Surjectivity of $S L_{2}(\mathbb{Z}) \longrightarrow S L_{2}(\mathbb{Z} / p)$

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/rgarrett/

In the discussion of the action of $S L_{2}\left(\mathbb{Z}_{p}\right)$ or $G L_{2}\left(\mathbb{Z}_{p}\right)$ on the p-power projective limit of modular curves, one begins with the surjectivity of the natural map

$$
S L_{2}(\mathbb{Z}) \longrightarrow S L_{2}(\mathbb{Z} / p)
$$

It is important to understand the simplicity of this and related results.
Claim: Let R be a principal ideal domain. Let M be a maximal ideal. Then the natural map

$$
S L_{2}(R) \longrightarrow S L_{2}(R / M) \quad \text { is surjective }
$$

Proof: Let q be the quotient $\operatorname{map} R \longrightarrow R / M$. First, given u, v not both 0 in R / M, we will find relatively prime c, d in $S L_{2}(R)$ such that $q(c)=u$ and $q(d)=v$.

Consider the case that $v \neq 0$ in R / M. Since $q: R \longrightarrow R / M$ is surjective, there is $0 \neq d \in R$ such that $q(d)=v$. Consider the conditions on $c \in R$

$$
\left\{\begin{array}{l}
c=u \bmod M \\
c=1 \bmod R d
\end{array}\right.
$$

As $d \notin M$, by the maximality of M there are $x \in R$ and $m \in M$ such that $x d+m=1$. Let $c=x d u+m$. From $x d+m=1$ we have $x d=1 \bmod m$ and $m=1 \bmod d$, so this expression for c does satisfy the system of congruences. In particular, $q(c)=u$, and since $c=1 \bmod d$ it must be that $\operatorname{gcd}(c, d)=1$.

For $v=0$ in R / M, necessarily $u \neq 0$, and we reverse the roles of c, d in the previous paragraph.
Thus, we have relatively prime c, d in R whose images $\bmod M$ are u, v. In a PID, given s, t there are a, b such that $\operatorname{gcd}(s, t)=a s-b t$. Here, the coprimality of c, d implies that there are a, b in R such that $a d-b c=1$. That is, $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in S L_{2}(R)$, and

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
* & * \\
u & v
\end{array}\right] \quad \bmod M
$$

Thus, given $\left[\begin{array}{ll}r & s \\ u & v\end{array}\right]$ in $S L_{2}(R / M)$, we have

$$
\left[\begin{array}{ll}
r & s \\
u & v
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\left[\begin{array}{ll}
r & s \\
u & v
\end{array}\right]\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]=\left[\begin{array}{ll}
1 & w \\
0 & 1
\end{array}\right] \quad \bmod M \quad(\text { where } w=s a-b r \bmod M)
$$

since the right-hand side is in $S L_{2}(R / M)$. Let $t \in R$ be such that $q(t)=w$. Then

$$
\left[\begin{array}{ll}
r & s \\
u & v
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}\left[\begin{array}{rr}
1 & -t \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \bmod M
$$

So

$$
\left[\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
r & s \\
u & v
\end{array}\right] \quad \bmod M
$$

This gives the surjectivity.

