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Formulaically, the Cauchy principal-value functional η attached to 1/x is

ηf = principal-value functional of f = P.V.

∫ ∞
−∞

f(x)

x
dx = lim

ε→0+

∫
|x|>ε

f(x)

x
dx

This is a fragile presentation, since the apparent integral is not a literal integral.

The uniqueness proven below helps prove plausible properties like the Sokhotski-Plemelj theorem from
[Sokhotski 1871], [Plemelji 1908], with a possibly unexpected leading term:

lim
ε→0+

∫ ∞
−∞

f(x)

x+ iε
dx = −iπ f(0) + P.V.

∫ ∞
−∞

f(x)

x
dx

In the physics literature, similar properties are often called Kramers-Kronig relations after [Kramers 1926],
[Kronig 1927]. See [wiki 2020], and [Gelfand-Silov 1964]. Uniqueness also best certifies many heuristically
plausible identities, such as

ηf = 1
2

∫
R

f(x)− f(−x)

x
dx (for f ∈ C1(R) ∩ L1(R))

using the canonical continuous extension of f(x)−f(−x)
x at 0. Also,

ηf =

∫
R

f(x)− f(0) · e−x2

x
dx (for f ∈ Co(R) ∩ L1(R))

The Hilbert transform of a function f on R is awkwardly described as a principal-value integral

(Hf)(x) =
1

π
P.V.

∫ ∞
−∞

f(t)

x− t
dt =

1

π
lim
ε→0+

∫
|t−x|>ε

f(t)

x− t
dt

with the leading constant 1/π understandable with sufficient hindsight: we will see that this adjustment
makes H extend to a unitary operator on L2(R). The formulaic presentation of H makes it appear to be a
convolution with (a constant multiple of) the principal-value functional. The fragility of these presentations
make existence, continuity properties, and range of applicability of H less clear than one would like.

The technicalities here are prototypes for similar technicalities regarding pseudo-differential operators, for
example.
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1. The principal-value functional

The principal-value functional η is better characterized as the unique (up to a constant multiple) odd
distribution on R, positive-homogeneous of degree 0 as a distribution (see below). This characterization allows
unambiguous comparison of various limiting expressions closely related to the principal-value functional.
Further, the characterization of the principal-value functional makes discussion of the Hilbert transform less
fragile and more convincing.

Again, let

ηf = principal-value functional of f = P.V.

∫ ∞
−∞

f(x)

x
dx = lim

ε→0+

∫
|x|>ε

f(x)

x
dx

We prove that η is a tempered distribution:

[1.1] Claim: For f ∈ S , for every h > 0,

|η(f)| ≤
∫
|x|≥h

∣∣∣f(x)

x

∣∣∣ dx+ 2h sup
|x|≤h

|f ′(x)|

Thus, u is a tempered distribution:

|η(f)| � sup
x

(1 + x2)|f(x)|+ sup
x
|f ′(x)| (implied constant independent of f)

Proof: Certainly

|η(f)| =

∫
|x|≥h

∣∣∣f(x)

x

∣∣∣ dx+ lim
ε→0+

∣∣∣ ∫
ε<|x|≤h

f(x)

x
dx
∣∣∣

By the Mean Value Theorem, f(x) = f(0) + x f ′(ξx) for some ξx between 0 and x. Thus,∫
ε<|x|≤h

f(x)

x
dx =

∫
ε<|x|≤h

f(0)

x
dx+

∫
ε<|x|≤h

f(ξx) dx = 0 +

∫
ε<|x|≤h

f(ξx) dx

because 1/x is odd and x→ f(0) is even. Thus,∣∣∣ ∫
ε<|x|≤h

f(x)

x
dx
∣∣∣ =

∣∣∣ ∫
ε<|x|≤h

f(ξx) dx
∣∣∣ ≤ ∫

ε<|x|≤h
|f(ξx)| dx

≤ 2h · sup
ε<|x|≤h

|f ′(x)| ≤ 2h · sup
|x|≤h

|f ′(x)|

The latter is independent of ε. With 0 < h ≤ 1,∫
|x|≥h

∣∣∣f(x)

x

∣∣∣ dx =

∫
|x|≥1

∣∣∣f(x)

x

∣∣∣ dx+

∫
h≤|x|≤1

∣∣∣f(x)

