

α ·Xβv = Y a
α · 0 = 0

[45] As for sl(2), we observe that the usual category-theoretic argument prove that there is at most one such thing, up

to unique isomorphism. Thus, the remaining issue is a construction. The categorical uniqueness argument promises

us that our particular choice of construction does not affect the outcome.
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And, further,
Xα+β · Y a+1

α v = [Xα, Xβ] · Y
a+1
α v = (XαXβ −XβXα) · Y

a+1
α v

= XαY
a+1
α Xβv −Xβ(a+ 1)(λHα − a)Y a

α v = 0− (a+ 1)(λHα − a)Y a
αXβv = 0

since we already know that Xαv = 0 (and Xβv = 0). Thus, Y a+1
α v is a highest-weight vector and has weight

λ − (a + 1)α. By the universality of Mnaive
λ−(a+1)α, there is a unique (up to constant) non-zero map of it to

Mnaive
λ sending the highest-weight vector in Mnaive

λ−(a+1)α to Y a+1
α v. A similar argument applies to β. ///

[7.0.2] Remark: As for sl(2), we see that there is room for improvement of the normalization of the
parametrization of the universal modules. That is, the more attractively normalized Verma module Mλ

is the universal U(g)-module with highest weight described by

Hα · v =
(
λ(Hα)− 1

)
· v

Hβ · v =
(
λ(Hβ)− 1

)
· v

Solving for ρ = aα+ bβ such that

(λ− ρ)Hα = λ(Hα)− 1 (λ− ρ)Hβ = λ(Hβ)− 1

gives the system
2a− b = 1 − a+ 2b = 1

which gives a = b = 1, so
ρ = α+ β

Thus, the highest weight of the (renormalized) Verma module Mλ should be λ − (α + β). Thus, restating,
[46]

[7.0.3] Proto-Theorem: Let Mλ be the universal highest-weight module with highest weight λ− (α+ β).
For 1 ≤ a ∈ Z

HomU(g)(Mλ−aα,Mλ) 6= 0 if and only if λHα = a

Similarly, for 1 ≤ b ∈ Z,

HomU(g)(Mλ−bβ ,Mλ) 6= 0 if and only if λHβ = b

Proof: The thing to check is the effect of the renormalization. Let λold be the old λ, which is exactly the
highest weight, and

λnew = λold − ρ = λold − (α+ β)

Then the condition
λoldHα = a

becomes
(λnew − α− β)Hα = a

Since αHα = 2 and βHα = −1, this is
λnewHα = a+ 1

Thus, replace a by a− 1 and b by b− 1 in the statement of the previous proto-theorem. ///

And, also, unlike the sl(2) case, there is a perhaps prior issue of coordinates to use on functionals on
h = C ·Hα + C ·Hβ . Since the actions of Yα, Yβ , and Yα+β on weights are naturally described in terms of

[46] But this is still unfinished.
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the simple roots [47] α and β, it might be reasonable to think of λ as a linear combination of α and β, rather
than (as above) telling its effect on Hα and Hβ .

[48] Even better, with a reasonable non-degenerate bilinear
form on h, we could use it to identify linear functionals with elements of the space itself. Take

〈x, y〉 = tr(xy)

gives a non-degenerate bilinear form on g, with natural properties we can exploit. Restricting ,̄〉 to h is the

bilinear form we want. [49] Notice that [50]

〈Hα, Hα〉 = 2 〈Hβ , Hβ〉 = 2 〈Hα, Hβ〉 = −1

The small miracle, whether one views it as pre-arranged or a natural accident, is that α and Hα are naturally
identified via 〈, 〉, as are β and Hβ , because

αHα = 2 = 〈Hα, Hα〉 αHβ = −1 = 〈Hβ , Hα〉

(and symmetrically in α and β). Thus, via the duality given by 〈, 〉, we may often identify α ∼ Hα and

β ∼ Hβ .
[51]

