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Differential operators obviously do not increase support when applied to test functions. The converse is
certainly not clear. [Peetre 1959,60] proved this, incorporating corrections from L. Carleson. We follow
[Helgason 1984] pp 236-238, who adapts the argument from [Narasimhan 1968].

[0.0.1] Theorem: Let V be a smooth manifold. A not-necessarily-continuous linear map D : C∞c (V ) →
C∞c (V ) that does not increase supports is a differential operator with smooth coefficients.

Proof: First, claim that the non-increase of support property implies that, for a test function f and a point
x, for any test function ϕ identically 1 on a neighborhood of x, suitable truncation does not affect D, in the
sense that

(Df)(x) =
(
D(ϕf)

)
(x)

Indeed, f = ϕf + (1− ϕ)f , and D is linear, so

Df = D(ϕf) +D((1− ϕ)f)

The non-increase of support implies that D((1− ϕ)f)(x) = 0, yielding the claim.

This truncation property immediately allows us to consider the corresponding local problem, of operators
on open subsets of Euclidean spaces, without loss of generality.

Next, the non-increase of support allows an extension of D to all smooth functions on V by using cut-off
functions: given smooth f and a point x, let ϕ be a test function identically 1 on a neighborhood of x, and
define Df(x) = D(ϕf)(x). The latter is well-defined by the previous claim.

Let |f |U,m be the sup on U of sups of the derivatives of f of orders ≤ m.

Next, claim that for f smooth on U with derivatives of order ≤ m vanishing at 0, for every ε > 0 there is
a smooth function g vanishing identically in a neighborhood of 0, coinciding exactly with f outside a larger
neighborhood of 0, such that |f − g|U,m < ε. Let ϕ be a smooth function identically 0 on |x| ≤ 1

2 , identically
1 for |x| ≥ 1, and 0 ≤ ϕ ≤ 1 everywhere. Then consider the family of modifications of f given by

gδ(x) = ϕ(x/δ) · f(x) (for δ > 0 small)

Each gδ agrees with f outside the δ-ball Bδ at 0. It would suffice to prove

lim
δ→0
|f − gδ|Bδ,m = 0

Since f vanishes to order m at 0,
lim
δ→0
|f |Bδ,m = 0

so we must prove that
lim
δ→0
|gδ|Bδ,m = 0

For multi-index α, apply Leibniz’ rule to the αth derivative of gδ:

g
(α)
δ (x) =

∑
β+γ=α

(
α

β

)
δ−|α|ϕ(β)(x/δ) f (γ)(x)

Thus,
|g(α)
δ (x)| �

∑
β+γ=α

δ−|β| |f (γ)(x)| (with x ∈ Bδ)
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with implied constant independent of f and δ. The derivative f (γ) vanishes to order m− |γ| at 0, so, from
the Taylor expansion of f at 0,

sup
Bδ

|f (γ)| = o(δm−|γ|)

Thus,
sup
Bδ

|g(α)
δ (x)| = o

( ∑
β+γ=α

δm−|β|−|γ|
)

= o(δm−|α|)

Thus, as claimed, |f − gδ|Bδ,m → 0.

Next, claim a somewhat weaker continuity assertion than the theorem, namely, that for every point xo there
is a sufficiently small neighborhood U of xo, integer m, such that

|Df |U,0 � |f |U,m (for f ∈ C∞c (U − {xo}))

with the implied constant independent of f . This follows by a diagonal argument: if this failed at some xo,
then for given compact-closure neighborhood U0 of xo there is f1 ∈ C∞c (Uo − {xo}) such that

|Df1|0 ≥ 22 · |f1|1

Let U1 be the zero-set of f1, so U0−U1 is a neighborhood of xo, and there is f2 ∈ C∞c (U0−U1−{xo}) such
that

|Df1|0 ≥ 24 · |f2|2

By induction, obtain open sets Ui with U i ∩ U j = φ for i, j ≥ 1, and test functions

fi ∈ C∞c
(
U0 − U1 − . . .− U i−1 − {xo}

)
with

|Dfi|0 ≥ 22i · |fi|i

Then the sum ∑
i

fi
2i · |f |i

converges and gives a test function, equal to the ith summand fi/(2i · |f |i) on Ui. The linearity and non-
increase of support of D imply that

Df
∣∣∣
Ui

=
1

2i · |f |i
·Dfi

∣∣∣
Ui

Thus, there exists xi ∈ Ui such that Df(xi) > 2i. But f is continuous and compactly supported, so this is
impossible, proving the claim.

