
(May 7, 2020)

10a. Schwartz kernel theorems, tensor products, nuclearity

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ g̃arrett/

[This document is
http://www.math.umn.edu/ g̃arrett/m/real/notes 2019-20/10a Schwartz kernel theorem.pdf]

1. Concrete Schwartz’ kernel theorems: statements
2. Examples of Schwartz kernels
3. Adjunction of Hom and ⊗
4. Topologies on Hom(Y,Z)
5. Continuity conditions on bilinear maps
6. Some ambiguity removed
7. Nuclear Fréchet spaces
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Hilbert-Schmidt operators T : L2(Rm) → L2(Rn) are exactly those continuous linear operators given by

kernels K(x, y) by [1]

Tf(y) =

∫
Rm

K(x, y) f(x) dx

Here K(x, y) is a Schwartz kernels K(x, y) ∈ L2(Rm+n). But most continuous linear maps T : L2(Rm) →
L2(Rn) are not Hilbert-Schmidt, so do not have Schwartz kernels in L2(Rm+n). The obstacle is not just the
non-compactness of R, as most continuous T : L2(Tm) → L2(Tn) do not have kernels in this sense, either.
That is, for most such T there is no K(x, y) ∈ L2(Tm+n) such that

Tf(y) =

∫
Tm

K(x, y) f(x) dx

As it happens, enlarging the class of possible Schwartz kernels K(x, y) on Rm+n to make every continuous
linear map L2(Tm) → L2(Tn) have a kernel goes hand-in-hand with shrinking the source L2(Tm) to test
functions and enlarging the target L2(Tn) to distributions.

Our interest here in tensor products and nuclear spaces is almost entirely aimed at conceptual proofs of
Schwartz Kernel Theorems. Unsurprisingly, there is much more to be said, and there are many different
viewpoints on these ideas, as partially attested-to by the bibliography.

Throughout, all topological vector spaces are locally convex, and Hom(X,Y ) generally refers to continuous
linear maps X → Y , without necessarily committing to any of the several reasonable topologies on
Hom(X,Y ) itself.

[1] Yes, this use of kernel is in conflict with the use of kerT for T : X → Y to denote kerT = {x ∈ X : Tx = 0}.
Nothing to be done about it, except possibly to prepend Schwartz or integral to the word in the present context.

For that matter, integral does also have some unrelated algebraic senses, so perhaps Schwartz kernel is the best

disambiguation.

1



Paul Garrett: 10a. Schwartz kernel theorems, tensor products, nuclearity (May 7, 2020)

1. Concrete Schwartz’ kernel theorems: statements

Perhaps the simplest instance of a Schwartz kernel theorem is

[1.1] Theorem: Every continuous linear map T : D(Tm) → D(Tn)∗ is given by a Schwartz kernel
K ∈ D(Tm+n)∗, by

(Tf)(ϕ) = K(f ⊗ ϕ)

where (f ⊗ ϕ)(x, y) = f(x) · ϕ(y) for x ∈ Tm and y ∈ Tn. And conversely. (Proof below.)

In contrast to Tm, where test functions and Schwartz functions and smooth functions and Sobolev spaces
H∞ are all the same, the non-compactness of R causes a bifurcation: test functions and distributions, or
Schwartz functions and tempered distributions. Both the following are tangible instances of a Schwartz
kernel theorem:

[1.2] Theorem: Every continuous linear map T : D(Rm) → D(Rn)∗ is given by a Schwartz kernel
K ∈ D(Rm+n)∗, by

(Tf)(ϕ) = K(f ⊗ ϕ)

where (f ⊗ ϕ)(x, y) = f(x) · ϕ(y) for x ∈ Rm and y ∈ Rn. And conversely. (Proof below.)

[1.3] Theorem: Every continuous linear map T : S (Rm) → S (Rn)∗ is given by a Schwartz kernel
K ∈ S (Rm+n)∗, by

(Tf)(ϕ) = K(f ⊗ ϕ)

where (f ⊗ ϕ)(x, y) = f(x) · ϕ(y) for x ∈ Rm and y ∈ Rn. And conversely. (Proof postponed.)

The proofs depend on existence of categorically genuine tensor products of suitable topological vector spaces,
such as spaces of test functions and Schwartz functions, examples of nuclear spaces, clarified below.

The proof of nuclearity of D(Rn) is more complicated than for D(Tn), and proof for S (Rn) yet more
complicated, as it happens.

[1.4] Remark: Continuity of maps to spaces of distributions depends on topologies on those spaces of
distributions. It is reasonable to presume that these topologies are the weak dual (also called weak-*
topologies. Indeed, the statements of the theorems are correct with that assumption. In fact, the statements
of the theorems are still correct with any of a range of stronger topologies on distributions, as clarified below.

2. Examples of Schwartz kernels

[... iou ...]

δ(x− y), Hilbert transform, Fourier, ... traces ... !?!?!

3. Adjunctions of Hom and ⊗
An adjunction is a natural isomorphism between two related spaces of homomorphisms, of the form

HomC(LX, Y ) ≈ HomD(X,RY ) (for all objects X ∈ D and Y ∈ C)

where L : D → C and R : C → D are functors. As suggested by the notation, L is the left adjoint and R is
the right adjoint.
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For C,D both the category of abelian groups, for example, a basic adjunction is [2]

Hom(A⊗B,C) ≈ Hom(A, Hom(B,C)) (for abelian groups A,B,C)

by
Φ→ ϕΦ with ϕΦ(a)(b) = Φ(a⊗ b) and Φϕ ←− ϕ with Φϕ(a⊗ b) = ϕ(a)(b)

Quantifying over A,C, for fixed B, this asserts that the functor LA = A ⊗ B is left adjoint to RC =
Hom(B,C), and Hom(B,−) is right adjoint to (−)⊗B.

One direction of the isomorphism is easy, namely, Φ → ϕΦ with ϕΦ(a)(b) = Φ(a ⊗ b). The other direction
of the isomorphism, Φϕ ←− ϕ, needs properties of the tensor product. Specifically, βϕ ←− ϕ with bilinear
form βϕ(a × b) = (ϕ(a))(b) makes immediate sense, but we need representability of this map, in the sense
that all bilinear maps β : A×B → C should produce linear maps Φϕ from an object A⊗B not depending
on C or ϕ.

Suitable forms of such an adjunction will prove an abstract form of a Schwartz kernel theorem, below.

In a category C whose objects that admit linear maps, a tensor product X ⊗C Y ∈ C (if it exists!) is an
object with a fixed bilinear map τ : X × Y → X ⊗C Y such that, for every bilinear X × Y −→ Z, there is a
unique linear B : X ⊗C Y −→ Z giving a commutative diagram

X ⊗C Y

∃!B

##
X × Y

τ

OO

∀ β //___ Z

Usually, the bilinear map X × Y → X ⊗C Y is not explicitly named, but/and the image of x× y in X ⊗C Y
is denoted x⊗ y. This is exactly the meaning of the symbols x⊗ y. Existence of the tensor product asserts
that for given bilinear map β(x×y) on X×Y there is exactly one bilinear map B with B(x⊗y) = β(x×y).

Proof of Schwartz kernel theorems requires existence of genuine it tensor products for suitable objects in
an appropriate category of topological vector spaces. For C-vectorspaces without topologies, with the usual
(algebraic) tensor product of C-vector spaces, the adjunction is

HomC(A⊗C B,C) ≈ HomC(A,Homk(B,C))

and the special case C = k gives

(A⊗k B)∗ = Homk(A⊗k B, k) ≈ Homk(A,B∗) (k-vectorspaces A,B,C)

That is, maps from A to B∗ are given by kernels in (A ⊗ B)∗. The validity of this adjunction for suitable
topological vector spaces, and existence of genuine tensor products, requires more. As a cautionary point, we
recall in an appendix the demonstration that infinite-dimensional Hilbert spaces do not have tensor products,
despite constructions that may appear to produce them.

