Distribution $|\det x|^s$ on *p*-adic matrices

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

Let F be a p-adic field with integers \mathfrak{o} , local parameter ϖ , and residue field cardinality q. Let $A = M_n(F)$ be the F-vectorspace of n-by-n matrices over k, and $G = GL_n(F)$. Let u_s be the tempered distribution

$$u_s(f) = \int_G |\det x|^s f(x) d^{\times} x \qquad (\text{Schwartz function } f \text{ on } A, \text{ for } \operatorname{Re}(s) \gg 1)$$

where $d^{\times}x$ denotes a Haar measure on G. Up to constants, for (additive) Haar measure $d^{+}x$ on A, $d^{\times}x = d^{+}x/|\det x|^{n}$. For brevity, write |x| for $|\det x|$ when possible.

[0.1] Convergence The integral defining u_s converges absolutely in $\operatorname{Re}(s) > n-1$:

Recall the Iwasawa decomposition $G = P \cdot K$ with P the parabolic subgroup of upper-triangular matrices. Since K is *open* in G, Haar measure on G restricted to K is Haar measure on K. Recall the integral formula

$$\int_{G} f(g) \, dg = \int_{P} \int_{K} f(pk) \, dp \, dk \qquad (\text{up to normalization, with left Haar measure on } P)$$

In Levi-Malcev coordinates NM = P, with N the unipotent radical and M diagonal matrices, up to normalization, left Haar measure on P is

$$d\begin{pmatrix} 1 & x_{12} & \dots & x_{1n} \\ & 1 & & \\ & & \ddots & \\ & & & 1 & x_{n-1,n} \\ & & & & 1 \end{pmatrix}\begin{pmatrix} y_1 & & & \\ & y_2 & & \\ & & \ddots & & \\ & & & y_{n-1} & \\ & & & & y_n \end{pmatrix})$$

= $dx_{12} dx_{13} \dots dx_{n-1,n} \frac{dy_1}{|y_1|^{1+(n-1)}} \frac{dy_2}{|y_2|^{1+(n-3)}} \frac{dy_3}{|y_n|^{1+(n-5)}} \dots \frac{dy_n}{|y_n|^{1-(n-1)}}$

with additive Haar measures in the coordinates. For χ the characteristic function of $M_n(\mathfrak{o})$, and $\operatorname{Re}(s) \gg 1$, up to normalization constants,

$$\begin{aligned} u_s(\chi) \ &= \ \int_G \chi(g) \ |\det x|^s \ dg \ &= \ \int_P \chi(p) \ |\det p|^s \ dp \ &= \ \prod_j \int_{\mathfrak{o} \cap k^{\times}} \prod_{i < j} \left(\int_{y_j^{-1} \mathfrak{o}} 1 \ dx_{ij} \right) \ \frac{|y_j|^s \ dy_j}{|y_j|^{1 + (n - (2j - 1))}} \\ &= \ \prod_j \int_{\mathfrak{o} \cap k^{\times}} |y_j|^{s - (j - 1)} \frac{dy_j}{|y_j|^{1 + (n - (2j - 1))}} \ &= \ \prod_j \int_{\mathfrak{o} \cap k^{\times}} |y_j|^{s - (n - j)} \frac{dy_j}{|y_j|} \ &= \ \prod_j \frac{1}{1 - q^{-(s - (n - j))}} \end{aligned}$$

Thus, $u_s(\chi)$ converges absolutely in $\operatorname{Re}(s) > n-1$, admits a meromorphic continuation, and definitely blows up as $s \to (n-1)^+$. Using the homogeneity of u_s , the integral expression for $u_s(f)$ for any Schwartz function f is dominated by the integral for $u_s(\chi)$, so u_s gives a tempered distribution in $\operatorname{Re}(s) > n-1$.

[0.2] Meromorphic continuation and residues of $u_s(\chi)$ The outcome of the computation of $u_s(\chi)$ to understand convergence also gives a meromorphic continuation in s, with simple poles (and non-zero residues) at s = 1, 0 (and at points differing by integer multiples of $2\pi i/\log q$ from these).

