(November 30, 2015)

A rationality principle

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/ [This document is http://www.math.umn.edu/~garrett/m/mfms/notes_2015-16/rationality_principle.pdf]

The following rationality principle was used by H. Klingen, Über die Werte der Dedekindschen Zetafunktionen, Math. Ann. 145 (1961/2), 265-272, to study special values of L-function on totally real number fields.

[0.0.1] Theorem: The constant term c_o in the Fourier expansion $f(z) = \sum_{n=0}^{\infty} c_n e^{2\pi i n z}$ of a holomorphic elliptic modular form f(z) lies in the field $\mathbb{Q}(c_1, c_2, \ldots)$ generated over \mathbb{Q} by the higher Fourier coefficients.

Proof: In fact, we prove that the map $\sum_n c_n e^{2\pi i n z} \to c_o$ is a finite Q-linear combination of maps $\sum_n c_n e^{2\pi i n z} \to c_n$ with n > 0, depending on the weight 2k.

[0.0.2] Lemma: Let $K \subset L$ be fields, V a finite-dimensional L-vectorspace, and $\Lambda \subset \operatorname{Hom}_L(V, L)$. Suppose that Λ spans $\operatorname{Hom}_L(V, L)$ over L, and that $V_o = \{v \in V : \lambda v \in K, \forall \lambda \in \Lambda\}$ spans V over L. For any L-basis $B \subset \Lambda$ of $\operatorname{Hom}_L(V, L)$, every $\lambda \in \Lambda$ is a K-linear (not merely L-linear) combination of elements of B.

Proof: Let $\{v_{\beta} : \beta \in B\}$ be the dual *L*-basis to *B*, namely, $\beta(v_{\beta}) = 1$ and $\beta'(v_{\beta}) = 0$ for $\beta' \neq \beta$. Since $\beta(V_o) \subset K$,

$$V_o \subset K$$
-span of $\{v_\beta : \beta \in B\}$

If V_o failed to contain some v_β , then the K-dimension of V_o would be less than the L-dimension of V, so V_o could not span V over L. Thus, V_o is exactly the K-span of $\{v_\beta : \beta \in B\}$. Write $\lambda \in \Lambda$ as a L-linear combination of elements of B: $\lambda = \sum_{\beta \in B} c_\beta \beta$, with $c_\beta \in L$. Since $v_{\beta'} \in V_o$,

$$c_{\beta'} = \sum_{\beta \in B} c_{\beta} \beta(v_{\beta'}) = \Big(\sum_{\beta \in B} c_{\beta} \beta\Big)(v_{\beta'}) = \lambda(v_{\beta'}) \in K$$

That is, λ is a K-linear combination of the functionals in B, as claimed.

[0.0.3] Claim: The space of holomorphic modular forms of level one, of a fixed weight 2k, have a \mathbb{C} -basis consisting of modular forms with *rational* Fourier coefficients.

///

Proof: First, we prove that monomials $E_4^a E_6^b$ with 4a + 6b = 2k (and non-negative integers a, b) span the space of weight 2k modular forms of level one. Every $2k \ge 4$ has at least one expression 2k = 4a + 6b, and there are no non-zero modular forms of weight 2, and only constants of weight 0. For weights 4, 6, 8, 10, the divisor relation shows that $E_4, E_6, E_4^2, E4E_6$ span these spaces.

Suppose $2k \ge 12$. Note that $\Delta = E_4^3 - E_6^2$ is not identically 0, and is a nowhere-vanishing (except at $i\infty$) cuspform. Given $f(z) = \sum_n c_n e^{2\pi i n z}$, and any a, b with 2k = 4a + 6b, $f - c_o \cdot E_4^a E_6^b$ is a cuspform, and

$$\frac{f - c_o \cdot E_4^a E_6^b}{\Delta}$$

is of weight 2k - 12, so induction gives the result. The Eisenstein series E_4 and E_6 have rational Fourier coefficients, so $E_4^a E_6^b$ has rational Fourier coefficients, for all non-negative integers a, b. Thus, each space of weight 2k modular forms is spanned by modular forms with rational Fourier coefficients. ///

Now we prove the theorem. In the lemma, let V be the space of modular forms of weight 2k > 0, and Λ the collection of all functionals $\lambda_n : \sum_n c_n e^{2\pi i n z} \to c_n$. Certainly Λ spans the dual space $\operatorname{Hom}_{\mathbb{C}}(V,\mathbb{C})$, and the claim shows that the space V_o of modular forms of weight 2k with rational coefficients spans the whole space over \mathbb{C} . For weight 2k > 0, the simultaneous kernel of all λ_n with n > 0 consists of constants, and the only constant modular form of positive weight is 0. Thus, we can choose a basis $B \subset \Lambda$ for $\operatorname{Hom}_{\mathbb{C}}(V,\mathbb{C})$ from among functionals λ_n with n > 0. Thus, λ_0 is a \mathbb{Q} -linear combination of the λ_n 's with n > 0.