x

∣∣∣ dx
≤
∫
|x|≥1

|f(x)| dx+
1

h

∫
h≤|x|≤1

|f(x)| dx ≤
∫
|x|≥1

(1 + x2)|f(x)| · 1

1 + x2
dx+ 2h sup

x
|f(x)|

≤ sup
x

(1 + x2)|f(x)| ·
∫
|x|≥1

1

1 + x2
dx+ 2h sup

x
|f(x)| � sup

x
(1 + x2)|f(x)|

Of course, sup|x|≤h |f ′(x)| ≤ supx |f ′(x)|. ///
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To make the degree of a positive-homogeneous function ϕ agree with the degree of the integration-against-ϕ
distribution uϕ, due to change-of-measure, we find that

(uϕ ◦ t)(f) = uϕ(f ◦ t−1) =

∫
R
uϕ(x) f(t−1x) dx =

∫
R
uϕ(tx) f(x) d(tx) = t · uϕ◦t(f)

Thus, for agreement of the notion of homogeneity for distributions and (integrate-against) functions, the
dilation action u→ u ◦ t on distributions should be

(u ◦ t)(f) =
1

t
u(f ◦ t−1) (for t > 0, test function f , and distribution u)

Parity is as expected: u is odd when u(x → f(−x)) = −u(x → f(x)) for all test functions f , and is even
when u(x→ f(−x)) = +u(x→ f(x)) for all test functions f .

[1.2] Claim: The principal-value distribution η is positive-homogeneous of degree −1, and is odd.

Proof: The εth integral in the limit definition of η is itself odd, by changing variables:

η(f ◦ (−1)) = lim
ε→0+

∫
|x|≥ε

f(−x)

x
dx = lim

ε→0+

∫
|x|≥ε

f(x)

−x
d(−x)

= lim
ε→0+

−
∫
|x|≥ε

f(x)

x
dx = − lim

ε→0+

∫
|x|≥ε

f(x)

x
dx = −η(f)

as claimed. For the degree of homogeneity, for t > 0 and test function f ,

(η ◦ t)(f) =
1

t
η(f ◦ 1

t
) =

1

t
lim
ε→0+

∫
|x|≥ε

f(xt )

x
dx =

1

t
lim
ε→0+

∫
|tx|≥ε

f(x)

tx
d(tx) =

1

t
lim
ε→0+

∫
|x|≥ε/t

f(x)

x
d(x)

=
1

t
lim
ε→0+

∫
|x|≥ε

f(x)

x
d(x) =

1

t
η(f)

That is, η is homogeneous of degree −1. ///

2. Other characterizations of the principal-value functional

[2.1] Claim: Let ϕ be any even function in L1(R) ∩ C1(R), with ϕ(0) = 1. Then

P.V.

∫
R

f(x)

x
dx =

∫
R

f(x)− f(0) · ϕ(x)

x
dx (for f ∈ Co(R) ∩ L1(R), for example)

where
(
f(x)− f(0) · ϕ(x)

)
/x is extended by continuity at x = 0.

Proof: By the demonstrated odd-ness of the principal-value integral, it is 0 on the even function ϕ.

Extending f(x)−f(0)·ϕ(x)
x by continuity at 0,∫

R

f(x)− f(0) · ϕ(x)

x
dx = lim

ε→0+

∫
|x|≥ε

f(x)− f(0) · ϕ(x)

x
dx

= lim
ε→0+

∫
|x|≥ε

f(x)

x
dx+ f(0) lim

ε→0+

∫
|x|≥ε

ϕ(x)

x
dx = P.V.

∫
R

f(x)

x
dx+ 0

as claimed. ///
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The leading term in the following might be unexpected:

[2.2] Claim: (Sokhotski-Plemelj)

lim
ε→0+

∫ ∞
−∞

f(x)

x+ iε
dx = −iπ f(0) + P.V.

∫ ∞
−∞

f(x)

x
dx

Proof: Aiming to apply the previous claim,

lim
ε→0+

∫
R

f(x)

x+ iε
dx = lim

ε→0+

∫
R

f(x)− f(0)
1+x2

x+ iε
dx+ f(0) lim

ε→0+

∫
R

1/(1 + x2)

x+ iε
dx

For 0 < ε < 1, the right-most integral is evaluated by residues, moving the contour through the upper
half-plane:∫

R

1/(1 + x2)

x+ iε
dx = 2πiResx=i

1

(1 + x2)(x+ iε)
= 2πi

1

(i+ i)(i+ iε)
−→ π

i
= −iπ

as claimed. ///

[2.3] Claim: With f continuously differentiable at 0, thereby extending f(x)−f(−x)
x by continuity at 0,

1
2

∫
R

f(x)− f(−x)

x
dx = P.V.

