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The snake lemma and the existence of a long exact sequence attached to a short exact sequence have many
applications beyond those in the archetypical first encounter in basic algebraic topology. The application
here is to existence and uniqueness of extensions of maps. [1]

1. Hadamard’s example

[Hadamard 1932] considered the behavior of functionals∫ 1

ε

f(x)

x3/2
dx

as ε → 0+. For f continuous with f(0) 6= 0, this expression blows up as ε → 0+. Nevertheless, Hadamard
attached meaning to the integral as follows.

Before letting ε→ 0+, integrate by parts:∫ 1

ε

f(x)

x3/2
dx = [

−2f(x)

x1/2
]1ε + 2

∫ 1

ε

f ′(x)

x1/2
dx

= −2f(1) +
2f(ε)

ε1/2
+ 2

∫ 1

ε

f ′(x)

x1/2
dx = −2f(1) +

2(f(ε)− f(0))

ε1/2
+

2f(0)

ε1/2
+ 2

∫ 1

ε

f ′(x)

x1/2
dx

Of the four summands, only −2f(0)/ε1/2 blows up as ε → 0+. In fact, assuming that f is at least once
continuously differentiable, the term 2(f(ε)− f(0))/ε1/2 goes to 0.

Hadamard’s surprising insight was to drop entirely the term 2f(0)/ε1/2, calling what remained the partie
finie (‘finite part’) of the integral, denoted

p.f.

∫ 1

0

f(x)

x3/2
dx = −2f(1) + 2

∫ 1

0

f ′(x)

x1/2
dx

This appears to be a scandalous lapse, not justifiable or purposeful. Nevertheless, Hadamard successfully
applied this idea to hyperbolic partial differential equations.

A few years later [M.Riesz 1938/40] showed that partie finie functionals are meromorphic continuations of
convergent integrals, as developed later at length in [Schwartz 1950-1] and [Gelfand-Shilov 1958]. In the
example above, consider

us(f) =

∫ 1

0

f(x)xs dx

[1] I first saw this use of the snake lemma in [Casselman 1993] in a discussion of an extended notion of

automorphic form, specifically, to understand an argument for Maass-Selberg identities. There, it is observed that

such considerations are reminiscent of Hadamard’s partie finie [Hadamard 1932] in the context of hyperbolic partial

differential equations. Casselman notes that [Zagier 1982] raises similar issues. In the spirit of [Gelfand-Shilov 1958], in

effect following [M. Riesz 1938/40] and [M. Riesz 1949], and [Schwartz 1950], partie finie functionals are meromorphic

continuations in a natural auxiliary parameter, not results of an ad hoc classical construction as in [Hadamard 1932].

Nevertheless, one may view meromorphic continuation as ad hoc itself.
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for f at least once continuously differentiable, and for Re(s) > −1. Integration by parts gives

us(f) = [
f(x)xs+1

s+ 1
]10 −

1

s+ 1

∫ 1

0

f ′(x)xs+1 dx =
f(1)

s+ 1
− 1

s+ 1
us+1(f ′)

Iteration of this gives a meromorphic continuation of us to C with −1,−2,−3, . . . removed. In particular,
there is no pole at s = −3/2, and the latter equation gives

u−3/2(f) =
f(1)

(−3/2) + 1
− 1

(−3/2) + 1

∫ 1

0

f ′(x)x(−3/2)+1 dx = −2f(1) + 2

∫ 1

0

f ′(x)

x1/2
dx

It is striking that meromorphic continuation recovers Hadamard’s formula. While this makes Hadamard’s
partie finie less suspect, it illustrates that extensions of functionals by meromorphic continuation may be
counter-intuitive.

2. Extensions and the snake lemma

The snake lemma, and the long exact sequence in (co-) homology, has an interesting application to some
very small complexes, which appear in the proof of the following.

[2.0.1] Proposition: Let A, B, C be R-modules over a (not necessarily commutative) C-algebra R. Let

0→ A

j

→ B

q

→ C → 0

be a short exact sequence, and let T be an R-endomorphism of B which stabilizes A (as subobject of B), so
induces an R-endomorphism on C ≈ B/A by

T (b+A) = Tb+A

Then we have a natural exact sequence

0→ kerA T → kerB T → kerC T → A/TA→ B/TB → C/TC → 0

Proof: This is the long exact homology sequence attached to the short exact sequence of complexes

0 0 0
↓ ↓ ↓

0→ A
j
−→ B

q
−→ C → 0

T ↓ T ↓ T ↓
0→ A

j
−→ B

q
−→ C → 0

↓ ↓ ↓
0 0 0

with complexes

A : 0→ A
T
−→A→ 0, B : 0→ B

T
−→B → 0, C : 0→ C

T
−→C → 0

That is, Ho(A) = kerA T , H1(A) = A/TA, and similarly for B and C. ///

[2.0.2] Corollary: When T : A→ A is a bijection, kerB T → kerC T is an isomorphism. ///

2



Paul Garrett: The snake lemma and extensions of functionals (June 14, 2011)

3. Homogeneous distributions

For clarity, we consider a variant of Hadamard’s example that fits more simply into Schwartz’ context.

Let

〈f, us〉 = us(f) =

∫
R
f(x) · |x|s dx

|x|
(for f ∈ S , Re(s) > 0)

The measure is arranged to be invariant under dilations. The function us satisfies the differential equation(
x
d

dx
− s
)
us = 0 (at least for Re(s) > 0)

Let V be the subspace of Schwartz functions S vanishing to infinite order at 0. There is a short exact
sequence

0 −→ V −→ S −→ {Taylor expansions of smooth functions at 0} −→ 0

There is the short exact sequence of duals, as well,

0 −→ {distributions supported at 0} −→ S ′ −→ V ∗ −→ 0

Let Z be the distributions supported at 0. By classification, we know that Z consists of finite linear
combinations of δ and its derivatives.

Let vs be the restriction of us to a functional on V . That is, vs ∈ V ∗. Certainly vs still satisfies the same
differential equation as us, but is better than us, since the integral for vs converges for all s ∈ C. That is,
vs is only integrated against functions vanishing to infinite order at 0.

Given vs for arbitrary s ∈ C, we would like to ask whether there exists a unique us ∈ S ′ extending vs
and satisfying the differential equation above. At the same time, it is essentially elementary to understand
solutions of that differential equation in Z, since [2]

(
x
d

dx
+ (`+ 1)

) ( d`
dx`

δ
)

= 0

Indeed, for s not a negative integer, the differential equation has no solution in Z.

Let T = x d
dx − s, and consider the three little complexes

0→ Z
T
−→Z → 0 0→ S ′

T
−→S ′ → 0 0→ S ′0

T
−→S ′0 → 0

The snake lemma result says that

kerS ′ T ≈ kerS ′
0
T (for s not a negative integer)

That is, unless s is a negative integer, the solution vs ∈ V ∗ to the differential equation extends, and extends
uniquely to a solution us in S ′.

[3.0.1] Remark: The gamma function can be rewritten

Γ(s) =

∫ ∞
0

ts e−t
dt

t
= 2

∫
R
t2s e−t

2 dt

|t|
= u2s

(
2e−t

2)
[2] Since these distributions are compactly supported, at {0}, we can simplify computations concerning them by

evaluating things on the smooth functions xn.
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