The geometry of this non-degenerate form is respected by the Weyl group W here consisting of all 3-by-3
permutation matrices, acting on g by conjugation [52]

w(x) = wxw−1

The sl(2) versions of this associated to the simple roots α and β are

sα =




1
1

1


 sβ =




1
1

1




which lie in W . Indeed, it is an elementary fact that W is generated by these two elements. Note that, first,
as expected,

sαHα = −Hα sβHβ = −Hβ

but that the other interactions are not trivial:

sαHβ = Hα+β = Hα +Hβ sβHα = Hα+β = Hα +Hβ

If we make the identifications α = Hα and β = Hβ , via 〈, 〉, this is [53]

sαα = −α sββ = −β and sαβ = α+ β sβα = α+ β

[47] Though we have not given a definition of what simple roots are in general, these α and β would be seen to meet

that definition, and in any case we can call them by this name.

[48] The latter approach in effect expresses λ in terms of a dual basis H∗
α, H

∗
β to Hα, Hβ .

[49] As for sl(2), this form is a constant multiple of the more intrinsically defined Killing form, but we do not need to

worry about this.

[50] The fact that these good choices of Hα and Hβ have the same lengths 〈Hα,Hα〉, 〈Hβ ,Hβ〉 is sometimes coyly

expressed by saying that g is simply-laced. I do not know any explanation of this terminology.

[51] In any case, using such an identification is traditional.

[52] More intrinsically, again, this is the Ad adjoint action.

[53] There is the minor economy of symbols achieved by replacing Hα by α, and so on, which probably doesn’t hurt

anything as long as we remember the duality.
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Yet further, [54] these order-two linear maps sα and sβ are expressible as reflections [55]

sα(x) = x−
2〈x, α〉

〈α, α〉
· α

With this apparatus available, and having renormalized the parametrization as already suggested in the sl(2)
case, we rewrite the proto-theorem again, to

[7.0.4] Theorem:
HomU(g)(Msαλ,Mλ) 6= 0 if and only if 0 < 〈λ, α〉 ∈ Z

Similarly, and symmetrically,

HomU(g)(Msβλ,Mλ) 6= 0 if and only if 0 < 〈λ, β〉 ∈ Z

A weight λ meeting the conditions

0 < 〈λ, α〉 ∈ Z and 0 < 〈λ, β〉 ∈ Z

is dominant integral. [56]

Proof: The condition λHα = a of the last proto-theorem becomes 〈λ, α〉 = a if we use the pairing and the
identification of Hα and α.

λ− aα = λ−
2〈λ, α〉

〈α, α〉
· α = sαλ

Similarly for β. ///

[7.0.5] Remark: The thing to reflect upon is the possibility of iterating the reflections. The somewhat
enhanced notational set-up (and renormalization) make this issue far more palatable than in the more raw
initial version.

For example, suppose that λ is a dominant integral weight, that is, such that both

0 < 〈λ, α〉 ∈ Z and 0 < 〈λ, β〉 ∈ Z

What can be said in this vein about sαλ? Using the convenient fact that sα is an isometry, we have

〈sαλ, α〉 = 〈λ, sαα〉 = −〈λ, α〉 < 0

But
〈sαλ, β〉 = 〈λ, sαβ〉 = 〈λ, α+ β〉 = 〈λ, α〉 + 〈λ, β〉 > 0

and integrality is not lost. Thus, with both conditions met, still

HomU(g)(Msβsαλ, Msαλ) 6= 0

Symmetrically,
HomU(g)(Msαsβλ, Msβλ) 6= 0

[54] Whether by luck or skill.

[55] We do not need any fancier definition of reflection than that the reflection s through the plane orthogonal to a

vector v in Cα+Cβ is given by the indicated formula. Whether by luck or by skill, the restriction of 〈, 〉 to RHα+RHβ

is positive definite, so the usual style of discussion of the elementary geometry is not misleading.