∫ ∞
−∞

f(x)

x
dx (for f ∈ C1(R) ∩ L1(R))

Proof: For test function f , since f(x)−f(−x)
x is continuous as 0, using the odd-ness of the principal-value

functional,

1
2

∫
R

f(x)− f(−x)

x
dx = 1

2 lim
ε→0+

∫
|x|≥ε

f(x)− f(−x)

x
dx = lim

ε→0+

∫
|x|≥ε

f(x)

x
dx

as claimed. ///

3. Hilbert transform

The most immediate description of the Hilbert transform Hf is

(Hf)(y) =
1

π
P.V.

∫
R

f(y)

x− y
dy =

1

π
lim
ε→0+

∫
|x|≥ε

f(y)

x− y
dy

From the previous discussion of the principal-value functional η, Hf exists at least as a point-wise function.
In fact, with (Ly)f(x) = f(x − y), y → Lyf is a smooth S -valued function, so f → η(Lyf) is in C∞(R),
but growth properties are unclear.

The usual heuristic is

P.V.

∫
R

f(y)

x− y
dy = (η ∗ f)(x)

so

Hf =
1

π
η ∗ f (for f ∈ S (R))
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Granting this for a moment, taking Fourier transform would seem to give

(Hf)̂ =
1

π
η̂ · f̂

We will prove that this heuristic is correct. The principal-value functional η is a tempered distribution, so
its Fourier transform makes sense at least as a tempered distribution.

Recall the unsurprising

[3.1] Claim: The Fourier transform of an odd/even distribution on R of positive-homogeneity degree s is
odd/even of positive-homogeneity degree −(s+ 1).

Proof: Since Schwartz functions are dense, the interaction of dilation and Fourier transform can be examined
via functions with point-wise values and Fourier transforms defined by literal integrals, although none of these
can be homogeneous. It is immediate by changing variables that parity is preserved. With (f ◦ t)(x) = f(tx),
for functions f ,

(f ◦ t)̂(ξ) =

∫
R
e−2πiξxf(tx) dx =

1

t

∫
R
e−2πiξx/tf(tx) dx =

1

t
(f̂ ◦ 1

t
)(ξ)

That is,

f̂ ◦ t =
1

t
· f ◦ 1

t

Thus, without trying to use pointwise sense of a tempered distribution,

(û ◦ t)(f) = û(
1

t
f ◦ 1

t
) =

1

t
u
(

(f ◦ 1

t
)̂) =

1

t
u
(
t · f̂ ◦ t

)
=

1

t
(u ◦ 1

t
)(f̂)

=
1

t

((1

t

)s · u)(f̂) = t−(s+1) · u(f̂) = t−(s+1) · û(f)

as claimed. ///

[3.2] Corollary: The principal-value distribution η, has Fourier transform has degree 0 and of odd parity.
In particular, η̂ = −iπ sgnx.

Proof: By uniqueness of distributions of a given degree and parity, it suffices to evaluate η̂ and sgnx on a

given odd Schwartz function, for example, x→ xe−πx
2

. On one hand,

η̂(xe−πx
2

) = η
(

(xe−πx
2

)̂) = η
(
i−1xe−πx

2

)
)

= i−1
∫
R

xe−πx
2

x
dx = i−1

∫
R
e−πx

2

dx = i−1

On the other,∫
R

sgnx · xe−πx
2

dx =

∫
R
|x| e−πx

2

dx = 2

∫ ∞
0

x e−πx
2

dx = 2

∫ ∞
0

x2 e−πx
2 dx

x
=

∫ ∞
0

x e−πx
dx

x

= π−1
∫ ∞
0

x e−x
dx

x
= π−1Γ(1) = π−1

Thus, η̂ = −iπ sgnx. ///

With the factors of π cancelling, this suggests defining the Hilbert transform at least on Schwartz functions
f by

[3.3] Theorem: Hf =
(
− i sgnx · f̂

)∨
5
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[3.4] Corollary: The Hilbert transform continuously extends to an isometry L2 → L2. ///

(Proof below.)