4. Topologies on Hom(Y, Z)

Spaces of continuous linear maps Hom(Y,Z) on topological vector spaces Y,Z, and dual spaces Y ∗ and
(X ⊗ Y )∗, are unambiguously defined as sets or vectorspaces without prescribing a topology for Hom(Y, Z).
There are several reasonable topologies:

[2] Such isomorphisms have a long history. In a homological setting, they arise in Cartan-Eilenberg in the early

1950’s. In computation theory and logic, it was in H. Curry’s 1930 work (from 1924 work of M. Schönfinkel ), and

was visible in G. Frege’s 1895 thesis.
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A weak topology on Hom(Y,Z) is the finite-to-open topology, which has a basis at 0 given by sets of the form

US,N = {S ∈ Hom(Y, Z) : TS ⊂ N} (for finite S ⊂ Y and open N 3 0 in Z)

A strong topology on Hom(Y, Z) is the bounded-to-open topology, which has a basis at 0 given by sets of the
form

US,N = {T ∈ Hom(Y, Z) : TS ⊂ N} (for bounded S ⊂ Y and open N 3 0 in Z)

With Z = C and Banach space Y , the bounded-to-open topology gives the Banach space topology on the
dual Y ∗. There is also an intermediate compact-to-open topology, with basis at 0

US,N = {T ∈ Hom(Y,Z) : TS ⊂ N} (for compact S ⊂ Y and open N 3 0 in Z)

These topologies are given by respective families of seminorms:

νS,N (T ) = inf{t > 0 : TS ⊂ tN} (for finite S ⊂ Y and balanced convex open N 3 0 in Z)

νS,N (T ) = inf{t > 0 : TS ⊂ tN} (for bounded S ⊂ Y and balanced convex open N 3 0 in Z)

νS,N (T ) = inf{t > 0 : TS ⊂ tN} (for compact S ⊂ Y and balanced convex open N 3 0 in Z)

5. Continuity conditions on bilinear maps

In the description of a categorically genuine tensor product of topological vector spaces X,Y , there is an
ambiguity about the continuity requirement on bilinear maps: joint continuity, or mere separate continuity?

Correspondences between bilinear maps and iterated homomorphisms hold more broadly than existence of
genuine tensor products.

For the following, associate to bilinear β : X×Y → Z linear Bβ ∈ Hom(X,Hom(Y, Z) by Bβ(x)(y) = β(x×y),
and, oppositely, βB(x× y) = B(x)(y), as in the adjunction above.

[5.1] Claim: Continuity of y → β(xo × y) in y ∈ Y for a fixed xo ∈ X is equivalent to B(xo) ∈ Hom(Y, Z).

Proof: This claim is nearly tautologous. Note that there is no reference to a topology on Hom(Y, Z). Indeed,
B(xo)(y) = β(xo × y). ///

[5.2] Claim: Continuity of x → β(x × yo) in x ∈ X for every fixed yo ∈ Y is equivalent to
B ∈ Hom(X,Hom(Y, Z)) with the weak finite-to-open topology on Hom(Y,Z).

Proof: Although Hom(Y, Z) has a topology here, there is no reference to a topology on Hom(X,Hom(Y,Z)).
Using the seminorms νS,N above, defining the weak finite-to-open topology on Hom(Y, Z), it suffices to take
S = {yo}. Let N ⊂ Z be a balanced convex open. Let ε > 0. To make νS,N (B(x)) < ε is to make
|B(x)(yo)| < ε, which is to make |β(x × yo)| < ε. Since x → β(x × yo) is continuous in x, there is an open
neighborhood U 3 0 in X such that x ∈ U satisfies the desired inequality. Reversing this argument gives the
converse. ///

[5.3] Claim: Joint continuity of β implies B ∈ Hom(X,Hom(Y,Z)) with the strong bounded-to-open
topology on Hom(Y, Z).

Proof: Joint continuity of β includes joint continuity at (0, 0). Thus, given open U 3 0 in Z, there are
convex, balanced opens 0 ∈ N1 ⊂ X and 0 ∈ N2 ⊂ Y such that β(N1×N2) ⊂ U . Given bounded S ⊂ Y , let
t > 0 be large enough so that tN2 ⊃ S. For x ∈ t−1N1,

B(x)(S) = β(x× S) ⊂ β(t−1N1 × tN2) = β(N1 ×N2) ⊂ U

That is, B(x) is continuous at 0 with respect to the seminorms for the bounded-to-open topology. ///
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6. Some ambiguity removed

As noted in the previous section, there are at least two types of possible continuity requirements on bilinear
maps, joint continuity and separate continuity, and this generally would give two different specifications of
tensor products (if they exist at all):

One tensor product X ⊗sep Y is a topological vector space and separately continuous bilinear map τsep :
X × Y −→ X ⊗sep Y such that, for every separately bilinear β : X × Y −→ Z, there is a unique continuous
linear B : X ⊗sep Y −→ Z fitting into the commutative diagram

X ⊗sep Y

∃!B

$$
X × Y

τsep

OO

∀ β //___ Z

An opposite specification: a topological vector space X ⊗jnt Y and jointly continuous bilinear map
τjnt : X × Y −→ X ⊗jnt Y such that, for every jointly continuous bilinear β : X × Y −→ Z, there is
a unique continuous linear B : X ⊗jnt Y −→ Z fitting into the commutative diagram

X ⊗jnt Y

∃!B

##
X × Y

τjnt

OO

∀ β //___ Z

Fortunately, for Fréchet spaces part of this ambiguity is absent:

[6.1] Theorem: For Fréchet spaces X,Y and locally convex Z, a separately continuous bilinear map
X × Y → Z is necessarily jointly continuous. (Proof in an appendix.)

Let Biljnt(X ×Y,Z) be the jointly continuous bilinear maps, and Bilsep(X ×Y, Z) the separately continuous
bilinear maps.

[6.2] Corollary: Let Homwk(Y,Z) be Hom(Y,Z) with the (weak) finite-to-open topology, and let
Homstr(Y,Z) be Hom(Y,Z) with the (strong) bounded-to-open topology. For Fréchet X,Y and locally
convex Z, the natural injection Hom(X,Homstr(Y, Z)) → Hom(X,Homwk(Y,Z)) is an isomorphism, and
Biljnt(X × Y,Z)→ Homstr(Y, Z) is an isomorphism.

Proof: We have

Hom(X,Homwk(Y, Z)) Bilsep(X × Y,Z)
≈oo

Hom(X,Homstr(Y, Z))

inj

OO

Biljnt(X × Y,Z)

≈

OO

inj
oo

The vertical map on the right is an isomorphism by the theorem above. Thus, the lower and left injections
are bijections. Indeed, for any topology Hom??(Y,Z) intermediate between Homstr(X,Y ) and Homwk(Y, Z),
the analogous injections

Hom(X,Homstr(Y, Z)) −→ Hom(X,Hom??(Y,Z)) −→ Hom(X,Homwk(Y, Z))

must be bijections. ///

[6.3] Corollary: For Fréchet spaces X,Y , if either X⊗sepY or X⊗jntY exists (in some reasonable category),
then the other exists, and the two are isomorphic.
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Proof: Suppose X ⊗sep Y exists. By the theorem, τsep is actually jointly continuous. A given jointly
continuous β : X × Y → Z is separately continuous, so there is unique continuous linear B : X ⊗sep Y → Z
giving the desired commutative diagram. Thus, X ⊗sep Y and τsep fit the characterization of X ⊗jnt Y and
τjnt.

Oppositely, assume X⊗jnt Y exists. Given separately continuous β : X×Y → Z, by the theorem β is jointly
continuous, so uniquely factors through X ⊗jnt Y , and X ⊗jnt Y and τjnt fit the characterization of X ⊗sep Y
and τsep.

Based on the latter remarks, we recall the usual inevitable categorical argument of the isomorphism of the
two tensor products, when both exist:

When both exist, the (separately, but also jointly) continuous bilinear map X × Y → X ⊗sep Y induces a
unique compatible linear map B1 : X⊗jntY → X⊗sepY . Symmetrically, since X×Y → X⊗sepY is actually
jointly continuous (by the theorem), it induces a unique compatible map B2 in the other direction. Thus,
B2 ◦B1 and B1 ◦B2 are continuous linear self-maps of X ⊗jnt Y and X ⊗sep Y commuting with the bilinear
maps X × Y to them. The uniqueness aspect of the universal mapping property shows that both B2 ◦ B1

and B1 ◦B2 must be the identity, so B1, B2 are mutual inverses. ///

7. Nuclear Fréchet spaces

What remains is existence of tensor products, at least for certain Fréchet spaces.