[56] Integral for the fact that the inner product values are in Z, and dominant for the fact that the values are positive.
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And, then, by composing homomorphisms Msαsβλ → Msβλ with Msβλ → Mλ, for λ dominant integral we
have

HomU(g)(Msβsαλ, Mλ) 6= 0

Continuing,

〈sβsαλ, α〉 = 〈sαλ, sβα〉 = 〈sαλ, α + β〉 = 〈λ, sαα+ sαβ〉 = 〈λ,−α+ α+ β〉 = 〈λ, β〉 > 0

(and integrality still holds), so dominant integral λ gives

HomU(g)(Msαsβsαλ, Msβsαλ) 6= 0

Similarly, [57] for dominant integral λ

HomU(g)(Msβsαsβλ, Msαsβλ) 6= 0

But
〈sαsβsαλ, β〉 = 〈λ, sαsβsαβ〉 = 〈λ, sαsβ(α+ β)〉 = 〈λ, sα(α+ β − β)〉 = 〈λ,−α〉 < 0

and similarly
〈sβsαsβλ, α〉 < 0

so we obtain no further implied existence of non-trivial homomorphisms Mwλ → Mλ for w ∈ W .

But we have many non-trivial homomorphisms already. Indeed, it is elementary that

W = {1, sα, sβ , sαsβ, sβsα, sαsβsα}

Thus, we have

[7.0.6] Corollary: For λ dominant integral, for each w ∈ W

HomU(g)(Mwλ,Mλ) 6= 0

We should look at the W -orbits on weights λ. It is already clear that if λ is integral then any image wλ is
integral.

Less trivial is the issue of dominance. Restrict attention to weights λ such that λHα ∈ R and λHβ ∈ R. The
positive Weyl chamber is

C = positive chamber = {λ : 〈λ, α〉 > 0 and 〈λ, α〉 > 0}

[7.0.7] Proposition: Given a weight λ such that λHα ∈ R and λHβ ∈ R, there is w ∈ W such that wλ is
in the closure C (in R2) of the positive chamber. If wλ is in the interior of C, then w is uniquely determined
by this condition.

[7.0.8] Remark: In the particular example of sl(3), one can prove this directly in a pedestrian if ad hoc
manner. A pictorial argument seems to suffice. By contrast, an argument sufficiently general to apply to
sl(n) would require more preparation is desirable at the moment.

[7.0.9] Remark: We have shown that for dominant integral λ at least the Verma modules Mwλ for w ∈ W
have non-trivial homomorphisms to Mλ. We have not proven that no other highest weights occur. For sl(2)

[57] Though the perspicacious reader will already have noted that sαsβsα = sβsαsβ , so the gain in the following

observation is not so much that another submodule of Mλ is uncovered, but that a different chain of inclusions, via

Msαsβλ, is found.
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the picture was so simple that this was clear, but already for sl(3) it is mildly implausible that we will try
to compute things explicitly. Instead, as in the next section, we use ideas of Harish-Chandra and approach
this issue indirectly.

8. Harish-Chandra homomorphism for sl(3)

By Poincaré-Birkhoff-Witt the universal enveloping algebra U(g) of g = sl(3) is spanned by monomials

Y a
α Y

b
βY

c
α+βH

d
αH

e
βH

f
α+βX

g
αX

h
βX

i
α+β (a, b, c, d, e, f, g, h, i non-negative integers)

Let ρ be a representation of g with highest weight, with (non-zero) highest weight vector v. On one hand,
a monomial in U(g) as above acts on the highest weight vector v by annihilating it if any Xα, Xβ, or Xα+β

actually occurs. The elements of of U(h) = C[Hα, Hβ, Hα+β ] act on v by the (multiplicative extension of)
the highest weight.

We claim that if a sum of monomials is in the center Z(g) of U(g), then in each summand none of Yα, Yβ, yc
occurs unless some Xα, Xβ , Xα+β also occurs.

Using this claim (cast as the lemma just below), and using the fact (Schur’s lemma) that the center Z(g)
acts by scalars on an irreducible of g, we can compute the eigenvalues of elements z ∈ Z(g) on an irreducible
with highest weight by evaluating z on the highest weight vector, and (by the claim) the values depend only
upon the effect of elements Hα, Hβ, Hα+β of h on v. (Poincaré-Birkhoff-Witt implies that U(h) imbeds into
U(g).)

[8.0.1] Lemma: If a linear combination z of monomials (as above) lies in Z(g) then in every monomial
where some ya, yb, or Yα+β occurs some one of Xα, Xβ, or Xα+β occurs.