[0.3] Meromorphic continuation of $u_s(f)$ For an arbitrary Schwartz function f the value $u_s(f)$ can be meromorphically continued similarly, as follows. First, since u_s is right K-invariant, first average f on the right over K, and then use a Levi-Malcev decomposition:

$$\int_{G} |\det x|^{s} f(x) d^{\times} x = \int_{P} |\det p|^{s} \left(\int_{K} f(xk) dk \right) d_{\operatorname{left}} p = \int |m_{1}|^{s-(n-1)} \dots |m_{n}|^{s-(1-n)} f^{K}(nm) dn dm$$

where f^K is the averaged f. Since f^K is itself a Schwartz function, it is a finite linear combination of monomials

$$\varphi(x) = \prod_{ij} \varphi_{ij}(x_{ij})$$

of Schwartz functions φ_{ij} in the coordinates x_{ij} . Of course, the support of φ_{ij} must include 0 for i > j, or else $\varphi(p) = 0$. For i < j, the relevant integral is

$$\int_F \varphi_{ij}(x_{ij}m_j) \, dx_{ij} = |m_j|^{-1} \int_F \varphi_{ij}(x_{ij}) \, dx_{ij}$$

The whole is

$$\prod_{j \neq ij} \varphi_{ij}(0) \times \prod_{i < j} \int_{F} \varphi_{ij}(x_{ij}) \, dx_{ij} \times \prod_{i} \int_{F^{\times}} \varphi_{ii}(m_{i}) \, |m_{i}|^{s - (n - 2i) - i} \, d^{\times} m_{i}$$
$$= \prod_{i > j} \varphi_{ij}(0) \times \prod_{i < j} \int_{F} \varphi_{ij}(x_{ij}) \, dx_{ij} \times \prod_{i} \int_{F^{\times}} \varphi_{ii}(t) \, |t|^{s - (n - i)} \, d^{\times} t$$

The first two products are constants. Each integral in the last product is an Iwasawa-Tate local zeta integral: when the support of φ_{ii} does *not* include 0, it is a polynomial in q^{-s} , and when the support of φ_{ii} does include 0, the zeta integral is a sum of a polynomial in q^{-s} and a constant multiple of $\frac{1}{1-q^{-(s-j)}}$.

Finite sums of such expressions admit meromorphic continuations with poles at most at $s = n - 1, n - 2, \ldots, 2, 1, 0$ (and points differing from these by integer multiples of $2\pi i/\log q$). Poles, if any, are simple.

Thus, $v_s(f) = (1 - q^{s-(n-1)}) \dots (1 - q^{-s}) \cdot u_s(f)$ has a meromorphic for every Schwartz function f. That is, v_s is weakly holomorphic. Weak holomorphy implies (strong) holomorphy for vector-valued functions with values in a quasi-complete locally convex topological vector space. Tempered distributions are such. Thus, v_s is a holomorphic tempered-distribution-valued function of $s \in \mathbb{C}$. In particular, the residues of u_s at poles are tempered distributions.

[0.4] Support of residues For f a Schwartz function with support inside G, the meromorphic scalarvalued function $u_s(f)$ is *entire*. Thus, the residues of u_s at s = n - 1, n - 2, ..., 0 are tempered distributions supported on the set $A^{\leq n}$ of matrices of less-than-full rank.

[0.5] Uniqueness and existence of equivariant distributions The standard argument shows that, given $s \in \mathbb{C}$, there is a unique tempered distribution on G such that $u(AxB) = |\det A \cdot \det B|^s \cdot u(x)$, since G acts transitively on itself. The tempered distribution is given by the integral for u_s in the range of convergence, and by meromorphic continuation otherwise.

Let

$$G^1 = \{ g \in G : |\det g| = 1 \}$$

The product $G^1 \times G^1 K$ acts transitively on the set A_r of matrices of a given rank r < n by $(g \times h)(x) = g^{-1}xh$. The isotropy group of

$$E_r = \begin{pmatrix} 1_r & 0 \\ 0 & 0_{n-r} \end{pmatrix}$$

is

$$H_r = \left\{ \begin{pmatrix} A & * \\ 0 & D \end{pmatrix} \times \begin{pmatrix} a & 0 \\ c & D \end{pmatrix} : D \in GL_{n-r}(\mathfrak{o}), \ a, A \in GL_r(F), \ |\det a| = |\det A| = |\det D|^{-1} \right\} \subset G^1 \times G^1$$

Both H_r and $G^1 \times G^1$ are unimodular, so there is a unique $G^1 \times G^1$ -invariant measure on $A_r \approx G^1 \times G^1/H_r$, and integration against this measure gives the unique $G^1 \times G^1$ -invariant distribution on Schwartz functions supported on the set $A^{\geq r}$ of matrices of rank $\geq r$. At the same time, $G^1 \times K$ is already transitive on A_r , so up to scalars there is unique $G^1 \times K$ -invariant measure and corresponding distribution. We can easily write a formula for it in terms of Euclidean coordinates, namely

$$u^{(r)}(f) = \int_{K} \int_{F^{r \times r}} \int_{F^{(n-r) \times r}} f(\begin{pmatrix} x_{11} & 0 \\ x_{21} & 0_{n-r} \end{pmatrix}) \, dx_{21} \, dx_{11} \, dk$$