Roughly, the intention of nuclear spaces is that they should admit genuine tensor products, aiming at an
abstract Schwartz Kernel Theorem.

Enlarging the class of possible Schwartz kernels K(x, y) sufficiently so that every continuous L2(Tm) →
L2(Tn) has such a kernel turns requires a larger family of topological vector spaces than Hilbert spaces or
Banach spaces, so that some of them do have tensor products.

Countable projective limits of Hilbert spaces with Hilbert-Schmidt transition maps constitute the simplest
class of nuclear spaces: they admit tensor products, as we see below. Countable limits of Hilbert spaces are
also Fréchet, so these are nuclear Fréchet spaces.

The simplest natural example of such a space is the Levi-Sobolev space H∞(Tn) on a product Tn of circles
T = S1, where the simplest Rellich compactness and Sobolev imbedding give the requisite Hilbert-Schmidt
property.

[7.1] V ⊗
HS

W is not a categorical tensor product To be clear, again, the Hilbert space V ⊗
HS
W is

not a categorical tensor product of (infinite-dimensional) Hilbert spaces V,W . In particular, although the
bilinear map V ×W → V ⊗HS W is continuous, there are continuous bilinear β : V ×W → X to Hilbert
spaces H which do not factor through any continuous linear map B : V ⊗

HS
W → X.

The case W = V ∗ and X = C, with β(v, λ) = λ(v) already illustrates this point, since not every Hilbert-
Schmidt operator has a trace. That is, letting vi be an orthonormal basis for V and λi(v) = 〈v, vi〉 an
orthonormal basis for V ∗, necessarily

B(
∑
ij

cij vi ⊗ λj) =
∑
ij

cijβ(vi, λj) =
∑
i

cii (???)

However,
∑
i

1
i vi ⊗ λi is in V ⊗

HS
V ∗, but the alleged value of B is impossible. In effect, the obstacle is that

there are Hilbert-Schmidt maps which are not of trace class.

[7.2] Approaching tensor products and nuclear spaces Let V,W, V1,W1, X be Hilbert spaces with
Hilbert-Schmidt maps S : V1 → V and T : W1 → W . We claim that for any (jointly) continuous
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β : V ×W → X, there is a unique continuous B : V1 ⊗HS W1 → X giving a commutative diagram

V1 ⊗HS W1

B

��

s
p

l i e ` \ W R L
F

@
:

5
2

// V ⊗HS W

V1 ×W1
S×T //

OO

V ×W
β //

OO

X

In fact, B : V1 ⊗HS W1 → X is Hilbert-Schmidt. As the diagram suggests, V ⊗HS W is bypassed, playing no
role.

Proof: Once the assertion is formulated, the argument is the only thing it can be: The continuity of β gives
a constant C such that |β(v, w)| ≤ C · |v| · |w|, for all v ∈ V , w ∈W . Then

|β(Sv, Tw)| ≤ C · |Sv| · |Tv|

Squaring and summing over orthonormal bases vi and wj ,∑
ij

|β(Svi, Twj)|2 ≤ C ·
∑
ij

|Svi|2 · |Twj |2 = C · |S|2
HS
· |T |2

HS
< ∞

The only possible definition is

B(
∑
ij

cij vi ⊗ wj) =
∑
ij

cij β(Svi, Twj)

Then Cauchy-Schwarz-Bunyakowsky∑
ij

∣∣cij β(Svi, Twj)
∣∣2 ≤ ∑

ij

∣∣cij∣∣2 · ∑
ij

∣∣β(Svi, Twj)
∣∣2 ≤ ∑

ij

∣∣cij∣∣2 · (C · |S|2HS
· |T |2

HS

)
shows that B : V1 ⊗W1 → X is Hilbert-Schmidt. ///

The following is the starting point for proving that various classes of spaces admit full tensor products:

[7.3] Theorem: Let V,W, V1,W1 be Hilbert spaces with Hilbert-Schmidt maps S : V1 → V and
T : W1 → W , and X a normed space. For (jointly) continuous β : V × W → X, there is a unique
continuous B : V1 ⊗HS

W1 → X giving a commutative diagram

V1 ⊗HS
W1

B

��

s
p

l i e ` \ W R L
F

@
:

5
2

// V ⊗
HS
W

V1 ×W1
S×T //

OO

V ×W
β //

OO

X

Of course, B must be given by the formula

B(
∑
ij

cij vi ⊗ wj) =
∑
ij

cij β(Svi, Twj)

with orthonormal bases vi, wi for V1,W1.
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Proof: This argument is a variant of the previous. Again, the continuity of β gives a constant C such that
|β(v, w)| ≤ C · |v| · |w|. Of course, we have no choice but to define B : V1⊗HSW1 → X by the given expression.
The point is to prove continuity:

∣∣B(
∑
ij

cij vi ⊗ wj)
∣∣
X
≤
∑
ij

|cij | · |β(Svi, Twj)|X ≤
(∑

ij

|cij |2
) 1

2 ·
(∑

ij

|β(Svi × Twj)|2X
) 1

2

≤
(∑

ij

|cij |2
) 1

2 ·
(∑

ij

C2 · |Svi|2 · |Twj)|2
) 1

2

=
∣∣∣∑
ij

cij vi ⊗ wj)
∣∣∣
V1⊗HS

W1

· C · |S|
HS
· |T |

HS

Thus, β ◦ (S × T ) factors (uniquely) through V1 ⊗HS
W1. ///

[7.4] A class of nuclear Fréchet spaces

We take the basic nuclear Fréchet spaces to be countable limits of Hilbert spaces with Hilbert-Schmidt
transition maps.

That is, for a countable collection of Hilbert spaces V0, V1, V2, . . . with Hilbert-Schmidt maps ϕi : Vi → Vi−1,
the limit V = limi Vi in the category of locally convex topological vector spaces is a nuclear Fréchet space.
[3]

Let C be the category of locally convex topological vector spaces. Every locally convex topology can be
given by a family of seminorms. This expresses the topological vector space as a limit of normed spaces (by
collapsing vector spaces so that seminorms become norms). Thus, every locally convex topological vector
space is a subspace of a limit (possibly with a complicated indexing set) of normed spaces.

[7.5] Theorem: Nuclear Fréchet spaces admit tensor products in C. That is, for nuclear Fréchet spaces
V = limi Vi and W = limWi there is a nuclear Fréchet space V ⊗ W and (jointly) continuous bilinear
V ×W → V ⊗W such that, given a jointly continuous bilinear map β : V ×W → X of nuclear spaces V,W
to locally convex X, there is a unique continuous linear map B : V ⊗W → X giving a commutative diagram

V ⊗W
B

''PPPPPPP

V ×W
β

//

OO

X

In particular, V ⊗W ≈ limi Vi ⊗HS
Wi.

Proof: As will be seen at the end of this proof, the defining property of limits reduces to the case that X is
itself a normed space. Let ϕi : Vi → Vi−1 and ψi : Wi →Wi−1 be the transition maps. First, we claim that,
for large-enough index i, the bilinear map β : V ×W → X factors through Vi ×Wi. Indeed, the topologies
on V and W are such that, given εo > 0, there are indices i, j and open neighborhoods of zero E ⊂ Vi,
F ⊂Wj such that β(E × F ) ⊂ εo-ball at 0 in X. Since β is C-bilinear, for any ε > 0,

β(
ε

εo
E × F ) ⊂ ε-ball at 0 in X

That is, β is already continuous in the Vi ×Wj topology. Replace i, j by their maximum, so i = j.