Proof: For H ∈ h, each such monomial is an eigenvector for adH , with eigenvalue

−aα(H)− bβ(H)− c(α+ β)(H) + gα(H) + hβ(H) + i(α+ β)(H)

Because (adH)z = 0, for each monomial

−aα(H)− bβ(H)− c(α+ β)(H) + gα(H) + hβ(H) + i(α+ β)(H)

for all H ∈ h since these monomials are linearly independent (by Poincaré-Birkhoff-Witt). Since Hα and Hβ

are a basis for the vectorspace h, the corresponding equalities for H = Hα and H = Hβ imply

−aα− bβ − c(α+ β) + gα+ hβ + i(α+ β) = 0

Then it is a weak conclusion that if any of Yα, Yβ , Yα+β appears then one of Xα, Xβ , Xα+β appears. ///

[8.0.2] Corollary: The eigenvalues of elements of the center Z(g) of the enveloping algebra U(g) of g on an
irreducible representation V of g with a highest weight λ are completely determined by λ.

Proof: By Schur’s lemma, an element z of the center Z(g) acts on an irreducible by a scalar c(z). To
determine the scalar it suffices to compute zv = c(v) · v for a highest weight vector. By the lemma, for
z ∈ Z(g), expressed as a sum of monomials as above, every monomial not in U(h) has one ofXα, Xβ, Xα+β

occuring in it, and so annihilates v. Any monomial

M = Hd
α He

β H
f
α+β

in U(h) acts on the highest weight vector v by a scalar

λ(Hα)
d λ(Hβ)

e λ(Hα+β)
f = λ(Hα)

d λ(Hβ)
e (λ(Hα) + λ(Hβ))

f
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Not at all claiming that this value is the same for every such monomial occurring in z, nevertheless the
constant c(z) such that zv = c(z) · v is completely determined by λ. ///

As above, let
h = C ·Hα + C ·Hβ + C ·Hα+β

and also
n− = C · Yα + C · Yβ + C · Yα+β

n+ = C ·Xα + C ·Xβ + C ·Xα+β

Let
I = U(g) · n+ = {

∑

i

uj Xj : uj ∈ U(g), Xj ∈ n+}

be the left ideal in U(g) generated by Xα, Xβ , Xα+β , that is, by n+. Again by Poincaré-Birkhoff-Witt, we
know that this consists exactly of all linear combinations of monomials (ordered as above) in which some
one of Xα, Xβ, Xα+β does occur.

[8.0.3] Remark: To make the proof of the following lemma work, we already need the existence of a finite-
dimensional representation with a given dominant integral highest weight. We do have existence, since we
know that these occur as the unique irreducible quotients of the corresponding Verma modules.

[8.0.4] Lemma: I ∩ U(h) = 0

Proof: For X ∈ I we would have Xv = 0 for any highest-weight vector v in any representation of g.

On the other hand, for X ∈ U(h), we have Xv = (λX)v (where we extend λ to an algebra homomorphism
U(H) → C). Since each Verma module Mλ+ρ (with ρ = α + β, as above) has a unique irreducible quotient
with highest weight λ, we have λX = 0 for all λ ∈ h∗. The algebra U(h) can be identified with polynomial
functions on h∗, so the fact that X = 0 as a function on h∗ implies that X = 0 in U(h∗). ///

[8.0.5] Lemma: Z(g) ⊂ U(h) + I

Proof: This is a restatement of the first lemma above: writing z ∈ Z(g) as a sum of monomials in our
current style, in each such monomial, if any Yα, Yβ , Yα+β occurs then some Xα, Xβ, Xα+β occurs. That is,
if the monomial is not already in U(h) then it is in I. ///

Thus, the sum U(h) + I is direct. Let

γo = projection of Z(g) to the U(h) summand

A subsequent study of intertwining operators led Harish-Chandra to renormalize this. Define a linear map
σ : h → U(h) by

σ(H) = H − δ(H) · 1

where 1 is the 1 in U(g) and δ is half the sum of the positive roots

δ =
1

2
·
∑

α>0

α

Extend σ by multiplicativity to an associative algebra homomorphism

σ : U(h) → U(h)

Then define the Harish-Chandra homomorphism

γ = σ ◦ γo
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Thus, for λ ∈ h∗, z ∈ Z(g), implicitly taking the multiplicative extension of any linear map λ : h → U(h),

γ(Z)(λ) = γo(Z)(λ − δ) = λ(γo(Z))− δ(γo(Z))

This all appears to depend upon a choice of the positive roots, but we will see that the normalized γ does
not depend upon any such choices.