4. Some multiplier operators on H∞

In describing the Hilbert transform in terms of Fourier transform and pointwise multiplication, there is an
implicit issue, namely, that what appears to be a convolution action of η on S should have usual structural
properties, such as associativity. That is, we should identify a class of distributions containing η, a class of
nice functions containing S , and an action (temporarily denoted by #) of such distributions ϕ,ψ on the
nice functions f such that ϕ#f is again in the space of nice functions, and

ϕ#(ψ#f) = (ϕ ∗ ψ)#f (associativity)

The iconic cautionary example about failure of associativity

1 ∗ (δ′ ∗H) = 1 ∗ δ = 1 6= 0 = 0 ∗H = (1 ∗ δ′) ∗H (with Heaviside function H)

shows that some restrictions are necessary in order to preserve associativity. Further, tempered distributions
need not have useful pointwise values, so trying to define f → ϕ#f as a multiplier operator by (ϕ#f) = ϕ̂ · f̂
cannot be quite right. Even when ϕ̂ does have pointwise values almost everywhere, it need not be smooth,
so ϕ̂ · f̂ need not be smooth, so could not be Schwartz.

One reasonable resolution of these difficulties, still using Fourier transforms, is to consider the space M
(for multiplier) of tempered distributions with Fourier transforms that are locally L1, and of polynomial
growth. That is, for ϕ ∈M , ϕ̂ has pointwise values almost everywhere, and there is an exponent N such that
|ϕ̂(x)| � (1 + x2)N for almost all x. Distributions ϕ ∈ M do act on the Sobolev space H∞ by multiplier
operators

(ϕ#f)̂ = ϕ̂ · f̂ (for ϕ ∈M and f ∈ H∞)

with ϕ̂ · f̂ being pointwise (almost everywhere) multiplication. The spectral characterization of Sobolev
spaces in terms of weighted L2 spaces shows that this does map H∞ → H∞.

We anticipate that the appropriate convolution on M is given by pointwise multiplication on the Fourier
transform side, namely,

(ϕ ∗ ψ)̂ = ϕ̂ · ψ̂

The pointwise product is well-defined almost-everywhere on the spectral side. However, the possibility of
writing the obvious formula does not quite prove that it is the incarnation of convolution appropriate for
this context. Still, unsurprisingly, the heuristic that discovers the formula for appropriate convolution on
H−∞, by requiring associativity, does recover the formulaically suggested convolution:(

ϕ#(ψ#f)
)̂ = ϕ̂ · (ψ#f)̂ = ϕ̂ · (ψ̂ · f̂) = (ϕ̂ · ψ̂) · f̂

Thus, indeed, (ϕ ∗ ψ)̂ = ϕ̂ · ψ̂. ///

Since the principal value functional η has Fourier transform a constant multiple of the sign function, η ∈M .

A different sort of action, of compactly-supported distributions on smooth functions, is treated in an
appendix. That variant does not apply to the action of η on H∞.
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5. Hilbert transform on L2

[5.1] Corollary: The Hilbert transform extends by continuity from a map S → H∞ ⊂ L2 to an isometric
isomorphism of L2 to itself.

Proof: Fourier transform is an isometry of L2 to itself, and multiplication by sgn is an isometry, so the
Hilbert transform is an L2-isometry of S ⊂ L2 to a subspace of H∞ ⊂ L2, and extends by continuity to
L2 → L2. ///

[5.2] Corollary: (H ◦H)f = −f for f ∈ S or f ∈ L2.

Proof: This should be a direct computation.

(H ◦H)f = H(Hf) = H((−i · sgn · f̂)∨) =
(
− i · sgn ·

(
(−i · sgn · f̂)∨

)̂)∨
=
(
− i · sgn · (−i · sgn · f̂)

)∨
= −f

as claimed. ///

6. Extending Hilbert transform to certain tempered distributions

The collection M of multiplier operators also stabilizes a considerably larger space, namely, a space of
tempered distributions on whose Fourier transforms multiplication by sign is sensible: let X ⊂ S ∗ be the
set of tempered distributions u such that û is in L1

loc on some neighborhood of 0 ∈ R.

[6.1] Claim: : For u ∈ X, the Hilbert transform Hu is again in X.