[3] The new aspect is the nuclearity, not the Fréchet-ness: an arbitrary countable limit of Hilbert spaces is (provably)

Fréchet, since an arbitrary countable limit of Fréchet spaces is Fréchet.
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The theorem of the previous section shows that the only possible B fitting into the diagram

Vi+1 ⊗HS
Wi+1 B

&&

\ [ Z X W V U S R Q O N
Vi+1 ×Wi+1

ϕi+1×ψi+1//

OO

Vi ×Wi
β // X

is indeed continuous. Thus, the categorical tensor product is the limit of the Hilbert-Schmidt completions
of the algebraic tensor products of the limitands:

(lim
i
Vi)⊗ (lim

j
Wj) = lim

i

(
Vi ⊗HS

Wi)

The transition maps in this limit are Hilbert-Schmidt, so the limit is again nuclear Fréchet.

As remarked at the beginning of the proof, the general case follows from the basic characterization of limits:
for X = limαXα with Xα normed, a continuous bilinear map V ⊗W → X is exactly a compatible family
of maps V ⊗W → Xα. To obtain this compatible family, observe that a continuous bilinear V ×W → X
composed with projections X → Xα gives a compatible family of continuous bilinear maps V ×W → Xα.
These induce compatible linear maps V ⊗W → Xα, as in the commutative diagram

X &&))
. . . // Xα

// . . .

V ⊗W

OO 55kkkkkkkk

33gggggggggggggg
V ×Woo

OO�
�
�

;;w
w

w
w

w

iiSSSSSSSSSSSSSSSSS

The linear maps V ⊗W → Xα induce a unique continuous linear V ⊗W → X.

When X is a Hilbert space, in fact B is Hilbert-Schmidt. Applying the same argument with X replaced by
Vi+1 ⊗HS

Wi+1 shows that the dotted map in

Vi+2 ⊗HS
Wi+2

//______ Vi+1 ⊗HS
Wi+1

B

&&LLLLLLLLLLL

Vi+2 ×Wi+2

OO

ϕi+2×ψi+2 // Vi+1 ×Wi+1

OO

β // X

is Hilbert-Schmidt. Thus, limi(Vi ⊗HS Wi) is again nuclear Fréchet. ///

8. Adjunction: Schwartz Kernel Theorem for nuclear Fréchet spaces

First, we prove a form of the adjunction for topological vector spaces.

Let X,Y be nuclear Fréchet space of the form X = limXi and Y = limYi with Hilbert spaces Xi, Yi and
Hilbert-Schmidt transition maps Xi → Xi−1 and Yi → Yi−1. Let Z be locally convex.

[8.1] Theorem: Giving Hom(Y, Z) any topology as fine as the (weak) finite-to-open topology and no finer
than the (strong) bounded-to-open topology, we have an isomorphism of C-vectorspaces

Hom(X,Hom(Y, Z)) ≈ Hom(X ⊗ Y,Z)

Proof: The map from Φ in Hom(X ⊗ Y, Z) to ϕΦ in Hom(X,Hom(Y,Z)) first sends Φ to the jointly
continuous bilinear form βΦ(x × y) = Φ(x ⊗ y) by composing with the canonical jointly continuous

9
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X × Y → X ⊗ Y . From the earlier discussion of continuity conditions, the continuity in Y for fixed
xo ∈ X is equivalent to ϕΦ(xo) ∈ Hom(Y,Z). The separate continuity in X for fixed yo is equivalent to
ϕΦ ∈ Hom(X,Hom(Y, Z)) with weak finite-to-open topology on Hom(Y,Z).

On the other hand, ϕ in Hom(X,Hom(Y, Z)) with weak finite-to-open topology on Hom(Y,Z) gives separately
continuous bilinear form βϕ(x×y) = ϕ(x)(y). The joint continuity of separately continuous bilinear maps for
X,Y Fréchet, and existence of the tensor product X ⊗ Y , gives the continuous linear Φϕ ∈ Hom(X ⊗ Y, Z).

As earlier, X⊗Y is independent of topology on Hom(Y,Z) in the indicated range, due to the joint continuity
of separately continuous bilinear maps for X,Y Fréchet. ///

Taking Z = C, we have

[8.2] Corollary: Giving Y ∗ any topology as fine as the (weak) finite-to-open topology and no finer than the
(strong) bounded-to-open topology, we have an isomorphism of C-vectorspaces

HomC(X,Y ∗) ≈ (X ⊗C Y )∗

[8.3] Remark: We can also strengthen the assertion to refer to topologies on Hom(X,Y ∗) and (X ⊗C Y )∗.

9. D(Tn) is nuclear Fréchet

Let T be the circle R/2πZ. In terms of Fourier series, for s ≥ 0 the sth L2 Levi-Sobolev space on Tm is

Hs(Tm) = {
∑
ξ

cξ e
iξ·x ∈ L2(Tm) :

∑
ξ

|cξ|2 · (1 + |ξ|2)s <∞}

The Levi-Sobolev imbedding theorem asserts that

Hk+
m
2 + ε(Tm) ⊂ Ck(Tm) (for all ε > 0)

Thus,

C∞(Tm) = H+∞(Tm) = lim
s
Hs(Tm) ≈ lim

(
. . .→ H2(Tm)→ H1(Tm)→ H0(Tm)

)
We recall a form of Rellich’s compactness lemma:

[9.1] Theorem: For s > t, Hs(Tn)→ Ht(Tn) is Hilbert-Schmidt for s > t+ n
2 .

Proof: [... iou ...] ///

[9.2] Corollary: H∞(Tn) = C∞(Tn) is nuclear Fréchet. ///

10. D(Tm)⊗D(Tn) ≈ D(Tm+n)

[10.1] Claim:
H+∞(Tm)⊗C H

+∞(Tn) ≈ H+∞(Tm+n)

induced from the natural

(ϕ⊗ ψ)(x, y) = ϕ(x)ψ(y) (ϕ ∈ H+∞(Tm), ψ ∈ H+∞(Tn), x ∈ Tm, y ∈ Tn)

10
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Indeed, our construction of this tensor product is

H+∞(Tm)⊗C H
+∞(Tn) = lim

s

(
Hs(Tm)⊗

HS
Hs(Tn)

)
The inequalities

(1 + |ξ|2 + |η|2)2 ≥ (1 + |ξ|2)(1 + |η|2) ≥ 1 + |ξ|2 + |η|2 (for ξ ∈ Zm, η ∈ Zn)

give
H2sTm+n) ⊂ Hs(Tm)⊗

HS
Hs(Tn) ⊂ Hs(Tm+n) (for s ≥ 0)

The limit only depends on cofinal sublimits, so, indeed,

H+∞(Tm)⊗C H
+∞(Tn) ≈ H+∞(Tm+n)

///

Thus,

Hom(D(Tm),D(Tn)∗) ≈ Hom(D(Tm)⊗D(Tn),C) ≈ Hom(D(Tm+n),C) = D(Tm+n)∗

This completes the proof of a concrete Schwartz kernel theorem for D(Tn), namely,

Hom(D(Tm),D(Tn)∗) ≈ D(Tm+n)∗

as asserted in the first section. ///

11. Nuclear LF-spaces

Although the statement of the Schwartz kernel theorem for test functions on Rn is identical in form to that
for D(Tn), the proof must be somewhat different, because D(Rn) is not a Fréchet space. It is an LF-space,
that is, a strict colimit (also called strict inductive limit) of Fréchet spaces. Thus, proof of existence of tensor
products must be somewhat different.

We expect to prove that D(Rn) is nuclear because it is a (locally convex) strict colimit of the nuclear Fréchet
spaces D(K), where K runs through any reasonable set of compact subsets of Rn. Since cofinal (co)limits
give the same outcome, we can take K ranging through cubes KN = [−N,N ]n. Each D(KN ) imbeds in
D(Tn) as a closed subspace, so is nuclear Fréchet.

For simplicity, we only consider index sets {1, 2, 3, . . .} for colimits.

As a temporary notation, justified by the theorem, for nuclear Fréchet Xi and Yi, write

(colimXi)⊗ (colimYi) = colim(Xi ⊗ Yi)

Here, for Xi = limj(Xi)j for Hilbert spaces (Xi)j with Hilbert-Schmidt transition maps, and similarly for
Yi, we have seen that a tensor product constructed as

Xi ⊗ Yi = lim
j

(
(Xi)j ⊗HS

(Yi)j
)

fulfills all requirements of a genuine tensor product.