By the uniqueness of $G^1 \times K$ -invariant functional, this integral formula must also be a $G^1 \times G^1$ -invariant functional. Similarly, the $K \times G^1$ -invariant form of that integral must give the same functional:

$$u^{(r)}(f) = \int_{K} \int_{F^{r \times r}} \int_{F^{r \times (n-r)}} f(k \cdot \begin{pmatrix} x_{11} & x_{12} \\ 0 & 0_{n-r} \end{pmatrix} \cdot k) \, dx_{12} \, dx_{11} \, dk$$

Equality up to constants follows from uniqueness, and the constant is 1 because the two integrals agree on the characteristic function of Λ .

These integrals converge absolutely, so extend to tempered distributions on the whole Schwartz space.

Changing variables in the first integral expression, the equivariance under the full group $G = GL_n$ is

$$u^{(r)}\left(x \to f(Ax)\right) = |\det A|^{-r} \cdot u^{(r)}(f) \qquad (\text{for } A \in GL_n(F))$$

Changing variables in the second integral expression,

$$u^{(r)}\left(x \to f(xB)\right) = |\det B|^{-r} \cdot u^{(r)}(f) \qquad (\text{for } B \in GL_n(F))$$

The residue of u_s at s = r < n is supported on the set $A^{\leq r}$ of matrices of rank $\leq r$, and has the same equivariance under $G \times G$ as does $u^{(r)}$. Suggesting that, up to a constant, the distribution $u^{(r)}$ is the residue of u_s at s = r < n.

Indeed, on Schwartz functions supported on $A^{\geq r}$, the uniqueness result just above does show that the residue of u_s at r is a constant multiple of $u^{(r)}$.

The integral expression for $u^{(r)}$ specifies it on the whole Schwartz space. The appearance of the residue as a residue specifies it on the whole Schwartz space. The difference v of suitable multiples vanishes on Schwartz functions supported on $A^{\geq r}$. This difference restricted to Schwartz functions supported on $A^{\geq r-1}$ is $G^1 \times G^1$ -invariant, so must be a multiple of $u^{(r-1)}$. However, the $G \times G$ -equivariance does not match that of $u^{(r-1)}$, so this restriction to $A^{\geq r-1}$ is 0. Similarly, the restriction of v to Schwartz functions supported on $A^{\geq r-2}$ must be a multiple of $u^{(r)}$, and the equivariance forces it to be 0. Continuing, we find that the residue of u_s at s = r < n is a multiple of $u^{(r)}$.

[0.6] Non-extendability of $|\det x|^1$ for GL_2 In the small example $G = GL_2(F)$, a relatively elementary argument shows that $u_1(f) = \int_G |x|^1 f(x) d^{\times}x$ has no extension from Schwartz functions supported on G to the whole space of Schwartz functions on A. Specifically, we claim that any tempered distribution u with the homogeneity property

$$u(R_g f) = |\det g|^{-1} \cdot u(f)$$
 (with $(R_g f)(x) = f(xg)$)

is supported on $A^{\leq 1}$. This will follow from the Hecke operator identity (proven below)

$$\operatorname{ch}_{K} = \operatorname{ch}_{\Lambda} + q \cdot \operatorname{ch}_{\varpi\Lambda} - T_{p}(\operatorname{ch}_{\Lambda})$$

where ch_X is the characteristic function of a set, $\Lambda = M_2(\mathfrak{o})$, and T_p is the Hecke operator incarnated as

$$(T_p f)(x) = \int_G \operatorname{ch}_{D_1}(g^{-1}) \cdot f(xg) \, dg \qquad (\text{with } D_n = \{ : g \in M_2(\mathfrak{o}), \, |\det g| = q^{-n} \})$$

Indeed, a tempered distribution u with the indicated homogeneity property restricted to Schwartz functions on G is $c \cdot u_1$ for some constant c, by uniqueness. We show that c = 0. The interaction of Hecke operator and u is easily determined:

$$\begin{aligned} u(T_p f) &= u \Big(\int_G \operatorname{ch}_{D_1}(g^{-1}) \cdot R_g f \, dg \Big) &= \int_G \operatorname{ch}_{D_1}(g^{-1}) \cdot u(R_g f) \, dg \, = \, \int_G \operatorname{ch}_{D_1}(g) \cdot u(f) \cdot |\det g|^{-1} \, dg \\ &= \, u(f) \cdot q^{-1} \cdot \int_G \operatorname{ch}_{D_1}(g) \, dg \, = \, u(f) \cdot q^{-1}(q+1) \end{aligned}$$

