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This is a belatedly corrected version of the continuation-principle parts of [G 2001a] and [G 2001b]. In 2014,
J. Hundley kindly observed some sloppiness in the purported proof of the Banach space criterion for finite
envelope (below). That flawed proof needlessly and falsely asserted too general existence of complementary
subspaces in Banach spaces. Repairing that gaffe is the main point of this updated document. There are
also some edits without mathematical content.

Regarding the application to meromorphic continuation of Eisenstein series, by now we have [Bernstein-
Lapid 2020], which also gives some references to more recent related developments.

[G 2018] systematically develops the relevant functional analysis in chapters 9, 13, 14, and 15,
including Gelfand-Pettis vector-valued integrals, and Grothendieck’s results about holomorphic vector-valued
functions. There is also a substantial historical and bibliographic discussion there. See also [G 2020]

Thanks to L. Carbone for interest in these corrections.

1. Weak-to-strong issues

A function f taking values in a topological vectorspace V is weakly holomorphic when s → (λ ◦ f)(s)
is holomorphic (C-valued) for every λ ∈ V ∗. A family of operators Ts : V → W from one topological
vectorspace to another is weakly holomorphic in a parameter s if for every vector v ∈ V and for every
continuous functional µ ∈W ∗ the C-valued function µ(Tsv) is holomorphic in s.

[1.1] Claim: : For Ss : X → Y and Ts : Y → Z be two weakly holomorphic families of continuous linear
operators on topological vectorspaces X, Y , Z, the composition Ts ◦Ss : X → Z is weakly holomorphic. For
a weakly holomorphic Y -valued function s → f(s), the composite Ts ◦ f is a weakly holomorphic Z-valued
function.

Proof: This is a corollary of Hartogs’ theorem, that separate analyticity of a function of several complex
variables implies joint analyticity (without any other hypotheses). Consider the family of operators Tt ◦ Ss.
By weak holomorphy, for x ∈ X and a linear functional µ ∈ Z∗ the C-valued function (s, t) → µ(Tt(Ss(x))
is separately analytic. By Hartogs’ theorem, it is jointly analytic. It follows that the diagonal function
s→ (s, s)→ µ(Ts(Ss(x)) is analytic. The second assertion has a nearly identical proof. ///

A Gelfand-Pettis or weak integral of a function s→ f(s) on a measure space (X,µ) with values in a topological
vectorspace V is an element I ∈ V so that for all λ ∈ V ∗

λ(I) =

∫
X

(λ ◦ f)(s) dµ(s)

A topological vectorspace is quasi-complete when every bounded (in the topological vectorspace sense, not
necessarily the metric sense) Cauchy net is convergent.

[1.2] Theorem: Continuous compactly-supported functions f : X → V with values in quasi-complete
(locally convex) topological vectorspaces V have Gelfand-Pettis integrals with respect to finite positive
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regular Borel measures µ on compact spaces X, and these integrals are unique. In particular, for a µ with
total measure µ(X) = 1, the integral

∫
X
f(x) dµ(s) lies in the closure of the convex hull of the image f(X)

of the measure space X.

Proof: Bourbaki’s Integration. (Thanks to Jacquet for bringing this reference to my attention.) ///

The following property of Gelfand-Pettis integrals is broadly useful in applications, such as justifying
differentiation under integrals.

[1.3] Claim: Let T : V → W be a continuous linear map, and let f : X → V be a continuous compactly
supported V -valued function on a topological measure space X with finite positive Borel measure µ. Suppose
that V is locally convex and quasi-complete, so that (from above) a Gelfand-Pettis integral of f exists and
is unique. Suppose that W is locally convex. Then

T

(∫
X

f(x) dµ(x)

)
=

∫
X

Tf(x) dµ(x)

In particular, T
(∫
X
f(x) dµ(x)

)
is a Gelfand-Pettis integral of T ◦ f .