[11.1] Theorem: Let Xi, Yi be nuclear Fréchet, for i = 1, 2, 3, . . .. Assume that the underlying sets of
(locally convex) X = colimXi and Y = colimYi are the ascending unions of the underlying sets of Xi and Yi.

11



Paul Garrett: 10a. Schwartz kernel theorems, tensor products, nuclearity (May 7, 2020)

Then colimits X = colimXi and Y = colimYi are nuclear, in the sense that separately continuous X×Y → Z
for locally convex Z uniquely factors through continuous linear maps from colim(Xi ⊗ Yi), with a canonical
separately continuous X × Y → colim(Xi ⊗ Yi).

[11.2] Remark: The conclusion of the theorem justifies declaring

(colimiXi)⊗ (colimYi) = colim(Xi ⊗ Yi)

Further, since we have seen that Xi⊗Yi is still nuclear Fréchet, the tensor product (colimiXi)⊗ (colimYi) =
colim(Xi ⊗ Yi) is itself still in the same class of nuclear spaces as colimXi and colimYi.

[11.3] Remark: The assumption on underlying sets applies at least to strict colimits X,Y of nuclear Fréchet
spaces Xi, Yi, and also to some other situations.

Proof: First, we claim that a compatible family of separately continuous bilinear maps Xi × Yi → Z gives
a separately continuous colimXi× colimYi → Z. For all xo ∈ X, in fact xo lies in some limitand Xio . For all
j ≥ io, {xo} × Yj → Z is continuous linear on Yj . This gives a continuous linear map on the colimit. And
similarly with the roles of X,Y reversed. This verifies the claim.

To prove that a separately continuous colimXi × colimYi → Z gives continuous linear colim(Xi ⊗ Yi)→ Z,
observe that a family of jointly continuous Xi × Yi → Z with Xi, Yi nuclear Fréchet gives a family of
continuous Xi ⊗ Yi → Z. The characterization of colimit gives continuous colim(Xi ⊗ Yi)→ Z. ///

[11.4] Corollary: Strict colimits of nuclear Fréchet spaces are nuclear. ///

We may call such strict colimits nuclear LF-spaces.

12. Schwartz kernel theorem for nuclear LF-spaces

We verify that the tensor product, whose existence was confirmed in the previous section, fits into the
desired adjunction. As in the nuclear Fréchet case earlier, this proof is really a variation on the proof that
colim(Xi ⊗ Yi) satisfies the requirements for a tensor product.

[12.1] Theorem: Let X = colimXi and Y = colimYi be colimits of nuclear Fréchet spaces Xi, Yi such that
the underlying sets of X,Y are the ascending unions of the limitands. Put

X ⊗ Y = colim(Xi ⊗ Yi)

For every locally convex Z, we have a natural isomorphism of C-vectorspaces

Hom(X,Hom(Y, Z)) ≈ Hom(X ⊗ Y,Z)

where Hom(Y, Z) is given the (weak) finite-to-open topology.

Proof: As earlier, we have no choice about the right-to-left map when restricted to the algebraic tensor
product, and factoring through bilinear maps:

Hom(X ⊗alg Y, Z) −→ Bil(X,Hom(Y, Z)) −→ Hom(X,Hom(Y,Z))

is completely specified by Φ→ βΦ → ϕΦ, given by βΦ(x×y) = Φ(x⊗y), and then ϕΦ(x)(y) = βΦ(x×y). From
the earlier discussion of continuity properties of bilinear forms, since βΦ is (at least) separately continuous in
Y , ϕΦ(x) is in the set Hom(Y,Z), and because it is separately continuous in X, ϕΦ is in Hom(X,Hom(Y, Z))
when the latter is given the weak topology. These implications can be run in reverse, and this part of the
argument does not depend on the nuclearity of the limitands.

12
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The critical point is the extendability of Φϕ(x ⊗ y) = ϕ(x)(y) for ϕ ∈ Hom(X,Hom(Y, Z)) from
Hom(X⊗algY, Z) to Hom(X⊗Y,Z). This uses the nuclearity of the limitands, demonstrated in the previous
theorem. ///

[12.2] Corollary: For X,Y nuclear LF-spaces, Hom(X,Y ∗) ≈ (X ⊗ Y )∗, where Y ∗ has the weak dual
topology. ///

13. D(Rn) is a nuclear LF-space

By definition, D(Rn) is a strict colimit colimND(KN ) where (for example) KN is the cube

KN = {x = (x1, . . . , xn) ∈ Rn : |xi| ≤ N}

[13.1] Claim: D(KN ) is nuclear Fréchet.

Proof: Via the quotient map q : Rn → Rn/(2N · Zn) ≈ Tn, the function space D(KN ) is exactly the
pull-back of the closed subspace of D(Rn/(2N · Zn) consisting of functions vanishing to infinite order at
(images of) points x = (x1, . . . , xn) with at least one xi ∈ 2N · Z. The following unsurprising claim implies
that D(KN ) is indeed nuclear Fréchet. ///

[13.2] Claim: Closed subspaces of nuclear Fréchet spaces are nuclear Fréchet.

Proof: Let X = limXi be nuclear Fréchet, with Hilbert spaces Xi and Hilbert-Schmidt transition maps. Let
Y be a closed subspace of X. There is a natural inclusion X ⊂

∏
Xi as a closed subspace, by identifying X

as elements x = (x1, x2, . . .) of the product such that xi → xi+1 under all transition maps. This requirement
is indeed a closed condition.

Let Yi be the Hilbert-space completion of the image of Y under the projection X → Xi. The natural
restriction Yi → Yi−1 of the Hilbert-Schmidt Xi → Xi−1 is Hilbert-Schmidt. By construction, Y is the limit
of the Yi (among other possibiities), so is nuclear Fréchet. ///

[13.3] Corollary: Hom(D(Rm),D(Rn)∗) ≈ (D(Rm)⊗D(Rn))∗ ///

14. D(Rm)⊗D(Rn) ≈ D(Rm+n)

Of course it is completely unsurprising that something like the following theorem should hold, with suitable
⊗ and suitable sense of equality or isomorphism. Thus, the true issues are about correct notions of ⊗ and
equality. And, then, what are the proof mechanisms?

[14.1] Theorem: D(Rm)⊗D(Rn) = D(Rm+n), where the tensor product is that of nuclear LF-spaces.

Proof: Some technical preparations are required, and then a significant point is the invocation of the
existence of the tensor product of nuclear LF-spaces.

Under reasonable further hypotheses on a compact Hausdorff space X with positive regular Borel measure,
Gelfand-Pettis integrals of continuous, compactly-supported functions f on X, with values in a quasi-
complete locally convex topological vector space V , can be approximated by Riemann-like sums.

