Liouville's theorem on diophantine approximation

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/ [This document is http://www.math.umn.edu/ ${ }^{\text {garrett } / \mathrm{m} / \mathrm{mfms} / \text { notes_2013-14/04b_Liouville_approx.pdf] }}$

[0.0.1] Theorem: (Liouville 1844) Let $\alpha \in \mathbb{R}$ be an irrational algebraic number satisfying $f(\alpha)=0$ with non-zero irreducible $f \in \mathbb{Z}[x]$ of degree d. Then there is a non-zero constant C such that for every fraction p / q

$$
\left|\alpha-\frac{p}{q}\right| \geq \frac{C}{q^{d}}
$$

Proof: By the mean-value theorem, given p / q there is real ξ between α and p / q such that

$$
f^{\prime}(\xi)\left(\alpha-\frac{p}{q}\right)=f(\alpha)-f\left(\frac{p}{q}\right)
$$

Since f has integer coefficients and is of degree d, the value $f(p / q)$ is a rational number with denominator at worst q^{d}. Since f is irreducible, $f(p / q) \neq 0$. Thus, $|f(p / q)| \geq 1 / q^{d}$, and

$$
\left|f^{\prime}(\xi)\right| \cdot\left|\alpha-\frac{p}{q}\right|=\left|f(\alpha)-f\left(\frac{p}{q}\right)\right|=\left|0-f\left(\frac{p}{q}\right)\right|=\left|f\left(\frac{p}{q}\right)\right| \geq \frac{1}{q^{d}}
$$

Rearranging,

$$
\left|\alpha-\frac{p}{q}\right| \geq \frac{1 /\left|f^{\prime}(\xi)\right|}{q^{d}}
$$

Again since f is irreducible, it does not have a double root at α, so $f^{\prime}(\alpha) \neq 0$. Thus, for ξ sufficiently close to α the derivative $f^{\prime}(\xi)$ is non-zero. Quantitatively, for sufficiently large q and ξ between α and the best rational approximation p / q to $\alpha,\left|f^{\prime}(\xi)\right| \geq \frac{1}{2} \cdot\left|f^{\prime}(\alpha)\right|$.

Thus, there is q_{o} such that for $q \geq q_{o}$

$$
\left|\alpha-\frac{p}{q}\right| \geq \frac{2 /\left|f^{\prime}(\alpha)\right|}{q^{d}}
$$

Replace the constant $2 /\left|f^{\prime}(\alpha)\right|$ by a smaller constant C, if necessary, so that the same inequality holds for the finitely-many $1 \leq q<q_{o}$.
[0.0.2] Corollary: (Liouville) Numbers β well approximable by rational numbers, in the sense that, for every $d \geq 1$ and for every positive constant C, there is a rational p / q such that

$$
\left|\alpha-\frac{p}{q}\right|<\frac{C}{q^{d}}
$$

are transcendental, that is, not algebraic, over \mathbb{Q}.
[0.0.3] Example: The real number

$$
\beta=\sum_{n \geq 1} \frac{1}{2^{n!}} \quad \text { (exponent is } n!\text {) }
$$

is transcendental, because there is a rational approximation

$$
\left|\beta-\sum_{n \leq N} \frac{1}{2^{n!}}\right|=\sum_{n>N} \frac{1}{2^{n!}}<\frac{2}{2^{(N+1)!}}=\frac{1}{2^{(N+1)!-1}}
$$

with

$$
\sum_{n \leq N} \frac{1}{2^{n!}}=\frac{\sum_{n \leq N} 2^{N!-n!}}{2^{N!}}=\frac{\text { integer }}{2^{N!}}
$$

The ratio $\frac{(N+1)!-1}{N!}$ is unbounded as $N \rightarrow+\infty$, so β is well-approximable by rationals.
[0.0.4] Remark: For numbers α not well approximable by rational numbers, the equidistribution of the sequence $\ell \cdot \alpha$ is quantifiable in terms of Weyl's criterion. That is, $\left|\alpha-\frac{p}{q}\right| \gg \frac{1}{q^{d}}$ gives

$$
|n \alpha-m| \gg|n| \cdot\left|\alpha-\frac{m}{n}\right| \gg|n| \cdot|n|^{-d} \quad(\text { for all integers } m \text { and } n \neq 0)
$$

giving

$$
\left|1-e^{2 \pi i n \alpha}\right| \gg \frac{1}{n^{d-1}} \quad(\text { implied constant uniform in } n \neq 0)
$$

Thus, in the Weyl criterion, we have an estimate uniform in Fourier index n :

$$
\left|\frac{1}{N} \sum_{\ell=1}^{N} e^{2 \pi i n \cdot \ell \alpha}\right| \leq \frac{1}{N} \cdot \frac{2}{\left|1-e^{2 \pi i n \alpha}\right|} \ll \frac{1}{N} \cdot n^{d-1} \quad \quad \text { (uniformly in } n \neq 0 \text {) }
$$

[0.0.5] Remark: The Thue-Siegel-Roth improves the exponent in the lower bound for the estimate of error in approximating an irrational algebraic number α by rationals. Specifically, for every $\varepsilon>0$, Roth proved that there are only finitely-many fractions p / q satisfying

$$
\left|\alpha-\frac{p}{q}\right|<\frac{1}{q^{2+\varepsilon}}
$$

This had been conjectured by Siegel in 1921. Thue, Siegel, and Dyson had successively improved Liouville's original exponent d, until Roth proved Siegel's conjectured exponent in 1955, and won a Fields Medal for this work.

Bibliography

[Dyson 1947] F.J. Dyson, The approximation to algebraic numbers by rationals, Acta Math. 79 (1947), 225-240.
[Liouville 1851] J. Liouville, Sur des classes très-étendues de quantités dont la valeur n'est ni algébrique, ni même réductible à des irrationalles algébriques, J. Math. pures et app. 16 (1851), 133-142.
[Roth 1955] K. F. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955), 1-20.
[Siegel 1921] C. L. Siegel, Approximation algebraischer Zahlen, Math. Zeit. 10 (1921), 173-213.
[Thue 1909] A. Thue, Über Annäherungswerte algebraischer Zahlen, J. reine angew. Math. 135 (1909), 284-305.