Proof: Use the description of H as intertwined by Fourier transform with (essentially) multiplication by
sgn. Let ϕ be a real-valued test function supported on a neighborhood of 0 on which u is L1, and such that
ϕ is identically 1 on a small neighborhood of 0. Multiplication by 1 − ϕ stabilizes Schwartz functions, so
stabilizes tempered distributions. Also, (1− ϕ) · sgn is smooth. Thus,

sgn · û = sgn · (ϕ+ (1− ϕ)) · û = sgn · (ϕ · û) + (sgn · (1− ϕ)) · û

In the latter expression, the first summand is still L1
loc and compactly supported. The second summand

is a tempered distribution, with support not including 0. Thus, the sum is again in the space of Fourier
transforms of tempered distributions from X. ///

[6.2] Corollary: For f ∈ X such that Hf is also in X,

(H ◦H)f = −f

Proof: The same proof as earlier, with the sense of the symbols suitably extended. ///

7. Example computations

The (suitably-interpreted) description of the Hilbert transform as

Hf =
(
− i · sgn · f̂)∨

7
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facilitates some illustrative examples.

[7.1] Example: H sin =
(
− i · sgn · ŝin

)∨
=
(
− i · sgn · δ1 − δ−1

2i

)∨
=
(
− δ1 + δ−1

2

)∨
= − cos

[7.2] Example: Since ̂ch[−1,1] = sin 2πξ
πξ ,

H sin 2πx

πx
=
(
− i sgnx · ch[−1,1]

)∨
= i

(
ch[−1,0] − ch[0,1])

)∨
= i

e−2πiξ − 1− 1 + e2πiξ

2πiξ
=

cos 2πξ − 1

πξ

[7.3] Example: Recall that on R (the meromorphically continued tempered distribution) 1
|x|s has Fourier

transform
1

|x|s
̂ =

1

|x|1−s
· c+s with c+s =

π
s−1
2 Γ( 1−s

2 )

π
−s
2 Γ( s2 )

Similarly, sgn(x)/|x|s has Fourier transform

( sgn(x)

|x|s
)̂ =

sgn(x)

|x|1−s
· c−s with c−s =

π
s−2
2 Γ( 2−s

2 )

−i π s+1
2 Γ( s2 )

Thus, without concern for local integrability of the Fourier transform at 0, up to constants, the Hilbert
transform would interchange 1/|x|s and sgn(x)/|x|s:

H 1

|x|s
=
(
− i sgn(x) ·

( 1

|x|s
)̂)∨ =

(
− i sgn(x) · 1

|x|1−s
· c+s

)∨
= −i · c+s · c−1−s ·

sgn(x)

|x|s

For this computation to be legitimate (by at least one criterion), sgn(x)/|x|1−s must be locally L1 near 0.
That is, we need Re(s) > 0. For Re(s) > 1, the distribution 1/|x|s only makes sense via meromorphic
continuation, since it is not locally L1 at 0.

[7.4] Example: Suitable tempered distributions with Fourier transforms supported in [0,∞) are −i
eigenfunctions for the Hilbert transform. An iconic example is the following. With

f(x) =

 0 (for x < 0)

xs−1e−x (for x > 0)

using the identity principle from complex analysis to extend the obvious identity beyond the range where it
is given by a literal change-of-variables, the inverse Fourier transform is

f∨(ξ) =

∫ ∞
0

e2πiξx xs−1 e−x dx =

∫ ∞
0

e−x(1+2πiξ) xs
dx

x
= (1 + 2πiξ)−s ·

∫ ∞
0

e−x xs
dx

x
=

Γ(s)

(1 + 2πiξ)s

For f to be locally L1 near 0 is Re(s) > 0. Thus, for any positive constant c, 1/(1 + icx)s has Fourier
transform supported in [0,+∞). Thus, for Re(s) > 0,

H 1

(1 + ix)s
=
(
− i · sgnx · ( 1

(1 + ix)s
)̂)∨ = −i ·

(
(

1

(1 + ix)s
)̂)∨ = −i · 1

(1 + ix)s

[7.5] Example: In contrast to the previous example, where the Fourier transform of a function naturally
vanished off a half-line, we can also consider artificially-vanishing modifications of f in L2(R) and other
reasonable (generalized) function spaces: let

f̃(ξ) =

∫ ∞
0

e2πiξxf(x) dx =
(
χ[0,+∞) · f

)∨
(ξ)
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By Fourier inversion,