[14.2] Claim: Given a countable decomposition X =
⋃
nXn with closed sets Xn, with meas (Xm∩Xn) = 0

for m 6= n, for every continuous V -valued function f on X,∫
X

f =
∑
n

∫
Xn

f

13
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Proof: In this context, with fixed subsets Xn, we must show that the right-hand side, a countable sum of
Gelfand-Pettis integrals of f on the subsets Xn, is a Gelfand-Pettis integral of f on X. Indeed, for λ ∈ V ∗,

λ
(∑

n

∫
Xn

f
)

=
∑
n

λ
(∫

Xn

f
)

=
∑
n

∫
Xn

λ ◦ f =

∫
X

λ ◦ f

from the countable additivity of scalar-valued integration. The last integral is λ(
∫
X
f). This holds for all λ,

so Hahn-Banach gives the desired equality. ///

[14.3] Claim: Given open N 3 0 in V , suppose that the Xn are small enough so that f(x)− f(y) ∈ N for
all x, y ∈ Xn. Then, for any set of choices xn ∈ Xn,∫

X

f −
∑
n

meas (Xn) · f(xn) ∈ 2 ·meas (X) ·N

Proof: The closure E of E ⊂ V is the intersection of sets E + N for open N 3 0, so E ⊂ E + N for any
single such N . For v in the closure of the convex hull of f(Xn), take y1, . . . , yk ∈ Xn and t1, . . . , tk ≥ 0 such
that

∑
j tj = 1 and such that

v ∈
k∑
j=1

tj · f(yj) + N

Then

v − f(xn) ∈
k∑
j=1

tj · (f(yj)− f(xn)) +N =

k∑
j=1

tj ·N + N = 2 ·N

That is,
closure of the convex hull of f(Xn) ⊂ f(xn) + 2N

Thus, ∫
Xn

f ∈ meas (Xn) ·
(
f(xn) + 2N

)
Adding up,∫

X

f =
∑
n

∫
Xn

f ∈
∑
n

meas (Xn) ·
(
f(xn) + 2N

)
=
∑
n

meas (Xn) · f(xn) + 2 ·meas (X) ·N

///

This finishes the general preparations. Now:

[14.4] Claim: The natural image of the algebraic tensor product D(Rm) ⊗alg D(Rn) is sequentially dense
in D(Rm+n).

Proof: Let ui = ϕi ⊗ ψi be an approximate identity with ϕi ∈ D(Rm) and ϕi ∈ D(Rn). For f ∈ D(Rm+n),
the basic estimate on Gelfand-Pettis integrals shows that with the translation action of Rm+n on D(Rm+n),
with the associated integral action, ui · f → f , where

(ui · f)(x, y) =

∫
Rm

∫
Rn

ϕi(ξ)ψi(η) f(x+ ξ, y + η) dξ dη

Replacing ξ by ξ − x and η by η − y in the integral, letting f∨(ξ, η) = f(−ξ,−η), the integral becomes the
integral operator action of f∨ on ui:

ui · f = f∨ · ui
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As above, the latter integral can be approximated arbitrarily well in D(Rm+n) by finite sums∑
j

cjf
∨(zj)Tzjui =

∑
j

cjf
∨(zj)Tzj (ϕi ⊗ ψi) ∈ D(Rm)⊗alg D(Rn)

where Tzj is translation by zj ∈ Rm+n. ///

Resuming the main proof: the bilinear map D(Rm) × D(Rn) → D(Rm+n given by ϕ × ψ → Φϕ,ψ with
Φϕ,ψ(x⊕ y) = ϕ(x) · ψ(y) is at least separately continuous, so uniquely factors through D(Rm)×D(Rn)→
D(Rm)⊗D(Rn).

Both D(Rm)⊗D(Rn) and D(Rm+n are quasi-complete, with the purely algebraic tensor product D(Rm)⊗alg

D(Rn) (or its image) sequentially dense in both.

Thus, the induced map

D(Rm)⊗D(Rn) −→ D(Rm+n)

must be a topological isomorphism. ///

This completes a proof of a Schwartz kernel theorem for test functions on Euclidean spaces.

15. Appendix: joint continuity of bilinear maps

Joint continuity of separately continuous bilinear maps on Hilbert spaces, is an easy corollary of Baire
category. The result extends to Fréchet spaces with a little more work. First:

[15.1] Claim: A bilinear map β : X × Y → Z on Hilbert spaces X,Y, Z, continuous in each variable
separately, is jointly continuous.

Proof: Fix a neighborhood N of 0 in Z. Take sequences xn → xo in X and yn → yo in Y . For each x ∈ X,
by continuity in Y , β(x, yn) → β(x, yo). Thus, for each x ∈ X, the set of values β(x, yn) is bounded in Z.
The linear functionals x→ β(x, yn) are equicontinuous, by Banach-Steinhaus, so there is a neighborhood U
of 0 in X so that bn(U) ⊂ N for all n. In the identity

β(xn, yn)− β(xo, yo) = β(xn − xo, yn) + β(xo, yn − yo)

we have xn − xo ∈ U for large n, and β(xn − xo, yo) ∈ N . Also, by continuity in Y , β(xo, yn − yo) ∈ N
for large n. Thus, β(xn, yn)− β(xo, yo) ∈ N +N , proving sequential continuity. Since X × Y is metrizable,
sequential continuity implies continuity. ///

For a more general result, we recall some preparatory ideas:

A set E of continuous linear maps from a topological vectorspace X to Y is equicontinuous when, for every
neighborhood U of 0 in Y , there is a neighborhood N of 0 in X so that T (N) ⊂ U for every T ∈ E.

[15.2] Claim: Let V be a strict colimit of a locally convex closed subspaces Vi. Let Y be a locally convex
topological vectorspace. A set E of continuous linear maps from V to Y is equicontinuous if and only if for
each index i the collection E|Vi

= {T |Vi
: T ∈ E} of restrictions is equicontinuous.

Proof: Given a neighborhood U of 0 in Y , shrink U if necessary so that U is convex and balanced. For
each index i, let Ni be a convex, balanced neighborhood of 0 in Vi so that TNi ⊂ U for all T ∈ E. Let N
be the convex hull of the union of the Ni in the locally convex coproduct of the Vi. By the convexity of N ,
still TN ⊂ U for all T ∈ E. By the construction of the coproduct topology as the diamond topology, N is an
open neighborhood of 0 in the coproduct. Hence the image of N in the colimit, a quotient of the coproduct,
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is a neighborhood of 0. This gives the equicontinuity of E. The other direction of the implication is easy.
///

Next, we need

[15.3] Claim: Banach-Steinhaus/uniform boundedness Let X be a Fréchet space or LF-space and Y an
arbitrary topological vector space. A set E of linear maps X → Y , such that every set Ex = {Tx : T ∈ E}
of pointwise values is bounded in Y , is equicontinuous.

Proof: First consider X Fréchet. Given a neighborhood U of 0 in Y , let A =
⋂
T∈E T

−1U . By assumption,⋃
n nA = X. By the Baire category theorem, the complete metric space X is not a countable union of

nowhere dense subsets, so at least one of the closed sets nA has non-empty interior. Since (non-zero)
scalar multiplication is a homeomorphism, A itself has non-empty interior, containing some x + N for a
neighborhood N of 0 and x ∈ A. For every T ∈ E,

TN ⊂ T{a− x : a ∈ A} ⊂ {u1 − u2 : u1, u2 ∈ U} = U − U

By continuity of addition and scalar multiplication in Y , given an open neighborhood Uo of 0, there is U
such that U − U ⊂ Uo. Thus, TN ⊂ Uo for every T ∈ E, and E is equicontinuous.

For X =
⋃
iXi an LF-space, this argument already shows that E restricted to each Xi is equicontinuous.

From the previous claim, this gives equicontinuity on the strict colimit. ///

A corollary of Banach-Steinhaus:

[15.4] Corollary: A separately continuous bilinear map β : X × Y → Z from Fréchet spaces X,Y to an
arbitrary topological vector space Z is jointly continuous.

Proof: Fix an open N 3 0 in Z. Let xn → xo in X and yn → yo in Y . For each x ∈ X, by continuity in Y ,
β(x, yn)→ β(x, yo). Thus, for each x ∈ X, the set of values β(x, yn) is bounded in Z. By Banach-Steinhaus,
the linear functionals x → β(x, yn) are equicontinuous, so there is an open U 3 0 in X so that bn(U) ⊂ N
for all n. In the identity

β(xn, yn)− β(xo, yo) = β(xn − xo, yn) + β(xo, yn − yo)

xn − xo ∈ U for large n, and β(xn − xo, yo) ∈ N . Similarly, by continuity in Y , β(xo, yn − yo) ∈ N for large
n. Thus, β(xn, yn)−β(xo, yo) ∈ N +N , proving sequential continuity. Since X ×Y is metrizable, sequential
continuity implies continuity. ///

16. Appendix: convex hulls

For convenience and perspective about expression of Gelfand-Pettis integrals as limits of finite sums, we
review some basic points.

[16.1] Claim: For a subset E of a locally convex topological vector space V , and for continuous linear
f : V → W to another locally convex topological vector space W , the closure of the convex hull of f(E) is
the closure of the convex hull of f(E), where E is the topological closure of E.

