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Making explicit and concrete some facts that seem to have been known for at least 60 years, with proof:

[1.1] Theorem: For X a Fréchet space or LF-space, and Y quasi-complete and locally convex, the space
Hom(X,Y ) of continuous linear maps X → Y , with any locally convex topology fine enough so that
evaluation T → Tx is a continuous map Hom(X,Y ) for every x ∈ X, is quasi-complete.

[1.2] Remark: For Y = C, this space of continuous linear maps is the continuous dual X∗. The restriction
on topologies on X∗ includes every (locally convex) topology as fine as the weak dual (finite-to-open) topology
on X∗, which has basis

NS,U = {T ∈ Hom(X,Y ) : T (S) ⊂ U} (for finite S ⊂ X and open U ⊂ Y )

For example, it includes the strong bounded-to-open topology [1] with basis given consisting of sets

NS,U = {T ∈ Hom(X,Y ) : T (S) ⊂ U} (for bounded S ⊂ X and open U ⊂ Y )

There is also the intermediate-strength compact-to-open topology with basis given at 0 consisting of sets

NS,U = {T ∈ Hom(X,Y ) : T (S) ⊂ U} (for compact S ⊂ X and open U ⊂ Y )

In strength, the compact-to-open topology is intermediate between the finite-to-open and bounded-to-open.

Proof: As usual, a set E of continuous linear maps from X → Y is equicontinuous when, for every
neighborhood U of 0 in Y , there is a neighborhood N of 0 in X so that T (N) ⊂ U for every T ∈ E.

[1.3] Claim: Let locally convex V be a strict colimit of closed subspaces Vi. Let Y be locally convex. A set
E of continuous linear maps from V to Y is equicontinuous if and only if for each index i the collection of
continuous linear maps {T |Vi

: T ∈ E} is equicontinuous.

Proof: Given open U 3 0 in Y , shrink U if necessary so that U is convex and balanced. For each index i,
let Ni be a convex, balanced neighborhood of 0 in Vi so that TNi ⊂ U for all T ∈ E. Let N be the image in
the colimit of the convex hull of the union of the images of the Ni’s in the coproduct. By the convexity of
N , still TN ⊂ U for all T ∈ E. By the construction of the colimit as a quotient of the coproduct topology
given by the diamond topology, N is an open neighborhood of 0 in the colimit. This gives the equicontinuity
of E. The opposite implication is easier. ///

Recall

[1.4] Claim: (Banach-Steinhaus) Let X be a Fréchet space or LF-space and Y locally convex. A set E of
linear maps X → Y , such that every set of images Ex = {Tx : T ∈ E} is bounded in Y , is equicontinuous.

Proof: First consider X Fréchet. Given a neighborhood U of 0 in Y , let A =
⋂

T∈E T−1U . By assumption,⋃
n nA = X. By the Baire category theorem, the complete metric space X is not a countable union of

nowhere dense subsets, so at least one of the closed sets nA has non-empty interior. Since (non-zero)
scalar multiplication is a homeomorphism, A itself has non-empty interior, containing some x + N for a
neighborhood N of 0 and x ∈ A. For every T ∈ E,

TN ⊂ T{a− x : a ∈ A} ⊂ {u1 − u2 : u1, u2 ∈ U} = U − U

[1] Here boundedness of a set E is meant in the topological vector sense, namely, that for any open U 3 0 in X, there

is to such that for every z ∈ C with |z| ≥ to we have E ⊂ zU .
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By continuity of addition and scalar multiplication in Y , given an open neighborhood Uo of 0, there is U
such that U − U ⊂ Uo. Thus, TN ⊂ Uo for every T ∈ E, and E is equicontinuous.

For X =
⋃

i Xi an LF-space, this argument shows that E restricted to each Xi is equicontinuous. As in the
previous claim, this gives equicontinuity on the strict colimit. ///

For proof of the theorem, let E = {Ti : i ∈ I} be a bounded Cauchy net in Hom(X,Y ), with directed set
I. Attempt to define the limit of the net by Tx = limi Tix. For any topology as in the statement of the
theorem, for each fixed x ∈ X the net Tix is bounded and Cauchy in Y . By the quasi-completeness of Y ,
Tix converges to an element of Y suggestively denoted Tx.

To prove linearity of T , fix x1, x2 in X, a, b ∈ C and fix a neighborhood Uo of 0 in Y . Since T is in the
closure of E, for any open neighborhood N of 0 in Hom(X,Y ), there exists Ti ∈ E ∩ (T +N). In particular,
for any neighborhood U of 0 in Y , take

N = {S ∈ Hom(X,Y ) : S(ax1 + bx2) ∈ U, S(x1) ∈ U, S(x2) ∈ U}

Since Ti is linear,
T (ax1 + bx2)− aT (x1)− bT (x2)

= (T (ax1 + bx2)− aT (x1)− bT (x2))− (Ti(ax1 + bx2)− aTi(x1)− bTi(x2))

The latter expression is

T (ax1 + bx2)− (ax1 + bx2) + a(T (x1)− Ti(x1) + b(T (x2)− Ti(x2) ∈ U + aU + bU

By choosing U small enough so that U + aU + bU ⊂ Uo, T (ax1 + bx2) − aT (x1) − bT (x2) ∈ Uo. This hold
for every neighborhood Uo of 0 in Y , so T (ax1 + bx2)− aT (x1)− bT (x2) = 0, proving linearity of T .

Continuity of the limit operator T exactly requires equicontinuity of E = {Tix : i ∈ I}. Indeed, for each
x ∈ X, {Tix : i ∈ I} is bounded in Y , so by Banach-Steinhaus, {Ti : i ∈ I} is equicontinuous.

Fix a neighborhood U of 0 in Y . Invoking the equicontinuity of E, let N be a small enough neighborhood of
0 in X so that T (N) ⊂ U for all T ∈ E. Let x ∈ N . By the characterization of the topology on Hom(X,Y ),
Tx− Tix ∈ U for large enough i. Then Tx ∈ U + Tix ⊂ U + U . Replacing U by U ′ such that U ′ + U ′ ⊂ U ,
T is continuous. ///
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