Proof: First, the integral exists in V , from above. Second, for any continuous linear functional λ on W ,
λ ◦ T is a continuous linear functional on V . Thus, by the defining property of the Gelfand-Pettis integral,
for every such λ

(λ ◦ T )

(∫
X

f(x) dµ(x)

)
=

∫
X

(λTf)(x) dµ(x)

This exactly asserts that T
(∫
X
f(x) dµ(x)

)
is a Gelfand-Pettis integral of the W -valued function T ◦f . Since

the two vectors T
(∫
X
f(x) dµ(x)

)
and

∫
X
Tf(x) dµ(x) give identical values under all λ ∈W ∗, and since W

is locally convex, these two vectors are equal, as claimed. ///

[1.4] Corollary: For quasi-complete and locally convex V , weakly holomorphic V -valued functions are
(strongly) holomorphic.

Proof: The Cauchy integral formulas involve continuous integrals on compacta, so these integrals exist
as Gelfand-Pettis integrals. Thus, we can obtain V -valued convergent power series expansions for weakly
holomorphic V -valued functions, from which (strong) holomorphy follows by an obvious extension of Abel’s
theorem that analytic functions are holomorphic. ///

Give the space Homo(X,Y ) of continuous mappings T : X → Y from an LF space X (strict colimit of
Fréchetspaces, e.g., a Fréchetspace) to a quasi-complete space Y the weak operator topology as follows. For
x ∈ X and µ ∈ Y ∗, define a seminorm px,µ on Homo(X,Y ) by

px,µ(T ) = |µ(T (x))|

[1.5] Corollary: With the weak topoloogy Homo(X,Y ) is quasi-complete.

Proof: The collection of finite linear combinations of the functionals T → µ(Tx) is exactly the dual space
of Homo(X,Y ) with the weak operator topology. Invoke the previous result. ///

[1.6] Corollary: A weakly holomorphic Homo(X,Y )-valued function Ts is holomorphic when Homo(X,Y )
is given the weak operator topology. ///

[1.7] Remark: Homo(X,Y ) is also quasi-complete for certain other topologies, but we do not need that
stronger result. See [G 2020].
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2. A continuation principle

Let V be a topological vector space. Following Bernstein, a system of linear equations Xo in V is a collection

Xo = {(Wi, Ti, wi) : i ∈ I}

where I is a (not necessarily countable) set of indices, each Wi is a topological vector space,

Ti : V −→Wi

is a continuous linear map for each index i, and wi ∈ Wi are the targets. A solution of the system Xo is
v ∈ V such that Ti(v) = wi for all indices i. Denote the set of solutions by SolXo.

When the systems of linear equations Xs = {Wi, Ti,s, wi,s} depend on a parameter s, with Ti,s and wi,s
weakly holomorphic in s, say that the parametrized linear system X = {Xs : s ∈ S} is holomorphic in s.
Note that {Wi} does not depend upon s.

For X = {Xs} a parametrized system of linear equations in a space V , holomorphic in s, suppose there is
a finite-dimensional space F , a weakly holomorphic family {fs} of continuous linear maps fs : F → V such
that, for each s, Imfs ⊃ SolXs is a finite holomorphic envelope for the system X, and X is of finite type.

For Uα, α ∈ A an open cover of the parameter space, and for each α ∈ A {f (α)s : s ∈ Uα} is a finite envelope

for the system X(α) = {Xs : s ∈ Uα}, say that {f (α)s : s ∈ Uα, α ∈ A} is a locally finite holomorphic envelope
of X.

[2.1] Remark: When there is a meromorphic continuation vs of a solution, by taking F = C and fs : C→ V
to be fs(z) = z·vs we trivially obtain a finite holomorphic envelope for parameter values s away from the poles
of vs. That is, if there is a meromorphic continuation, then for trivial reasons there is a finite holomorphic
envelope, and the system is of finite type.

[2.2] Theorem: (Bernstein) Continuation Principle: Let X = {Xs : s} be a locally finite system of linear
equations

Ti,s : V →Wi

for s varying in a connected complex manifold, with each Wi (locally convex and) quasi-complete. Then
the continuation principle holds. That is, if for s in some non-empty open subset there is a unique solution
vs, then this solution depends meromorphically upon s, has a meromorphic continuation to s in the whole
manifold, and for fixed s off a locally finite set of analytic hypersurfaces inside the complex manifold, the
solution vs is the unique solution to the system Xs.