Proof: First, recall that the closure E of a subset E of a topological vector space is the intersection of all
E + U where U runs over opens containing 0. Thus, the closure of the convex hull of f(E) is

⋂
f(E) + U

with 0 ∈ U ⊂W .

The convex hull of f(E) is the collection of finite convex combinations
∑n
i=1 tif(vi) with vi ∈ E. For each

vi, let xi,α be a net such that limα xi,α = vi. The continuity of f assures that limα f(xi,α) = f(vi). Thus,
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there is αi such that f(vi) ∈ f(xi,αi) + U . Then

n∑
i=1

tif(vi) ∈
n∑
i=1

ti ·
(
f(xi,αi) + U

)
=
( n∑
i=1

tif(xi,αi

)
+ U

This holds for every U 3 0. ///

Unsurprisingly:

[16.2] Claim: A compact subset E of a locally convex topological vector space V is bounded.

Proof: In this context, boundedness is that, given an open U 3 0, there is to such that for all z ∈ C with
|z| ≥ to we have z · U ⊃ E. Without loss of generality, shrink U so that it is balanced, in the sense that
z · U ⊂ U for all |z| ≤ 1.

First, for an individual point v, continuity at z = 0 of scalar multiplication v → z · v gives that, for every
open U 3 0, there is δ > 0 such that z · v ∈ U + 0 · v = U for all |z| < δ. Then |z| > 1/δ gives v ∈ z · U .

For each v ∈ E, let tv be such that v ∈ z · U for all |z| ≥ tv. Then E ⊂
⋃
v∈E tv · U , and by compactness

there are finitely-many t1, . . . , tn such that E ⊂ t1U ∪ . . . ∪ tnU . By balancedness of U , the latter union is
contained in toU with to the maximum of t1, . . . , tn. Again by balancedness, toU ⊂ zU for all |z| ≥ to.
///

17. Appendix: Hilbert-Schmidt operators

For convenience, we recall some features of Hilbert-Schmidt operators.

[17.1] Prototype: integral operators

For K(x, y) in Co
(
[a, b]× [a, b]

)
, define T : L2[a, b]→ L2[a, b] by

Tf(y) =

∫ b

a

K(x, y) f(x) dx

The function K is the integral kernel, or Schwartz kernel of T . Approximating K by finite linear combinations
of 0-or-1-valued functions shows T is a uniform operator norm limit of finite-rank operators, so is compact.
The Hilbert-Schmidt operators include such operators, where the integral kernel K(x, y) is allowed to be in
L2
(
[a, b]× [a, b]

)
.

[17.2] Hilbert-Schmidt norm on V ⊗alg W

In the category of Hilbert spaces and continuous linear maps, there is no tensor product in the categorical
sense, as demonstrated in an appendix.

Without claiming anything about genuine tensor products in any category of topological vector spaces, the
algebraic tensor product X ⊗alg Y of two Hilbert spaces has a hermitian inner product 〈, 〉HS determined by

〈x⊗ y, x′ ⊗ y′〉
HS

= 〈x, x′〉 〈y, y′〉

Let X ⊗
HS
Y be the completion with respect to the corresponding norm |v|

HS
= 〈v, v〉1/2

HS

X ⊗
HS
Y = | · |

HS
-completion of X ⊗alg Y

This completion is a Hilbert space. Unfortunately, it is not a genuine tensor product of X,Y , when both are
infinite-dimensional, in effect because not every continuous linear map X → Y ∗ is Hilbert-Schmidt.

17



Paul Garrett: 10a. Schwartz kernel theorems, tensor products, nuclearity (May 7, 2020)

[17.3] Hilbert-Schmidt operators

For Hilbert spaces V,W the finite-rank [4] continuous linear maps T : V → W can be identified with the
algebraic tensor product V ∗ ⊗alg W , by [5]

(λ⊗ w)(v) = λ(v) · w

The space of Hilbert-Schmidt operators V → W is the completion of the space V ∗ ⊗alg W of finite-rank
operators, with respect to the Hilbert-Schmidt norm | · |HS on V ∗ ⊗alg W . For example,

|λ⊗ w + λ′ ⊗ w′|2
HS

= 〈λ⊗ w + λ′ ⊗ w′, λ⊗ w + λ′ ⊗ w′〉

= 〈λ⊗ w, λ⊗ w〉+ 〈λ⊗ w, λ′ ⊗ w′〉+ 〈λ′ ⊗ w′, λ⊗ w〉+ 〈λ′ ⊗ w′, λ′ ⊗ w′〉

= |λ|2|w|2 + 〈λ, λ′〉〈w,w′〉+ 〈λ′, λ〉〈w′, w〉+ |λ′|2|w′|2

When λ ⊥ λ′ or w ⊥ w′, the monomials λ⊗ w and λ′ ⊗ w′ are orthogonal, and

|λ⊗ w + λ′ ⊗ w′|2
HS

= |λ|2|w|2 + |λ′|2|w′|2

That is, the space Hom
HS

(V,W ) of Hilbert-Schmidt operators V → W is the closure of the space of finite-
rank maps V → W , in the space of all continuous linear maps V → W , under the Hilbert-Schmidt norm.
By construction, Hom

HS
(V,W ) is a Hilbert space.

[17.4] Expressions for Hilbert-Schmidt norm, adjoints

The Hilbert-Schmidt norm of finite-rank T : V →W can be computed from any choice of orthonormal basis
vi for V , by

|T |2
HS

=
∑
i

|Tvi|2 (at least for finite-rank T )

Thus, taking a limit, the same formula computes the Hilbert-Schmidt norm of T known to be Hilbert-
Schmidt. Similarly, for two Hilbert-Schmidt operators S, T : V →W ,

〈S, T 〉
HS

=
∑
i

〈Svi, T vi〉 (for any orthonormal basis vi)

The Hilbert-Schmidt norm | · |
HS

dominates the uniform operator norm | · |op: given ε > 0, take |v1| ≤ 1 with
|Tv1|2 + ε > |T |2op. Choose v2, v3, . . . so that v1, v2, . . . is an orthonormal basis. Then

|T |2op ≤ |Tv1|2 + ε ≤ ε+
∑
n

|Tvn|2 = ε+ |T |2
HS

This holds for every ε > 0, so |T |2op ≤ |T |2HS
. Thus, Hilbert-Schmidt limits are operator-norm limits, and

Hilbert-Schmidt limits of finite-rank operators are compact.

Adjoints T ∗ : W → V of Hilbert-Schmidt operators T : V →W are Hilbert-Schmidt, since for an orthonormal
basis wj of W ∑

i

|Tvi|2 =
∑
ij

|〈Tvi, wj〉|2 =
∑
ij

|〈vi, T ∗wj〉|2 =
∑
j

|T ∗wj |2

[4] As usual a finite-rank linear map T : V →W is one with finite-dimensional image.

[5] Proof of this identification: on one hand, a map coming from V ∗ ⊗alg W is a finite sum
∑
i λi ⊗ wi, so certainly

has finite-dimensional image. On the other hand, given T : V → W with finite-dimensional image, take v1, . . . , vn
be an orthonormal basis for the orthogonal complement (kerT )⊥ of kerT . Define λi ∈ V ∗ by λi(v) = 〈v, vi〉. Then

T ∼
∑
i λi ⊗ Tvi is in V ∗ ⊗W . The second part of the argument uses the completeness of V .
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[17.5] Criterion for Hilbert-Schmidt operators

We claim that a continuous linear map T : V → W with Hilbert space V is Hilbert-Schmidt if for some
orthonormal basis vi of V ∑

i

|Tvi|2 < ∞

and then (as above) that sum computes |T |2
HS

. Indeed, given that inequality, letting λi(v) = 〈v, vi〉, T is
Hilbert-Schmidt because it is the Hilbert-Schmidt limit of the finite-rank operators

Tn =

n∑
i=1

λi ⊗ Tvi

[17.6] Composition of Hilbert-Schmidt operators with continuous operators

Post-composing: for Hilbert-Schmidt T : V →W and continuous S : W → X, the composite S ◦T : V → X
is Hilbert-Schmidt, because for an orthonormal basis vi of V ,∑

i

|S ◦ Tvi|2 ≤
∑
i

|S|2op · |Tvi|2 = |S|op · |T |2HS
(with operator norm |S|op = sup|v|≤1 |Sv|)

Pre-composing: for continuous S : X → V with Hilbert X and orthonormal basis xj of X, since adjoints of
Hilbert-Schmidt are Hilbert-Schmidt,

T ◦ S = (S∗ ◦ T ∗)∗ = (Hilbert-Schmidt)∗ = Hilbert-Schmidt

18. Appendix: non-existence of tensor products of Hilbert spaces

Tensor products of infinite-dimensional Hilbert spaces do not exist.