Next, thinking in terms of that last weak continuity, we prove a local result: for a neighborhood U of a point
x, under the continuity hypothesis

|Df |U,0 � |f |U,m

on a sufficiently small neighborhood of x, D is a differential operator with smooth coefficients. For the proof
of this, for each x ∈ U and multi-index α, let

Px,α(y) = (x− y)α = (x1 − y1)α1 . . . (xn − yn)αn

For f ∈ C∞c (U) and fixed x ∈ U , consider a subsum of the Taylor expansion of f near x,

F = f −
∑
|α|≤m

1
α!
f (α)(x) · Pα,x
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This F vanishes to order m at x. As shown above, given ε > 0 there is a test function Φε vanishing identically
in a neighborhood of x (depending upon ε), agreeing identically with F outside a larger neighborhood of x
(depending on ε), and with |F − Φε|m ≤ ε. The continuity assumption gives |D(F − Φε)|0 → 0 as ε → 0.
The non-increase of support implies that each DΦε vanishes identically near x. Thus, |DF (x)| < ε for every
ε > 0, so DF (x) = 0. Thus, for each x ∈ U ,

Df(x) =
∑
|α|≤m

1
α!
f (α)(x) ·DPα,x(x)

To understand bα(x) = DPα,x(x), observe that it is a sum of terms Pβ(x) yβ with Pβ a polynomial. By
linearity of D,

D(
∑
β

Pβ(x) · yβ) =
∑
β

Pβ(x) ·D(yβ)

By hypothesis D(yβ) is a test function, so the diagonal

DPx,α(x) =
∑
β

Pβ(x) ·D(xβ)

is a finite sum of polynomial multiples of test functions, and is a test function itself. Thus, the expression
for Df(x) exhibits it as a differential operator with smooth coefficients on U .

Finally, we reduce the general question of expressibility of D to the local one, essentially by a partition of
unity argument. At each x ∈ V , let Ux be a small-enough neighborhood of x, mx an integer, so that we have
a continuity bound

|Df |Ux,0 � |f |Ux,mx (for f ∈ C∞c (Ux − {x}))

with implied constant independent of f . For an open U ⊂ V with compact closure U ⊂ V , take a finite
subcover Ux1 , . . . , Uxn of the opens Ux. Let {ϕj} be a partition of unity subordinate to the cover Ux1 , . . . , Uxn
and V − U of V . For f a test function on the set

U ′ = U − {x1} − . . .− {xn}

certainly

f =
n+1∑
j=1

ϕj · f =
n∑
j=1

ϕj · f

and each ϕjf satisfies a corresponding continuity bound. Expanding the derivatives of ϕjf by Leibniz, we
find that f itself satisfies such a continuity bound on Uxj , and, therefore, satisfies a uniform continuity bound
throughout U ′. Thus, on U ′, D is a differential operator with smooth coefficients

Df(x) =
∑
j

aj(x) ·
( ∂
∂x

)α
f(x) (for x ∈ U ′, f ∈ C∞c (U ′))

In fact, the non-increase of support property allows us to extend the validity of this to f ∈ C∞c (U), at least
for x ∈ U ′: take ϕ ∈ C∞c (U ′) identically 1 near x and identically 0 near every xi. Then ϕf ∈ C∞c (U ′), and
the property D(ϕf)(x) = Df(x) observed earlier gives

Df(x) =
∑
j

aj(x) ·
( ∂
∂x

)α
f(x) (for x ∈ U ′, f ∈ C∞c (U))

Finally, because both sides of the last equation are continuous in x, this equality holds not merely for x ∈ U ′,
but for x ∈ U . This holds for every U ⊂ V , so is valid on V . ///
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