Applying u to the identity of characteristic functions gives

$$u(ch_K) = u(ch_\Lambda) + q \cdot u(ch_{\varpi\Lambda}) - u(T_p(ch_\Lambda))$$

and then

$$c \cdot u_1(\operatorname{ch}_K) = u(\operatorname{ch}_\Lambda) + q \cdot q^{-2} \cdot u(\operatorname{ch}_\Lambda) - q^{-1}(q+1)u(\operatorname{ch}_\Lambda)$$
$$= u(\operatorname{ch}_\Lambda) \cdot \left(1 + q \cdot q^{-2} - q^{-1}(q+1)\right) = u(\operatorname{ch}_\Lambda) \cdot 0$$

yielding c = 0. To prove the identity

$$\operatorname{ch}_{K} = \operatorname{ch}_{\Lambda} + q \cdot \operatorname{ch}_{\varpi\Lambda} - T_{p}(\operatorname{ch}_{\Lambda})$$

we explicate the action of T_p on the functions ch_{D_n} , since

$$\operatorname{ch}_{\Lambda} = \sum_{n \ge 0} \operatorname{ch}_{D_n} + \operatorname{ch}_{A^{\le 1}}$$

As in the classical context,

$$(T_p \mathrm{ch}_{D_n})(x) = \int_G \mathrm{ch}_{D_1}(g^{-1}) \cdot \mathrm{ch}_{D_n}(xg) \, dg$$

is certainly 0 unless $x \in D_{n+1}$. Left modulo K, D_{n+1} has representatives

$$\begin{pmatrix} \varpi^i & b \\ 0 & \varpi^{n+1-i} \end{pmatrix} \qquad (\text{with } b \mod \varpi^{n+1-i})$$

Similarly for g right modulo K, equivalently, for $g^{-1} \in D_1$ left modulo K, take representatives

$$g^{-1} = \begin{pmatrix} \varpi & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & b' \\ 0 & \varpi \end{pmatrix}$$
 (with $b' \mod \varpi$)

and then

$$g = \begin{pmatrix} \varpi^{-1} & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & -b'/\varpi \\ 0 & 1/\varpi \end{pmatrix}$$
 (with b' mod ϖ)

and

$$xg = \begin{pmatrix} \varpi^{i-1} & b \\ 0 & \varpi^{n+1-i} \end{pmatrix}, \quad \begin{pmatrix} \varpi^i & b\varpi^{-1} - b'\varpi^{i-1} \\ 0 & \varpi^{n-i} \end{pmatrix}$$
(with $0 \le i \le n+1$)

Given x, the integral produces the value 1 for g such that $xg \in M_2(\mathfrak{o})$. The first case gives a value 1 exactly for $i \geq 1$. The second family gives 1 for $1 \leq i \leq n$ and $b \in \varpi \mathfrak{o}$, or for i = 0 and $b = b' \mod \varpi$. In summary,

$$T_{p} \mathrm{ch}_{D_{n}} \begin{pmatrix} \varpi^{i} & b \\ 0 & \varpi^{n+1-i} \end{pmatrix} = \begin{cases} 1+q & \text{for } 1 \leq i \leq n \text{ and } b \in \varpi \mathfrak{o} \\ 1 & \text{for } 1 \leq i \leq n \text{ and } b \notin \varpi \mathfrak{o} \\ 1 & \text{for } i = 0 \\ 1 & \text{for } i = n+1 \end{cases}$$
 $(0 \leq i \leq n+1 \text{ and } b \mod \varpi^{n+1-i})$

Paul Garrett: Distribution $|\det x|^s$ on p-adic matrices (January 30, 2017)

That is,

$$T_p \mathrm{ch}_{D_n} = \begin{cases} q \cdot \mathrm{ch}_{\varpi D_{n-1}} + \mathrm{ch}_{D_{n+1}} & (\text{for } n \ge 1) \\ \mathrm{ch}_{D_1} & (\text{for } n = 0) \end{cases}$$

Ignoring singular matrices since the outcome $T_p ch_{\Lambda}$ is guaranteed to be a Schwartz function,

$$T_p \mathrm{ch}_{\Lambda} = T_p \Big(\mathrm{ch}_{D_o} + \sum_{n \ge 1} \mathrm{ch}_{D_n} \Big) = \mathrm{ch}_{D_1} + \sum_{n \ge 1} \Big(q \cdot \mathrm{ch}_{\varpi D_{n-1}} + \mathrm{ch}_{D_{n+1}} \Big) = q \mathrm{ch}_{\varpi \Lambda} + \mathrm{ch}_{\Lambda} - \mathrm{ch}_K$$

since $D_o = K$. This rearranges to the asserted identity, from which the non-extendability follows.