That is, for infinite-dimensional Hilbert spaces V,W , there is no Hilbert space X and continuous bilinear
map j : V ×W −→ X such that, for every continuous bilinear V ×W −→ Y to a Hilbert space Y , there is
a unique continuous linear X −→ Y fitting into the commutative diagram

X

##G
G

G
G

G

V ×W

j

OO

// Y

That is, there is no tensor product in the category of Hilbert spaces and continuous linear maps.

Yes, it is possible to put an inner product on the algebraic tensor product V ⊗alg W , by

〈v ⊗ w, v′ ⊗ w′〉 = 〈v, v′〉 · 〈w,w′〉

and extending. The completion V ⊗
HS
W of V ⊗alg W with respect to the associated norm, is a Hilbert

space, identifiable with Hilbert-Schmidt operators V −→ W ∗. However, this Hilbert space fails to have the
universal property in the categorical characterization of tensor product, as we see below. This Hilbert space
H is important in its own right, but is widely misunderstood as being a tensor product in the categorical
sense.
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The non-existence of tensor products of infinite-dimensional Hilbert spaces is important in practice, not only
as a cautionary tale [6] about naive category theory, insofar as it leads to Grothendieck’s idea of nuclear
spaces, which do admit tensor products.

Proof: First, we review the point that the Hilbert-Schmidt tensor product H = V ⊗
HS
W is not a Hilbert-

space tensor product, although it is a Hilbert space. For simplicity, suppose that V,W are separable, in the
sense of having countable Hilbert-space bases.

Choice of such bases allows an identification of W with the continuous linear Hilbert space dual V ∗ of V .
Then we have the continuous bilinear map V × V ∗ −→ C by v × λ −→ λ(v). The algebraic tensor product
V ⊗alg W injects to H = V ⊗

HS
V ∗, and the image is identifiable with the finite-rank maps V −→ V . The

linear map T : H −→ C induced on the image of V ⊗alg V
∗ is trace. If H = V ⊗

HS
V ∗ were a Hilbert-space

tensor product, the trace map would extend continuously to it from finite-rank operators. However, there
are many Hilbert-Schmidt operators that are not of trace class. For example, letting ei be an orthonormal
basis, the element ∑

n

1

n
· en ⊗ en ∈ V ⊗

HS
V ∗

does not have a finite trace, since
∑
n≤N 1/n ∼ logN . In other words, the difficulty is that

T
( ∑
a≤n≤b

1

n
· en ⊗ en

)
=

∑
a≤n≤b

1

n
· T (en ⊗ en) =

∑
a≤n≤b

1

n

Thus, the partial sums of
∑
n

1
n en⊗ en form a Cauchy sequence, but the values of T on the partial sums go

to +∞. Thus, the Hilbert-Schmidt tensor product cannot be a Hilbert-space tensor product.

Now we show that no other Hilbert space can be a tensor product, by comparing to the Hilbert-Schmidt
tensor product.

Let V ×W −→ X be a purported Hilbert-space tensor product, and, again, let W be the dual of V , without
loss of generality. By assumption, the continuous bilinear injection V × V ∗ −→ V ⊗

HS
V ∗ induces a unique

continuous linear map T : X −→ H fitting into a commutative diagram

X

T

��

^ \ Z X V S P M J
G

C
?

;
7

4

V ⊗alg V
∗

ffM M M M M M

&&N
N

N
N

N

V × V ∗

OO

//

88rrrrrrrrrr
V ⊗

HS
V ∗

The linear map V ⊗alg V
∗ −→ V ⊗

HS
V ∗ is injective, since V ⊗

HS
V ∗ is a completion of V ⊗alg V

∗. Thus,
unsurprisingly, V ⊗alg V

∗ −→ X is necessarily injective. The uniqueness of the linear induced maps implies
that the image of V ⊗alg V

∗ is dense in X. Also, T : X −→ V ⊗HS V
∗ is the identity on the copies of

V ⊗alg V
∗ imbedded in X and V ⊗

HS
V ∗. Let T ∗ : V ⊗

HS
V ∗ −→ X be the adjoint of T , defined by

〈x, T ∗y〉X = 〈Tx, y〉V⊗
HS
V ∗

[6] Many of us are not accustomed to worry about existence of objects defined by universal mapping properties,

because we proved their existence by set-theoretic constructions of them, long before becoming aware of mapping-

property characterizations. Much as naive set theory does not lead to paradoxes without effort, naive category

theory’s recharacterization of objects close to prior experience rarely describes non-existent objects. Nevertheless,

the present example is genuine.
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On the imbedded copies of V ⊗alg V
∗

〈v⊗λ, T ∗(w⊗µ)〉X = 〈T (v⊗λ), w⊗µ〉V⊗
HS
V ∗ = 〈v⊗λ,w⊗µ〉V⊗

HS
V ∗ (for v, w ∈ V and λ, µ ∈ V ∗)

Given v ∈ V and λ ∈ V ∗, the orthogonal complement (v⊗λ)⊥ is the closure of the span of monomials v′⊗λ′
where either v′ ⊥ v or λ′ ⊥ λ. For such v′ ⊗ λ′,

0 = 〈v′ ⊗ λ′, v ⊗ λ〉H = 〈T (v′ ⊗ λ′), v ⊗ λ〉H = 〈v′ ⊗ λ′, T ∗(v ⊗ λ)〉X

Thus, for any monomial v ⊗ λ, the image T ∗(v ⊗ λ) is a scalar multiple of v ⊗ λ. The same is true of
monomials (v+w)⊗ (λ+µ). Taking v, w linearly independent and λ, µ linearly independent and expanding
shows that the scalars do not depend on v, λ. Thus, T ∗ is a scalar on V ⊗alg V

∗.

That is, there is a (necessarily real) constant C such that

C · 〈v ⊗ λ,w ⊗ µ〉X = 〈v ⊗ λ, T ∗(w ⊗ µ)〉X = 〈T (v ⊗ λ), w ⊗ µ〉V⊗
HS
V ∗ = 〈v ⊗ λ,w ⊗ µ〉V⊗

HS
V ∗

since T identifies the imbedded copies of V ⊗alg V
∗. That is, up to the constant C, the inner products from

X and V ⊗
HS
V ∗ restrict to the same hermitian form on V ⊗alg V

∗. Thus, any putative tensor product X
differs from V ⊗

HS
V ∗ only by scaling. However, we saw that the natural pairing V × V ∗ −→ C does not

factor through a continuous linear map V ⊗
HS
V ∗ −→ C, because there exist Hilbert-Schmidt maps not of

trace class.

Thus, there is no tensor product of infinite-dimensional Hilbert spaces. ///

21



Paul Garrett: 10a. Schwartz kernel theorems, tensor products, nuclearity (May 7, 2020)

Bibliography

[Gelfand-Silov 1964] I.M. Gelfand, G.E. Silov, Generalized Functions, I: Properties and Operators, Academic
Press, NY, 1964.

[Gelfand-Vilenkin 1964] I.M. Gelfand, N. Ya. Vilenkin, Generalized Functions, IV: applications of harmonic
analysis, Academic Press, NY, 1964.

[Grothendieck 1955] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Am.
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[Schwartz 1950/51] L. Schwartz, Théorie des Distributions, I,II Hermann, Paris, 1950/51, 3rd edition, 1965.
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