[8.0.6] Theorem: The Harish-Chandra map γ above is an isomorphism of Z(g) to the subalgebra U(h)W

of the universal enveloping algebra U(h) of the Cartan subalgebra h invariant under the Weyl group W .

Proof: First, prove that γ is multiplicative. Since σ is defined to be multiplicative, it suffices to prove that
the original projection map γo is multiplicative. Let I be the left ideal generated by n+, as above. Let γo
also denote the projection from the whole of I + U(h) to U(h). Thus, for any u ∈ U(g), the image γo(u) is
the unique element of U(h) such that

u− γou ∈ I

For z, z′ ∈ Z(g)
zz′ − γo(z)γo(z

′) = z(z′ − γoz
′) + γo(z

′)(z − γoz)

where we use the fact that U(h) is commutative to interchange γo(z) and γo(z
′). The right-hand side is in

the ideal I, so
γo(zz

′) = γo(z) · γo(z
′)

as claimed.

Next, prove that the image of γ is inside U(h)W . It suffices to prove s-invariance for simple reflections s ∈ W .
Viewing elements of U(h) as polynomials on h∗, to prove equality it suffices to consider λ dominant integral
in h∗. That is, we assume that λ− δ is dominant integral and show that

γo(Z)(λ − δ) = γo(Z)(sλ− δ)

Let V (λ) be the Verma module for λ, that is, the universal g-module with highest weight λ− δ and highest-
weight vector v. Since the ideal I annihilates v, z acts on v by its projection to U(h), namely γo(z) ∈ U(h),
which by definition of V (λ) acts on v by

γo(z)(λ− δ)

Since v generates V (λ) and z is in the center of U(g), z acts on all of V (λ) by the same scalar.

From the study of intertwining operators among Verma modules, we know that (for dominant integral λ)
there exists an intertwining operator

V (sλ) → V (λ)

That is, the scalar by which z acts on V (sλ) is the left-hand side of the desired equality, and the scalar by
which it acts on V (λ) is the right-hand side, which are necessarily equal since this intertwining operator is
non-zero. This proves the Weyl group stability of the image of the Harish-Chandra map γ.

It seems that the argument for surjectivity is not any simpler for sl(3) than for sl(n), and we will give that
argument later.

Next, injectivity. Since g⊕ C injects to U(g), the algebra homomorphism σ is an algebra injection. Thus,
it suffices to show that γo is injective. If γo(z) = 0 for z ∈ Z(g) then on any finite-dimensional irreducible
V with highest weight λ the element z acts by z(λ) = 0. Since finite-dimensional representations of g are
completely reducible, this implies that z acts by 0 on every finite-dimensional representation of g.

At this point, one has choices about how to proceed...

EDIT: more later ...

[8.0.7] Corollary: If µ ∈ h∗ is not in the Weyl group orbit W · λ of λ ∈ h∗, then the Verma module Mµ

admits no non-zero g-homomorphism to Mλ.
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Proof:

///

9. Multiplicities, existence of finite-dimensional irreducibles

So far, we have seen necessary conditions (integrality, dominance) for λ to be a highest weight of a finite-
dimensional irreducible. We have not proven existence. We will prove existence by a more careful analysis
of the dimensions of the weight spaces in Verma modules, by now knowing when there do or do not exist
homomorphisms among them, and then conclude that for integral dominant λ the unique irreducible quotient
of Mλ is finite-dimensional. [58]

EDIT: ... write this ...

[58] Yes, this is fairly round-about, and it might seem ironic that we prove existence of finite-dimensional irreducibles

by a careful discussion of these infinite-dimensional Verma modules and the maps among them.
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