Proof: This reduces to a holomorphically parametrized version of Cramer’s rule, in light of comments above
about weak-to-strong principles and composition of weakly holomorphic maps.

It is sufficient to check the continuation principle locally, so let fs : F → V be a family of morphisms so
that Imfs ⊃ SolXs, with F finite-dimensional. We can reformulate the statement in terms of the finite-
dimensional space F . Namely, put

K+
s = {v ∈ F : fs(v) ∈ SolXs} = { inverse images in F of solutions }

(The set K+
s is an affine subspace of F .) By elementary finite-dimensional linear algebra, Xs has a unique

solution if and only if
dimK+

s = dim ker fs

The weak holomorphy of Ti,s and fs yield the weak holomorphy of the composite Ti,s ◦ fs from the finite-
dimensional space F to Wi, by the corollary of Hartogs’ theorem above. The finite-dimensional space F is
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certainly LF, and Wi is quasi-complete, so by invocation of results above on weak holomorphy the space
Homo(F,Wi) is quasi-complete, and a weakly holomorphic family in Homo(F,Wi) is in fact holomorphic.

Take F = Cn. Using linear functionals on V and Wi which separate points we can describe ker fs and K+
s

by systems of linear equations of the forms

ker fs = {(x1, . . . , xn) ∈ F :
∑
j

aα j xj = 0, α ∈ A}

K+
s = { inverse images of solutions } = {(x1, . . . , xn) ∈ F :

∑
j

bβ j xj = cβ , β ∈ B}

where aα j , bβ j , cβ all depend implicitly upon s, and are holomorphic C-valued functions of s. (The index sets
A,B may be of arbitrary cardinality.) Arrange these coefficients into matrices Ms, Ns, Qs holomorphically
parametrized by s, with entries

Ms(α, j) = aα j Ns(β, j) = bβ j Qs(β, j) =

{
bβ j for 1 ≤ j ≤ n
cβ for j = n

of sizes card(A)-by-n, card(B)-by-n, card(B)-by-(n+ 1). We have

dim ker fs = n− rankMs

Certainly for all s
rankNs ≤ rankQs

and if the inequality is strict then there is no solution to the system Xs. By finite-dimensional linear algebra,
assuming that rankNs = rankQs,

dimK+
s = n− rankBs

Therefore, the condition that dimK+
s = dim ker fs can be rewritten as

rankMs = rankNs = rankQs

Let So be the dense subset (actually, So is the complement of an analytic subset) of the parameter space
where rankMs, rankNs, and rankQs all take their maximum values. Since by hypothesis So ∩ Ω is not
empty, and since the ranks are equal for s ∈ Ω, all those maximal ranks are equal to the same number r.
Then for all s ∈ So the rank condition holds and Xs has a solution, and the solution is unique.

In order to prove the continuation principle we must show that X = {Xs} has a meromorphic solution vs.
Making use of the finite envelope of the system X, to find a meromorphic solution of X it is enough to find
a meromorphic solution of the parametrized system Y = {Ys} where

Ys = {
∑

bβ ixi = cβ : for all β}

with implicit dependence upon s. Let r be the maximum rank, as above. Choose so ∈ So and choose an
r-by-r minor

Dso = {bβ,j : β ∈ {β1, . . . , βr}, j ∈ {j1, . . . , jr}}

of full rank, inside the matrix Nso , with constraints on the indices as indicated. Let S1 ⊂ So be the set of
points s where Ds has full rank, that is, where detDs 6= 0. Consider the system of equations

Z = {
∑

j∈{j1,...,jr}

bβ j xj = cβ : β ∈ {β1, . . . , βr}} (with s implicit)

By Cramer’s Rule, for s ∈ S1 this system has a unique solution (x1,s, . . . , xr,s). Further, since the coefficients
are holomorphic in s, the expression for the solution obtained via Cramer’s rule show that the solution is
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meromorphic in s. Extending this solution by xj = 0 for j not among j1, . . . , jr, we see that it satisfies
the r equations corresponding to rows β ∈ {β1, . . . , βr} of the system Ys. Then for s ∈ S1 the equality
rankNs = rankQs = r implies that after satisfying the first r equations of Ys it will automatically satisfy
the rest of the equations in the system Ys.