Hf̃ =
(
− i · sgn · (f̃)̂)∨ = (−i · sgn · χ[0,+∞) · f)∨ = −i · (χ[0,+∞) · f)∨ = −i · f̃

[7.6] Example: In the families of distributions 1/|x|s and sgn(x)/|x|s, the residue of 1/|x|s at s = 1 is a

determinable constant multiple of δ. Further, δ̂ = 1, so for some determinable constant c,

Hδ =
(
− i sgn · 1

)∨
= −i · sgn∨ = c · η (with η the principal-value integral of 1/x)

from parity-preserving and homogeneity-transforming properties of Fourier transform. In the context of the
traditional belief that δ acts as an identity in convolution, we anticipate that the constant is 1.

8. Appendix: uniqueness of odd/even homogeneous distributions

After clarification of notions of parity and positive-homogeneity, we recall the iconic proof of uniqueness of
distributions of given parity and positive-homogeneity degree.

[8.1] Claim: For a positive-homogeneous distribution u of degree s, x d
dxu is again positive-homogeneous of

degree s, and with the same parity.

Proof: For test function f ,

((x
d

dx
u) ◦ t)(f) =

1

t
(x

d

dx
u)(f ◦ t−1) =

1

t
(
d

dx
u)(x · f ◦ t−1) = −1

t
u(

d

dx
(x · (f ◦ t−1)))

= −1

t
u(f ◦ t−1 + x · t−1 · (f ′ ◦ t−1)) = −1

t
u(f ◦ t−1 + (x · f ′) ◦ t−1)) = −1

t
u((f + xf ′) ◦ t−1)

= −(u ◦ t)(f + xf ′) = −(u ◦ t)( d
dx

(xf)) = ts ·
(
− u(

d

dx
(xf))

)
= ts · (x d

dx
u)(f)

as asserted. Preservation of parity is similar: writing f−(x) = f(−x) for functions f , and u−(f) = u(f−)
for distributions u,

(x
d

dx
u)−(f) = (x

d

dx
u)(f−) = (

d

dx
u)(x · f−) = −u(

d

dx
(x · f−)) = u(

d

dx
((x · f)−))

= u(−
( d
dx

(x · f)
)−

) = −u−(
d

dx
(x · f)) = ((x

d

dx
)u−)(f)

as claimed. ///

The Euler operator x d
dx is the infinitesimal form of dilation f(x)→ f(tx):

[8.2] Corollary: x d
dxu = s · u for positive-homogeneous u of degree s.

Proof: Differentiate the distribution-valued equality u ◦ t = ts · u with respect to t and set t = 1: the right-
hand side is s · u. For the left-hand side, for test function f , since t→ u ◦ t is a smooth distribution-valued
function of t,

(
∂

∂t
(u ◦ t))(f) =

∂

∂t
((u ◦ t)(f)) =

∂

∂t
(
1

t
u(f ◦ 1

t
)) = u(

∂

∂t
(
1

t
f ◦ 1

t
)) = u

(−1

t2
(f ◦ 1

t
)− x

t2
· (f ′ ◦ 1

t
)
)

Evaluating at t = 1 gives

(s · u)(f) = u
(
− f − x · f ′

)
= −u(f)− (x · u)(f ′) = −u(f) +

( d
dx

(x · u)
)

(f)

9
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= −u(f) + (1 · u+ x · u′)(f) =
(
x
d

dx
u
)

(f)

as claimed. ///

[8.3] Theorem: Up to constant multiples, the principal-value distribution η is the unique odd distribution
of positive-homogeneity degree −1. More generally, except for s = −n with ε = (−1)n+1 with n = 1, 2, . . .,
there is a unique (up to constant multiples) distribution of parity ε and of positive-homogeneity degree s.

Proof: Fix parity ε = ±, and let V be the set of test functions of parity ε vanishing to infinite order at 0.
This is the closure, in the space Dε = Dε(R) of test functions of parity ε, of the space of test functions on
R with support not containing 0 and of parity ε. On C∞c (0,+∞) there is a unique continuous functional on
C∞c (0,+∞) positive homogeneous of degree s (as distribution), given by integration against |x|s. Given a
choice of parity ε, there is a unique extension to a continuous linear functional vεs on Dεo, and of positive-
homogeneity degree s. Dualize the short exact sequence

0 −→ V −→ Dε −→ Dε/V −→ 0

to a short exact sequence (invoking Hahn-Banach for exactness at the right-most joint)

0 −→ (Dε/V )∗ −→ D∗ε −→ V ∗ −→ 0

The quotient Dε/V is identifiable with germs of smooth functions of parity ε supported at 0 modulo germs of
smooth functions vanishing identically at 0 of parity ε. The dual is the collection of distributions supported
at 0 of parity ε, which, by the theory of Taylor-Maclaurin series, consists of finite linear combinations of
Dirac δ and its derivatives, or parity ε. Of course, δ is even, δ′ is odd, and so on.

Let T = x d
dx − s, and consider the very small (vertical) complex of short exact sequences

0

��

0

��

0

��
0 // (Dε/V )∗ //

T

��

D∗ε //

T

��

V ∗ //

T

��

0

0 // (Dε/V )∗ //

��

D∗ε //

��

V ∗ //

��

0

0 0 0

The corresponding long (co-) homology sequence is

0→ kerT
∣∣∣
(Dε/V )∗

→ kerT
∣∣∣
D∗

ε

→ kerT
∣∣∣
V ∗
→ (Dε/V )∗

T ((Dε/V )∗)
→ D∗ε

T (D∗ε)
→ V ∗

T (V ∗)
→ 0

The functional vεs is in kerT |V ∗ , and we hope to extend it uniquely to a functional in kerT |D∗
ε
. It would suffice

that kerT(Dε/V )∗ = 0 and T ((Dε/V )∗) = (Dε/V )∗, that is, T is an isomorphism on distributions supported
on {0} of parity ε and positive-homogeneity degree s. The only failures are s = −n with ε = (−1)n+1,
because (

x
d

dx
− (−n)

)
δ(n) = 0 (for n = 1, 2, . . .)

For the principal-value functional, although s = −1 does occur as a pole for parity +1, the parity is ε = −1,
so there is no obstruction to the extension, and it is unique. ///

10



Paul Garrett: The Hilbert transform (July 29, 2020)

For Re(s) > −1, let uεs be the distributions given by integration against |x|s for ε = +1 and sgnx · |x|s for
ε = −1. For Re(s) > −1, these are locally integrable, and of respective parities ε = ±1 and of positive-
homogeneity degree s.

[8.4] Corollary: The distributions uεs have meromorphic continuations to tempered-distribution-valued
functions of s ∈ C, with only simple poles. For ε = +1, the poles are at −n = −1,−3,−5, . . ., with
residues constant multiples of δ(n). For ε = −1, the poles are at −n = −2,−4,−6, . . ., with residues
constant multiples of δ(n). The meromorphic continuations maintain the positive-homogeneity and parity.
For s 6= −1, uεs = 1

s+1
d
dxu
−ε
s+1. For s = −1,

∂

∂x
u−10 = 2 · δ and

∂

∂x

( ∂
∂s
u+1
s

∣∣∣
s=0

)
= u−1−1 = η

Proof: The functionals vεs on V are entire, since there is no convergence issue for test functions vanishing to
infinite order at 0. Thus, at pole −n, lims→−n(s+n)uεs vanishes on test functions vanishing to infinite order
at 0. Thus, the residue lims→−n(s+ n)uεs is a distribution supported on {0}. It has the same parity ε, and
is positive-homogeneous of degree −n, in the distributional sense. Thus, there is no pole unless ε = (−1)n,
for n = 0,−1,−2, . . ..

For Re(s)� 1, the integrate-against functionals uεs given by |x|s for ε = +1 and sgnx · |x|s for ε = −1 are of
(distributional) positive-homogeneity degree s, and parity ε. For each Re(s)� 1, uεs is the unique extensions
of the distributions vεs , up to constants possibly depending on s. By the vector-valued form of the identity
principle from complex analysis, the same homogeneity and parity properties hold for any meromorphic
continuation. From x d

dxu
ε
s = s · uεs,

d

dx
u−εs =

1

x
· s · u−εs = s · uεs−1

Thus, uεs = 1
s+1

d
dxu
−ε
s+1. Since u−εs+1 is a holomorphic distribution-valued function in Re(s) > −2, this extends

uεs to Re(s) > −2, except for possible pole at s = −1. By induction, u±s has a meromorphic continuation
to all of C except for possible (simple) poles at negative integers. As above, the only possible residues are
distributions supported at 0, which can only occur at non-positive even integers, or non-positive odd integers,
depending on parity.