Thus, the system has a weakly holomorphic solution. Earlier observations on weak-to-strong principles assure
that this solution is holomorphic. This proves the continuation principle. ///

3. Finite envelope criteria

[3.1] Claim: (Dominance) (Called inference by Bernstein.) Let X ′ = {X ′s} be another holomorphically
parametrized system of equations in a linear space V ′, with the same parameter space as a system X = {Xs}
on a space V . We say that X ′ dominates X when there is a family of morphisms hs : V ′ → V , weakly
holomorphic in s, so that

SolXs ⊂ hs(SolX ′s) (for all s)

If X ′s is locally finite then Xs is locally finite.

Proof: The fact that compositions of weakly holomorphic mappings are weakly holomorphic assures that
X ′s really meets the definition of system. Granting this, the conclusion is clear. ///

[3.2] Theorem: (Banach-space criterion) Let V be a Banach space, and X a single parametrized
homogeneous equation Ts(v) = 0, with Ts : V → W , where W is also a Banach space, and where s→ Ts is
holomorphic for the uniform-norm Banach-space topology on Homo(V,W ). If for some fixed so there exists
an operator A : W → V so that A ◦ Tso has finite-dimensional kernel and closed image, then Xs is of finite
type in some neighborhood of s.

Proof: Let V1 be the image of A ◦ Tso , and Vo the kernel of A ◦ Tso .

We claim that finite dimensional Vo ⊂ V has a continuous linear p : V → Vo which is the identity on Vo.
Indeed, for a basis v1, . . . , vn of Vo, and for v ∈ Vo, the coefficients ci(v) in the expression v =

∑
i ci(v)vi are

continuous linear functionals on Vo. By Hahn-Banach, each ci extends to a continuous linear functional λi
on V , and p(v) = λ1(v)v1 + . . .+ λn(v)vn is as desired.

Let q = A ◦ Tso : V → V1.

Let X ′s be a new system in V , given by a single equation T ′s(v) = 0, where T ′s = q ◦Ts : V → V1. If Ts(v) = 0,
then T ′s(v) = 0, so X ′s dominates Xs.

Since V1 ⊂ V is closed, it is a Banach space. Consider the holomorphic family of maps

ϕs = p⊕ T ′s : V −→ Vo ⊕ V1

where Vo ⊕ V1 is given its natural Banach space structure. The function s → ϕs is holomorphic for the
operator-norm topology on Homo(V, Vo ⊕ V1).

By construction, ϕso is a bijection, so by the Open Mapping Theorem it is an isomorphism. The continuous
inverse ϕ−1so has an operator norm δ−1 with 0 < δ−1 < +∞. With s sufficiently near so so that
|ϕso − ϕs| < δ/2,

|ϕs(x)| ≥ |ϕso(x)| − |ϕs(x)− ϕso(x)| ≥ δ · |x| − δ

2
· |x| ≥ δ

2
· |x|

Thus, ϕs is an isomorphism for s sufficiently near so.
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The map s → ϕ−1s is holomorphic on a neighborhood of so, since the operator-norm topology restricted to
invertible elements in Homo(V, Vo ⊕ V1) is the same as the operator-norm topology restricted to invertible
elements in Homo(Vo ⊕ V1, V ). This follows from the continuity of T → T−1 on a neighborhood of an
invertible operator.

There is a finite envelope ϕ−1s (Vo ⊕ {0}) for X ′s. By dominance, there is a finite envelope for Xs. ///

[3.3] Corollary: (Compact operator criterion) Let V be a Banach space with system Xs given by a single
equation Ts : V → W , with Banach space W , requiring Ts(v) = 0, with s → Ts holomorphic for the
operator-norm topology. Suppose for some so the operator Tso has a left inverse modulo compact operators,
that is, there exists A : W → V such that

A ◦ Tso = 1V + (compact operator)

Then Xs is of finite type in some neighborhood of so.

Proof: Let K be that compact operator. The kernel Vo = ker(1V + K) is the −1 eigenspace for K, finite-
dimensional by the spectral theory of compact (not necessarily self-adjoint or normal) operators. Similarly,
the image V1 is closed. Thus, the theorem applies. ///
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