For ε = +1, the relation d
dxu
−ε
s = s · uεs−1 evaluated at s = 0 yields the residue of u+1

s at −1, namely, a
constant multiple of δ. For ε = −1, there is no pole, and evaluation of the relation at s = 0 just gives
d
dx1 = 0. Thus, we differentiate in s before evaluation: the relation ∂

∂xu
−ε
s = s · uεs−1 gives

∂

∂x

( ∂
∂s

∣∣∣
s=0

u+1
s

)
=

∂

∂s

∣∣∣
s=0

∂

∂x
u+1
s =

∂

∂s

∣∣∣
s=0

(
s · u−1s−1

)
= (u−1s−1 + s · ∂

∂s
u−1s )

∣∣∣
s=0

= u−1−1

Of course,
∂

∂s

∣∣∣
s=0

u+1
s =

∂

∂s

∣∣∣
s=0
|x|s = (|x|s · log |x|)

∣∣∣
s=0

= log |x|

This completes the discussion. ///

[8.5] Remark: In particular, the meromorphic continuations are tempered distributions. That is, all positive-
homogeneous distributions are tempered. Also, away from 0, homogeneous distributions are given locally by
smooth functions.

9. Appendix: E∗ acting on E
This is another action of the space E∗ of compactly-supported distributions on a space of nice functions,
namely the smooth functions E . This does not apply to the Hilbert transform, but is informative and relevant
to other scenarios, for example, pseudo-differential and Fourier-integral operators.
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With translation Txf(y) = f(x+ y), a (traditional) natural action of u ∈ E∗ on f ∈ E is

(u · f)(x) = u(Txf) (for x ∈ Rn)

Certainly x → (u · f)(x) is well-defined pointwise. The E-valued function x → Txf is a smooth E-valued
function (from the definitions), so x→ u(Txf) is a smooth C-valued function, since u is linear and continuous.
Convolution u ∗ v on E∗ is characterized by associativity

(u ∗ v)(f) = u · (v · f) (for all f ∈ E)

The associativity requirement yields an expression for convolution:

[9.1] Claim: u ∗ v = (u⊗ v) ◦ a, with [1] (af)(y × z) = f(y + z).

Proof: Compute directly:

(u · (v · f))(x) = u(Tx(v · f)) = u(Tx(y → v(Tyf))) = u(y → v(Tx+yf))

= u
(
y → v(z → Tx+yf(z))

)
= (u⊗ v)

(
y × z → Txf(y + z))

)
= (u⊗ v)

(
y × z → (s(Txf))(y, z))

)
= (u⊗ v)(a(Txf)) (with (af)(y × z) = f(y + z))

giving the desired expression for u ∗ v. ///

[9.2] Claim: This convolution on E∗ is associative.

Proof: Expanding the expression for convolution just derived,

(u ∗ v) ∗ w = ((u⊗ v) ◦ a) ∗ w = (((u⊗ v) ◦ a)⊗ w) ◦ a

Applied to f ∈ E(Rn), not necessarily of the form Txf , this is(
(((u⊗ v) ◦a)⊗w) ◦a

)
(f) =

(
(((u⊗ v) ◦a)⊗w) ◦a

)
(x→ f(x)) =

(
(((u⊗ v) ◦a)⊗w)(af)

)
(y× z → y+ z)

For F ∈ E(Rn × Rn), letting (bF )(x× y × z) = F (x+ y, z),(
(((u⊗ v) ◦ a)⊗ w)F

)
(y × z → y + z) =

(
((u⊗ v)⊗ w)(bF )

)
((x× y)× z → (x+ y) + z)

That is,

((u ∗ v) ∗ w)(f) = ((u⊗ v)⊗ w)(tf) (three-fold (co-addition) tF (x× y × z) = F (x+ y + z))

The associativity of tensor products, and a similar computation for u ∗ (v ∗ w), gives the associativity of
convolution on E∗. ///

[9.3] Remark: A similar argument applies to real Lie groups G in place of Rn, with due attention to
non-commutativity.
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